Evaluation of relative soil moisture from CMA Land Data Assimilation System at different spatiotemporal scales in China
-
摘要: 基于2020—2021年中国气象局陆面数据同化系统(CLDAS)模拟的逐日土壤相对湿度和土壤水分自动站观测的逐小时土壤相对湿度资料, 采用多个统计对比指标, 在日和月时间尺度、点和区域空间尺度系统性地评估了CLDAS模拟的土壤相对湿度适用性。结果表明: CLDAS模拟的土壤相对湿度与观测值具有一致的逐日变化规律; 0~10 cm、0~20 cm层次CLDAS模拟值与观测值较为接近, 0~50 cm层次模拟值普遍低于观测值; 各层次上, CLDAS模拟值与观测值的相关系数普遍大于0.6, 均方根误差普遍小于30%。区域尺度上, 0~10 cm层次CLDAS模拟值和观测值相关系数为0.78~0.95, 以华南最高; 均方根误差为5.70%~17.26%, 以华东最小; 偏差为−6.63%~15.80%, 以华中偏差绝对值最小。0~20 cm层次CLDAS模拟值和观测值相关系数为0.78~0.95, 以东北和内蒙古最高; 均方根误差为4.45%~14.03%, 以华东最小; 偏差为−5.36%~12.56%, 以华东偏差绝对值最小。0~50 cm层次CLDAS模拟值和观测值相关系数为0.68~0.97, 以东北最高; 均方根误差为4.00%~15.83%, 以华东最小; 偏差为−9.83%~9.62%, 以东北偏差绝对值最小。区域月尺度CLDAS模拟值和观测值整体的相关性较好, 相关系数在6—10月较高; 均方根误差普遍小于15%, 华东各个层次逐月均方根误差均较小。总体来看, CLDAS模拟的土壤相对湿度空间上在华东、华中和东北精度最高, 时间上在6—10月精度最高。Abstract: Based on daily relative soil moisture from the CMA Land Data Assimilation System (CLDAS) and hourly relative soil moisture from automatic soil moisture stations during 2020−2021, CLDAS relative soil moisture was evaluated in terms of accuracy and suitability by using multiple statistic indices at temporal scales of day and month as well as spatial scales of station and region. The results showed consistent daily variation in CLDAS relative soil moisture and observed relative soil moisture. CLDAS relative soil moisture at depths of 0−10 cm and 0−20 cm was close to the observed relative soil moisture, whereas CLDAS relative soil moisture at a depth of 0−50 cm was smaller than the observed relative soil moisture. The correlation coefficients between CLDAS relative soil moisture and observed relative soil moisture at the three depths were generally greater than 0.6, between which the root mean square errors (RMSE) were smaller than 30%. At the regional scale, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was 0.78−0.95, with the largest value in South China. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was 5.70%−17.26%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was −6.63%−15.80%, with the smallest absolute value in Central China. At a depth of 0−20 cm, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture was 0.78−0.95, with the largest value in Northeast China and Inner Mongolia. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−20 cm was 4.45%−14.03%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−20 cm was −5.36%−12.56%, with the smallest absolute value in East China. At a depth of 0−50 cm, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture was 0.68−0.97, with the largest value in Northeast China. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−50 cm was 4.00%−15.83%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−50 cm was −9.83%−9.62%, with the smallest absolute value in Northeast China. The correlation coefficients between monthly CLDAS relative soil moisture and observed relative soil moisture were generally high, with larger values between June and October. The RMSE between monthly CLDAS relative soil moisture and observed relative soil moisture was smaller than 15%, with the smallest value in East China. Overall, CLDAS relative soil moisture performed well in East China, Central China, and Northeast China at the spatial scale and during June−October at the temporal scale.
