农田土壤团聚体有机碳对秸秆还田响应的Meta分析

李怡燃, 王秀薪, 梁耀文, 周海峰, 周南丁, 蒲玉琳

李怡燃, 王秀薪, 梁耀文, 周海峰, 周南丁, 蒲玉琳. 农田土壤团聚体有机碳对秸秆还田响应的Meta分析[J]. 中国生态农业学报 (中英文), 2024, 32(1): 41−52. DOI: 10.12357/cjea.20230158
引用本文: 李怡燃, 王秀薪, 梁耀文, 周海峰, 周南丁, 蒲玉琳. 农田土壤团聚体有机碳对秸秆还田响应的Meta分析[J]. 中国生态农业学报 (中英文), 2024, 32(1): 41−52. DOI: 10.12357/cjea.20230158
LI Y R, WANG X X, LIANG Y W, ZHOU H F, ZHOU N D, PU Y L. Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 41−52. DOI: 10.12357/cjea.20230158
Citation: LI Y R, WANG X X, LIANG Y W, ZHOU H F, ZHOU N D, PU Y L. Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 41−52. DOI: 10.12357/cjea.20230158
李怡燃, 王秀薪, 梁耀文, 周海峰, 周南丁, 蒲玉琳. 农田土壤团聚体有机碳对秸秆还田响应的Meta分析[J]. 中国生态农业学报 (中英文), 2024, 32(1): 41−52. CSTR: 32371.14.cjea.20230158
引用本文: 李怡燃, 王秀薪, 梁耀文, 周海峰, 周南丁, 蒲玉琳. 农田土壤团聚体有机碳对秸秆还田响应的Meta分析[J]. 中国生态农业学报 (中英文), 2024, 32(1): 41−52. CSTR: 32371.14.cjea.20230158
LI Y R, WANG X X, LIANG Y W, ZHOU H F, ZHOU N D, PU Y L. Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 41−52. CSTR: 32371.14.cjea.20230158
Citation: LI Y R, WANG X X, LIANG Y W, ZHOU H F, ZHOU N D, PU Y L. Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 41−52. CSTR: 32371.14.cjea.20230158

农田土壤团聚体有机碳对秸秆还田响应的Meta分析

基金项目: 四川省科学技术厅应用基础研究项目 (2021YJ0341)和中国科技基础资源调查项目(2022FY100200)资助
详细信息
    作者简介:

    李怡燃, 主要研究方向为土壤肥力与生态环境质量评价。E-mail: liyiran1@stu.sicau.edu.cn

    通讯作者:

    蒲玉琳, 主要研究方向为土壤肥力与生态环境质量评价。E-mail: pyulin@sicau.edu.cn

  • 中图分类号: S152; S141.4

Response of farmland soil aggregate-associated organic carbon to straw return: a meta-analysis

Funds: This study was supported by the Applied Basic Research Programs of Science & Technology Department of Sichuan Province (2021YJ0341) and China Science & Technology Fundamental Resources Investigation Program (2022FY100200).
More Information
  • 摘要:

    秸秆还田是一种增加土壤有机质的有效途径, 因其操作简单、经济节约而备受青睐。本文筛选了有关秸秆还田对农田土壤团聚体有机碳含量(团聚体碳)影响的35篇田间试验文献, 利用Meta分析方法和随机森林模型, 评估了地理位置、还田方式、还田数量及还田年限对农田土壤团聚体碳的影响效应, 以期为提升土壤质量及固碳减排提供理论依据。结果表明, 与不还田相比, 秸秆还田总体上提高了农田土壤团聚体碳含量, 这一正向效应在西南地区最高(26.5%~43.4%), 华北地区最低(2.0%~10.8%), 东北、西北、华东和华中地区居中。在留高茬、覆盖、深翻耕、旋耕4种秸秆还田方式中, 旋耕对土壤大、小团聚体碳的增加效应最大, 增幅达13.5%~18.7%; 留高茬对土壤微团聚体碳的提升效应最高, 约为19.5%。总体来看, 秸秆还田提升土壤团聚体碳的正效应随秸秆还田量及还田年限的增加而增大, 且在还田>8年后的提升效应最显著。地理区域和还田方式是影响秸秆还田条件下土壤各粒径团聚体碳的重要因素, 其贡献率分别为16.2%~28.1%和8.0%~22.4%。秸秆还田提升土壤有机碳含量的物理机制是增加了土壤团聚体的物理固碳量; 建议将秸秆粉碎后以旋耕方式还入土壤15 cm土层内, 同时配施适量化肥(如氮肥和磷肥)增强土壤团聚体的固碳潜力。