-
表 1 区域土壤相对湿度CLDAS模拟值和观测值统计检验(*表示通过P<0.05的显著性水平检验)
Table 1 Statistic test of regional CLDAS simulated and observed relative soil moisture (the symbol of * represents the coefficient is significant at P<0.05 level)
区域
Region0~10 cm 0~20 cm 0~50 cm R RMSE (%) Bias (%) R RMSE (%) Bias (%) R RMSE (%) Bias (%) 东北 Northeast China 0.89* 12.01 8.91 0.95* 9.24 7.47 0.97* 4.21 1.62 内蒙古 Inner Mongolia 0.93* 13.69 12.30 0.95* 13.09 12.07 0.95* 10.60 9.62 华北 North China 0.88* 11.23 8.78 0.93* 11.37 10.11 0.92* 8.97 7.78 西北 Northwest China 0.84* 10.56 8.23 0.86* 8.43 6.18 0.85* 5.62 2.94 新疆 Xinjiang 0.85* 6.15 −3.79 0.87* 7.03 −5.09 0.86* 10.32 −8.92 华东 East China 0.78* 5.70 2.77 0.78* 4.45 2.29 0.75* 4.00 −2.45 华中 Central China 0.81* 6.66 −2.66 0.79* 6.48 −3.41 0.70* 9.15 −7.56 华南 South China 0.95* 7.78 −6.63 0.93* 5.89 −5.36 0.87* 10.09 −9.83 西南 Southwest China 0.92* 10.27 9.76 0.93* 10.26 9.73 0.92* 5.47 4.82 西藏 Tibet 0.89* 17.26 15.80 0.90* 14.03 12.56 0.68* 15.83 −5.65 表 2 区域逐月0~10 cm、0~20 cm和0~50 cm土壤相对湿度CLDAS模拟值和观测值的相关系数(*表示通过P<0.05的显著性水平检验)
Table 2 Correlation coefficients between regional monthly CLDAS simulated and observed relative soil moisture at the depths of 0−10 cm, 0−20 cm and 0−50 cm (the symbol of * represents the coefficient is significant at P<0.05 level)
区域
Region1月
January2月
February3月
March4月
April5月
May6月
June7月
July8月
August9月
September10月
October11月
November12月
December0~10 cm 东北 Northeast China 0.92* 0.51* 0.74* 0.09 0.70* 0.81* 0.95* 0.87* 0.80* 0.88* 0.29* 0.76* 内蒙古 Inner Mongolia 0.74* 0.58* 0.71* −0.49* 0.44* 0.79* 0.88* 0.90* 0.74* 0.93* 0.82* 0.66* 华北 North China 0.76* 0.58* 0.32* −0.15 0.69* 0.90* 0.93* 0.90* 0.96* 0.99* 0.96* 0.82* 西北 Northwest China 0.11 0.58* −0.45* 0.35* 0.68* 0.92* 0.94* 0.96* 0.89* 0.95* 0.26* 0.54* 新疆 Xinjiang −0.37* 0.36* 0.73* −0.14 0.55* 0.48* 0.68* 0.65* 0.81* 0.89* 0.78* 0.87* 华东 East China 0.75* 0.84* 0.48* 0.08 0.46* 0.92* 0.82* 0.84* 0.94* 0.95* 0.96* 0.59* 华中 Central China 0.88* 0.92* 0.21 0.21 0.73* 0.97* 0.93* 0.94* 0.96* 0.86* 0.95* 0.74* 华南 South China 0.96* 0.95* 0.96* 0.96* 0.94* 0.89* 0.92* 0.95* 0.97* 0.95* 0.97* 0.98* 西南 Southwest China 0.91* 0.96* 0.92* 0.77* 0.88* 0.83* 0.86* 0.96* 0.92* 0.95* 0.94* 0.41* 西藏 Tibet −0.09 0.67* 0.71* 0.92* 0.47* 0.79* 0.79* 0.93* 0.89* 0.89* 0.80* 0.85* 0~20 cm 东北 Northeast China 0.92* 0.69* 0.88* −0.17* 0.62* 0.84* 0.97* 0.90* 0.80* 0.90* 0.42* 0.88* 内蒙古 Inner Mongolia 0.70* 0.54* 0.80* −0.76* 0.34* 0.83* 0.92* 0.91* 0.74* 0.95* 0.92* 0.74* 华北 North China 0.79* 0.79* 0.20 −0.33* 0.66* 0.88* 0.96* 0.94* 0.97* 1.00* 0.97* 0.91* 西北 Northwest China 0.32* 0.79* −0.55* −0.02 0.51* 0.91* 0.94* 0.98* 0.90* 0.96* 0.41* 0.63* 新疆 Xinjiang 0.24 0.32* 0.74* −0.59* 0.40* 0.34* 0.76* 0.57* 0.84* 0.79* 0.77* 0.87* 华东 East China 0.88* 0.88* 0.41* −0.06 0.39* 0.93* 0.81* 0.82* 0.95* 0.97* 0.95* 0.65* 华中 Central China 0.88* 0.90* −0.05 −0.09 0.64* 0.97* 0.96* 0.94* 0.97* 0.91* 0.95* 0.83* 华南 South China 0.92* 0.89* 0.96* 0.95* 0.90* 0.89* 0.93* 0.94* 0.98* 0.90* 0.96* 0.98* 西南 Southwest China 0.95* 0.98* 0.94* 0.80* 0.82* 0.82* 0.83* 0.96* 0.93* 0.93* 0.93* 0.62* 西藏 Tibet −0.08 0.66* 0.60* 0.81* 0.43* 0.82* 0.86* 0.96* 0.93* 0.91* 0.76* 0.95* 0~50 cm 东北 Northeast China 0.93* 0.78* 0.94 −0.04 0.48* 0.83* 0.97* 0.93* 0.75* 0.92* 0.61* 0.91* 内蒙古 Inner Mongolia 0.83* 0.78* 0.80* −0.75* 0.22 0.87* 0.95* 0.93* 0.75* 0.93* 0.93* 0.82* 华北 North China 0.53* 0.73* −0.20 −0.60* 0.50* 0.69* 0.96* 0.93* 0.96* 1.00* 0.99* 0.96* 西北 Northwest China 0.61* 0.74* −0.20 −0.21 0.28* 0.91* 0.94* 0.99* 0.91* 0.96* 0.59* 0.58* 新疆 Xinjiang 0.98* 0.80* 0.77* −0.77* 0.24 0.09 0.87* 0.48* 0.70* 0.11 0.61* 0.90* 华东 East China 0.84* 0.88* 0.18 −0.29* 0.34* 0.93* 0.85* 0.74* 0.95* 0.96* 0.92* 0.60* 华中 Central China 0.78* 0.90* −0.35* −0.50* 0.48* 0.96* 0.97* 0.94* 0.97* 0.94* 0.91* 0.45* 华南 South China 0.83* 0.84* 0.96* 0.93* 0.82* 0.84* 0.95* 0.94* 0.98* 0.83* 0.90* 0.85* 西南 Southwest China 0.96* 0.99* 0.97* 0.88* 0.62* 0.86* 0.85* 0.94* 0.94* 0.91* 0.91* 0.81* 西藏 Tibet 0.09 0.72* −0.17 −0.88* 0.21 0.96* 0.91* 0.60* 0.56* 0.56* 0.37* −0.41* 表 3 区域逐月土壤相对湿度CLDAS模拟值和观测值均方根误差
Table 3 Root mean square error between regional monthly CLDAS simulated and observed relative soil moisture
区域
Region1月
January2月
February3月
March4月
April5月
May6月
June7月
July8月
August9月
September10月
October11月
November12月
December0~10 cm 东北 Northeast China 8.38 14.78 18.54 10.10 10.39 12.94 14.16 12.47 10.31 6.82 10.70 9.99 内蒙古 Inner Mongolia 7.51 13.18 17.55 19.34 15.19 15.39 13.96 12.71 14.40 14.67 8.41 4.36 华北 North China 15.23 21.53 13.85 12.40 10.65 7.47 7.58 6.62 6.55 7.10 7.05 9.12 西北 Northwest China 8.11 17.05 13.84 14.80 11.82 11.02 8.21 7.79 7.88 6.24 8.36 5.20 新疆 Xinjiang 3.83 4.70 7.98 7.54 8.48 7.60 6.56 6.62 4.98 1.40 6.06 4.03 华东 East China 6.23 7.82 6.64 9.01 7.73 3.30 3.54 4.93 3.40 3.07 3.23 5.44 华中 Central China 4.75 5.39 6.98 9.68 7.75 7.83 6.61 5.91 7.47 6.72 3.85 4.74 华南 South China 10.07 8.67 8.08 8.03 7.05 5.90 6.98 4.42 5.38 