    Abstract:

    Straw return is a practical method for effectively improving soil organic matter (SOM) and is favored owing to its simplicity and cost-effectiveness. In this study, we screened 35 relevant experimental field studies to investigate the effects of straw return on farmland soil aggregate organic carbon content. We used meta-analysis and random-forest models to evaluate the response effects of farmland soil aggregate carbon content to straw return, as well as the contribution of influential factors of farmland soil aggregate carbon content, such as geographical region, return mode, return amount, and years of straw return. This could provide a theoretical basis for enhancing soil quality and carbon sequestration, as well as for developing a reasonable aggregate carbon pool management strategy. Compared to that of the control treatment (no straw return), the carbon content of soil aggregates in China increased considerably when straw was returned to the farmlands. The positive effects of straw return on farmland soil aggregate carbon content varied remarkably across different regions in China. The highest positive effect of straw return on farmland soil aggregate carbon content was observed in Southwest China, ranging from 26.5% to 43.4%, whereas north China had the lowest positive effect of straw return on farmland soil aggregate carbon content, ranging from 2.0% to 10.8%. The beneficial impacts of straw return on farmland soil aggregate carbon content were moderate in Northeast, Northwest, East, and Central China. In addition, among the four straw return methods, including high stubble retention, mulching, rotary tillage and deep ploughing, rotary tillage had the largest influence on the rise of farmland soil large aggregate carbon content and small aggregate carbon content, ranging from 13.5% to 18.7%. High stubble retention had the highest improvement effect on farmland soil microaggregate carbon content, with a value of 19.5%. With respect to the years of straw return, the positive effects of straw return on farmland soil aggregate carbon content improved along with increasing amounts and the years of straw return. Furthermore, the beneficial effect of straw return on farmland soil aggregate carbon was most significant eight years after straw return. Additionally, the results of random-forest model showed that geographical region and straw return mode are important factors affecting farmland soil aggregate carbon with various particle sizes under the conditions of straw return, and their contribution rate was in the range of 16.2%–28.1% and 8.0%–22.4%, respectively. We also discovered that the crucial physical process by which straw return improves the organic carbon content of farmland soil on a broad scale is an increase in the physical carbon sequestration of soil aggregates. As aforementioned, it is suggested that the straw should be returned to the farmland soil within a 15 cm depth using the rotary tillage method after crushing, and simultaneously an appropriate amount of chemical fertilizer (e.g., nitrogen and phosphorus fertilizer) should be applied to maximize the potential of soil aggregates for carbon sequestration.

  • 图  1   秸秆还田对土壤团聚体碳含量的发表偏倚检验

    a: 大团聚体; b: 小团聚体; c: 微团聚体; d: 粉黏粒级。a: large aggregates; b: small aggregates; c: microaggregates; d: silt plus clay-size fractions.

    Figure  1.   Publication bias test of straw return to soil aggregate carbon content

    图  2   秸秆还田条件下土壤团聚体碳的相对变化率

    a: 大团聚体; b: 小团聚体; c: 微团聚体; d: 粉黏粒级。虚线是95%置信区间内效应值的加权平均值。a: large aggregates; b: small aggregates; c: microaggregates; d: silt plus clay-size fractions. Dashed line represents the weighted mean of effect size with 95% confidence interval.

    Figure  2.   Relative change rate of soil aggregate carbon content in response to straw return

    图  3   不同地理区域秸秆还田条件下土壤团聚体碳含量的相对变化率

    a: 大团聚体; b: 小团聚体; c: 微团聚体; d: 粉黏粒级。误差线表示95%置信区间, 误差线附近数值表示相应分组的样本数。a: large aggregates; b: small aggregates; c: microaggregates; d: silt plus clay-size fractions. The error bar denotes the 95% confidence interval. The value near the error bar represents the sample size in the corresponding group.

    Figure  3.   Relative change rates of soil aggregate carbon contents in response to straw return in different geographical regions

    图  4   不同秸秆还田方式下土壤团聚体碳含量的相对变化率

    误差线表示95%置信区间, 误差线附近的数值表示相应分组的样本数。The error bar denotes the 95% confidence interval. The value near the error bar represents sample size in the corresponding group.

    Figure  4.   Relative change rates of soil aggregate carbon contents in response to different straw return modes

    图  5   不同秸秆还田量下土壤团聚体碳含量的相对变化率

    误差线表示95%置信区间, 误差线附近的数值表示相应分组的样本数。The error bar denotes the 95% confidence interval. The value near the error bar represents sample size in the corresponding group.

    Figure  5.   Relative change rates of soil aggregate carbon contents in response to different straw return amounts

    图  6   不同秸秆还田年限下土壤团聚体碳含量的相对变化率

    误差线表示95%置信区间, 误差线附近的数值表示相应分组的样本数。The error bar denotes the 95% confidence interval. The value near the error bar represents sample size in the corresponding group.

    Figure  6.   Relative change rates of soil aggregate carbon contents in response to different straw return years

    图  7   不同秸秆还田因素对土壤团聚体碳含量的贡献率

    a: 大团聚体; b: 小团聚体; c: 微团聚体; d: 粉黏粒级。a: large aggregates; b: small aggregates; c: microaggregates; d: silt plus clay-size fractions.

    Figure  7.   Contribution rates of different straw return factors to the changes of soil aggregate carbon content

    表  1   秸秆还田条件下土壤团聚体碳的影响因素分类

    Table  1   Classification of influencing factors of soil aggregate carbon under straw return

    影响因素
    Influential factor
    亚组
    Sub-group
    地理区域
    Geographical region
    东北、华北、华中、西北、华东和西南
    Northeast China, North China, Central China, Northwest China, East China and Southwest China
    还田方式
    Return mode
    留高茬、覆盖、旋耕和深翻耕
    High stubble retention, mulching, rotary tillage and deep ploughing
    还田数量
    Return amount (t·hm−2)
    低量 (<5)、中量 (5~10)和高量 (>10)
    Low amount (<5), medium amount (5~10) and high amount (>10)
    还田年限
    Return year (a)
    短期 (<3)、中期 (3~8)和长期 (>8)
    Short term (<3), medium term (3–8) and long term (>8)
    下载: 导出CSV

    表  2   秸秆还田对土壤团聚体碳含量的异质性检验

    Table  2   Heterogeneity test of straw return to soil aggregate carbon content

    团聚体粒级 Aggregate size class模型 ModelQPI2
    大团聚体 Large aggregates随机效应模型
    Random effect model
    18 747.93< 0.00199.48
    小团聚体 Small aggregates 30 616.1999.67
    微团聚体 Microaggregates 32 941.4799.68
    粉黏粒级 Silt plus clay-size fractions 32 716.9099.57
      Q: 效应值的加权方差; P: 异质性检验的显著水平; I2: 真实变异占总变异的比率。Q: weighted variance of effect size; P: significant level of heterogeneity test; I2: ratio of true variation to total variation.
    下载: 导出CSV
  • [1]

    ATOLOYE I A, JACOBSON A R, CREECH J E, et al. Soil organic carbon pools and soil quality indicators 3 and 24 years after a one-time compost application in organic dryland wheat systems[J]. Soil & Tillage Research, 2022, 224: 105503

    [2] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534−574

    YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica Vitae, 2022, 52(4): 534−574

    [3] 赵明月, 刘源鑫, 张雪艳. 农田生态系统碳汇研究进展[J]. 生态学报, 2022, 42(23): 9405−9416

    ZHAO M Y, LIU Y X, ZHANG X Y. A review of research advances on carbon sinks in farmland ecosystems[J]. Acta Ecologica Sinica, 2022, 42(23): 9405−9416