5.89 9.32 10.95 西南 Southwest China 9.79 10.30 11.43 10.06 9.74 9.13 8.70 13.27 9.98 8.09 10.90 10.77 西藏 Tibet 13.13 15.38 20.46 25.37 20.07 14.03 12.95 13.00 16.63 21.15 16.04 13.40 0~20 cm 东北 Northeast China 7.23 10.19 11.61 9.94 8.97 10.21 11.69 9.68 8.31 6.07 7.09 8.03 内蒙古 Inner Mongolia 8.36 10.75 13.40 18.41 15.97 15.17 13.34 11.74 13.03 14.78 11.19 6.28 华北 North China 13.29 17.94 13.58 13.66 12.89 9.76 6.78 6.07 7.77 9.10 9.76 10.95 西北 Northwest China 3.80 10.39 11.32 13.40 11.55 10.38 6.43 6.35 5.65 4.00 6.25 4.64 新疆 Xinjiang 3.30 4.75 10.03 9.68 8.75 7.52 7.30 8.68 5.54 2.55 6.42 4.99 华东 East China 3.88 5.33 4.95 7.75 6.71 2.50 2.33 3.75 3.57 2.82 3.28 3.08 华中 Central China 3.75 4.22 7.01 9.01 6.95 7.48 7.80 6.44 6.51 6.94 4.88 4.48 华南 South China 4.12 6.29 6.52 6.54 6.21 6.95 6.34 6.04 5.53 5.41 5.47 4.74 西南 Southwest China 9.72 10.16 12.33 11.35 10.82 8.23 7.40 12.79 9.41 8.33 10.19 10.98 西藏 Tibet 10.76 11.71 13.71 21.14 17.89 10.43 8.39 8.93 12.66 17.67 16.12 13.00 0~50 cm 东北 Northeast China 2.52 3.34 4.07 5.71 3.52 3.36 4.83 4.32 4.12 2.10 4.62 6.13 内蒙古 Inner Mongolia 7.69 8.00 9.54 16.07 13.27 11.56 10.10 9.31 10.04 12.05 9.89 5.85 华北 North China 8.80 13.00 12.03 11.58 10.98 7.23 3.64 3.20 5.36 7.91 9.47 8.46 西北 Northwest China 3.27 3.90 6.72 9.89 9.25 7.28 3.45 3.84 2.85 1.68 3.43 4.72 新疆 Xinjiang 1.90 3.56 11.37 14.08 13.40 12.30 12.27 12.79 9.39 5.60 9.15 9.13 华东 East China 5.41 3.86 3.82 4.79 4.91 3.58 3.95 2.31 2.07 2.39 3.63 5.49 华中 Central China 5.92 6.58 8.19 8.20 7.69 11.20 12.61 10.90 9.25 9.85 8.67 8.24 华南 South China 6.76 9.81 10.35 10.01 10.43 11.21 11.71 11.48 10.73 9.91 9.34 8.24 西南 Southwest China 5.16 4.91 6.67 7.28 5.65 3.69 3.20 7.13 4.76 4.67 4.88 6.02 西藏 Tibet 12.82 6.23 7.57 17.70 19.10 14.10 26.74 25.46 14.38 11.22 7.21 9.45 -
[1] 刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报, 2015, 70(11): 1835−1848 doi: 10.11821/dlxb201511012 LIU X F, ZHU X F, PAN Y Z, et al. Agricultural drought monitor: progress, challenges and prospect[J]. Acta Geographica Sinica, 2015, 70(11): 1835−1848 doi: 10.11821/dlxb201511012
[2] 樊风, 段玮, 杨家康. 云南土壤湿度长期变化的初步研究[J]. 应用气象学报, 2015, 26(4): 409−421 doi: 10.11898/1001-7313.20150403 FAN F, DUAN W, YANG J K. Preliminary results on long-term soil moisture variation in Yunnan[J]. Journal of Applied Meteorological Science, 2015, 26(4): 409−421 doi: 10.11898/1001-7313.20150403
[3] ZHANG J H, ZHOU Z M, YAO F M, et al. Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(3): 542−546