    [4] 刘昱, 陈敏鹏, 陈吉宁. 农田生态系统碳循环模型研究进展和展望[J]. 农业工程学报, 2015, 31(3): 1−9

    LIU Y, CHEN M P, CHEN J N. Progress and perspectives in studies on agro-ecosystem carbon cycle model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 1−9

    [5] 张方方, 岳善超, 李世清. 土壤有机碳组分化学测定方法及碳指数研究进展[J]. 农业环境科学学报, 2021, 40(2): 252−259 doi: 10.11654/jaes.2020-0886

    ZHANG F F, YUE S C, LI S Q. Chemical methods to determine soil organic carbon fractions and carbon indexes: a review[J]. Journal of Agro-Environment Science, 2021, 40(2): 252−259 doi: 10.11654/jaes.2020-0886

    [6]

    TONG C L, XIAO H A, TANG G Y, et al. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China[J]. Soil & Tillage Research, 2009, 106(1): 8−14

    [7] 董海荣, 李珊珊, 董谦. 低碳经济视角下农田管理的技术体系和模式选择[J]. 农学学报, 2012, 2(10): 72−75 doi: 10.3969/j.issn.1007-7774.2012.10.016

    DONG H R, LI S S, DONG Q. Study on the choice of the technology system and pattern of farmland management from the low-carbon economy perspective[J]. Journal of Agriculture, 2012, 2(10): 72−75 doi: 10.3969/j.issn.1007-7774.2012.10.016

    [8]

    LI S, HU M J, SHI J L, et al. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China[J]. Science of the Total Environment, 2021, 767: 145347 doi: 10.1016/j.scitotenv.2021.145347

    [9] 石祖梁, 王飞, 王久臣, 等. 我国农作物秸秆资源利用特征、技术模式及发展建议[J]. 中国农业科技导报, 2019, 21(5): 8−16 doi: 10.13304/j.nykjdb.2018.0314

    SHI Z L, WANG F, WANG J C, et al. Utilization characteristics, technical model and development suggestion on crop straw in China[J]. Journal of Agricultural Science and Technology, 2019, 21(5): 8−16 doi: 10.13304/j.nykjdb.2018.0314

    [10]

    LIU W M, LIU Y E, LIU G Z, et al. Estimation of maize straw production and appropriate straw return rate in China[J]. Agriculture, Ecosystems & Environment, 2022, 328: 107865

    [11]

    HAO X X, HAN X Z, WANG S Y, et al. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol[J]. Soil & Tillage Research, 2022, 215: 105221

    [12]

    LI S, HU M J, SHI J L, et al. Improving long-term crop productivity and soil quality through integrated straw-return and tillage strategies[J]. Agronomy Journal, 2022, 114(2): 1500−1511 doi: 10.1002/agj2.20831

    [13]

    FAN W, WU J G, AHMED S, et al. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China[J]. Sustainability, 2020, 12(7): 2631 doi: 10.3390/su12072631

    [14] 黄巧义, 黄建凤, 黄旭, 等. 早稻秸秆还田和减钾对晚稻产量和土壤肥力的影响[J]. 环境科学, 2022, 43(10): 4706−4715

    HUANG Q Y, HUANG J F, HUANG X, et al. Effects of early rice straw returning with reducing potassium fertilizer on late rice yield and soil fertility[J]. Environmental Science, 2022, 43(10): 4706−4715

    [15] 吴玉红, 王吕, 崔月贞, 等. 轮作模式及秸秆还田对水稻产量、稻米品质及土壤肥力的影响[J]. 植物营养与肥料学报, 2021, 27(11): 1926−1937

    WU Y H, WANG L, CUI Y Z, et al. Rice yield, quality, and soil fertility in response to straw incorporation and rotation pattern[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1926−1937

    [16]

    WANG Y L, WU P N, MEI F J, et al. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391 doi: 10.1016/j.jenvman.2021.112391

    [17]

    FAN W, WU J G. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming[J]. Journal of Microbiology, 2020, 58(8): 657−667 doi: 10.1007/s12275-020-9266-5