[4] 张蕾, 吕厚荃, 王良宇, 等. 中国土壤湿度的时空变化特征[J]. 地理学报, 2016, 71(9): 1494−1508 ZHANG L, LYU H Q, WANG L Y, et al. Spatial-temporal characteristics of soil moisture in China[J]. Acta Geographica Sinica, 2016, 71(9): 1494−1508
[5] 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618−671 LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6): 618−671
[6] BAI L L, LONG D, YAN L. Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land[J]. Water Resources Research, 2019, 55(2): 1105−1128 doi: 10.1029/2018WR024162
[7] GE X Y, WANG J Z, DING J L, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. PeerJ, 2019, 7: e6926 doi: 10.7717/peerj.6926
[8] 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198−213 doi: 10.18306/dlkxjz.2018.02.003 ZHAO T J. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. Progress in Geography, 2018, 37(2): 198−213 doi: 10.18306/dlkxjz.2018.02.003
[9] 吴泽棉, 邱建秀, 刘苏峡, 等. 基于土壤水分的农业干旱监测研究进展[J]. 地理科学进展, 2020, 39(10): 1758−1769 doi: 10.18306/dlkxjz.2020.10.014 WU Z M, QIU J X, LIU S X, et al. Advances in agricultural drought monitoring based on soil moisture[J]. Progress in Geography, 2020, 39(10): 1758−1769 doi: 10.18306/dlkxjz.2020.10.014
[10] CUI Y K, LONG D, HONG Y, et al. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau[J]. Journal of Hydrology, 2016, 543: 242−254 doi: 10.1016/j.jhydrol.2016.10.005
[11] WANG L, FANG S B, PEI Z F, et al. Using FengYun-3C VSM data and multivariate models to estimate land surface soil moisture[J]. Remote Sensing, 2020, 12(6): 1038 doi: 10.3390/rs12061038
[12] 杨纲, 郭鹏, 李西灿, 等. 风云卫星微波遥感土壤水分产品适用性验证分析[J]. 水土保持研究, 2020, 27(1): 104−111, 118 YANG G, GUO P, LI X C, et al. Assessment on applicability of soil moisture products of Fengyun satellite microwave remote sensing[J]. Research of Soil and Water Conservation, 2020, 27(1): 104−111, 118
[13] LUO W, XU X L, LIU W, et al. UAV based soil moisture remote sensing in a Karst mountainous catchment[J]. CATENA, 2019, 174: 478−489 doi: 10.1016/j.catena.2018.11.017
[14] 宋海清, 朱仲元, 李云鹏. 6套格点土壤水分数据集在内蒙古自治区的适用性评价[J]. 水土保持通报, 2021, 41(6): 180−189, 200 SONG H Q, ZHU Z Y, LI Y P. Applicability evaluation of six gridded soil moisture datasets in Inner Mongolia Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2021, 41(6): 180−189, 200
[15] 闫伟兄, 李剑萍, 金燕, 等. 土壤湿度模拟研究进展[J]. 气象科技进展, 2021, 11(6): 14−20 doi: 10.3969/j.issn.2095-1973.2021.06.003 YAN W X, LI J P, JIN Y, et al. Recent advances in soil wetness simulation[J]. Advances in Meteorological Science and Technology, 2021, 11(6): 14−20 doi: 10.3969/j.issn.2095-1973.2021.06.003
[16] BAO H Y, YANG K, WANG C H. Characteristics of GLDAS soil-moisture data on the Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 127−141
[17] XIA Y L, SHEFFIELD J, EK M B, et al. Evaluation of multi-model simulated soil moisture in NLDAS-2[J]. Journal of Hydrology, 2014, 512: 107−125 doi: 10.1016/j.jhydrol.2014.02.027
[18] 崔园园, 覃军, 敬文琪, 等. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123−136 CUI Y Y, QIN J, JING W Q, et al. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 123−136
[19] 刘维成, 徐丽丽, 朱姜韬, 等. 再分析资料和陆面数据同化资料土壤湿度产品在中国北方地区的适用性评估[J]. 大气科学学报, 2022, 45(4): 616−629 LIU W C, XU L L, ZHU J T, et al. Evaluation of reanalysis and LDAS soil moisture products over North China[J]. Transactions of Atmospheric Sciences, 2022, 45(4): 616−629
[20] 韩帅, 师春香, 姜立鹏, 等. CLDAS土壤湿度模拟结果及评估[J]. 应用气象学报, 2017, 28(3): 369−378 HAN S, SHI C X, JIANG L P, et al. The simulation and evaluation of soil moisture based on CLDAS[J]. Journal of Applied Meteorological Science, 2017, 28(3): 369−378
[21] 崔园园, 张强, 覃军, 等. CLDAS融合土壤湿度产品在东北地区的适用性评估及订正[J]. 中国农业气象, 2019, 40(10): 660−668 CUI Y Y, ZHANG Q, QIN J, et al. Applicability evaluation of CLDAS merged soil relative moisture in northeast of China and its correction research[J]. Chinese Journal of Agrometeorology, 2019, 40(10): 660−668
[22] 秦道清, 赵岩, 王红瑞, 等. 基于站点观测和模式模拟的北京市土壤湿度[J]. 自然资源学报, 2019, 34(1): 191−204 doi: 10.31497/zrzyxb20190116 QIN D Q, ZHAO Y, WANG H R, et al. Soil moisture in Beijing based on site observation and model simulation[J]. Journal of Natural Resources, 2019, 34(1): 191−204 doi: 10.31497/zrzyxb20190116
[23] 孙小龙, 宋海清, 李平, 等. 基于CLDAS资料的内蒙古干旱监测分析[J]. 气象, 2015, 41(10): 1245−1252 SUN X L, SONG H Q, LI P, et al. Analysis of drought monitoring in Inner Mongolia based on CLDAS data[J]. Meteorological Monthly, 2015, 41(10): 1245−1252
[24] 刘东明, 吴门新, 侯英雨, 等. 辽宁省生长季CLDAS土壤相对湿度产品的评估检验[J]. 中国农业气象, 2022, 43(1): 17−27 LIU D M, WU M X, HOU Y Y, et al. Evaluation and verification of CLDAS relative soil moisture products during growing season in Liaoning Province[J]. Chinese Journal of Agrometeorology, 2022, 43(1): 17−27
[25] 张蕾, 吕厚荃, 王良宇. 土壤水分观测历史数据集奇异值分析与校正[J]. 气象, 2017, 43(2): 189−196 doi: 10.7519/j.issn.1000-0526.2017.02.006 ZHANG L, LYU H Q, WANG L Y. Analysis and calibration of singular historical observed data of manual soil water[J]. Meteorological Monthly, 2017, 43(2): 189−196 doi: 10.7519/j.issn.1000-0526.2017.02.006