    [18] 李雨诺, 樊媛媛, 曹彬彬, 等. 关中平原麦玉轮作体系作物秸秆不同还田模式下土壤有机碳和无机碳库变化特征[J]. 应用生态学报, 2021, 32(8): 2703−2712

    LI Y N, FAN Y Y, CAO B B, et al. Soil organic and inorganic carbon pools as affected by straw return modes under a wheat-maize rotation system in the Guanzhong Plain, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2703−2712

    [19] 崔思远, 朱新开, 张莀茜, 等. 水稻秸秆还田年限对稻麦轮作田土壤碳氮固存的影响[J]. 农业工程学报, 2019, 35(7): 115−121

    CUI S Y, ZHU X K, ZHANG C X, et al. Effects of years of rice straw retention on soil carbon and nitrogen sequestration in rice-wheat system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 115−121

    [20] 宋依依, 曹阳, 段鑫盈, 等. 秸秆还田深度对土壤团聚体组成及有机碳含量的影响[J]. 土壤, 2022, 54(2): 344−350

    SONG Y Y, CAO Y, DUAN X Y, et al. Effects of different straw-returning depths on soil aggregate composition and organic carbon distribution[J]. Soils, 2022, 54(2): 344−350

    [21]

    ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil & Tillage Research, 2018, 175: 178−186

    [22]

    KROSCHEWSKI B, RICHTER C, BAUMECKER M, et al. Effect of crop rotation and straw application in combination with mineral nitrogen fertilization on soil carbon sequestration in the Thyrow long-term experiment Thy_D5[J]. Plant and Soil, 2022, 488: 121−136

    [23]

    GUO T F, LUAN H A, SONG D L, et al. Combined fertilization could increase crop productivity and reduce greenhouse gas intensity through carbon sequestration under rice-wheat rotation[J]. Agronomy, 2021, 11(12): 2540 doi: 10.3390/agronomy11122540

    [24] 李静, 陶宝瑞, 焦美玲, 等. 秸秆还田下我国南方稻田表土固碳潜力研究−基于Meta分析[J]. 南京农业大学学报, 2015, 38(3): 351−359

    LI J, TAO B R, JIAO M L, et al. Assessment on topsoil carbon sequestration potential under straw return modes in paddy fields in South China — Based on a Meta-analysis[J]. Journal of Nanjing Agricultural University, 2015, 38(3): 351−359

    [25] 王旭东, 庄俊杰, 刘冰洋, 等. 秸秆还田条件下中国农田土壤有机碳含量变化及其影响因素的Meta分析[J]. 中国农业大学学报, 2020, 25(8): 12−24 doi: 10.11841/j.issn.1007-4333.2020.08.02

    WANG X D, ZHUANG J J, LIU B Y, et al. Residue returning induced changes in soil organic carbon and the influential factors in China’s croplands: a meta-analysis[J]. Journal of China Agricultural University, 2020, 25(8): 12−24 doi: 10.11841/j.issn.1007-4333.2020.08.02

    [26]

    GAN J W, QIU C, HAN X Z, et al. Effects of 10 years of the return of corn straw on soil aggregates and the distribution of organic carbon in a Mollisol[J]. Agronomy, 2022, 12(10): 2374 doi: 10.3390/agronomy12102374

    [27]

    LIAN H L, WANG Z Y, LI Y N, et al. Straw strip return increases soil organic carbon sequestration by optimizing organic and humus carbon in aggregates of Mollisols in Northeast China[J]. Agronomy, 2022, 12(4): 784 doi: 10.3390/agronomy12040784

    [28] 冯秋苹, 刘玉涛, 郭勇智, 等. 不同秸秆还田方式对土壤团聚体稳定性及有机碳含量的影响[J]. 吉林农业大学学报, 2023, 45(5): 564−571

    FENG Q P, LIU Y T, GUO Y Z, et al. Effects of different straw returning to fields methods on the stability of soil aggregates and organic carbon[J]. Journal of Jilin Agricultural University, 2023, 45(5): 564−571

    [29]

    SONG K, YANG J J, XUE Y, et al. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system[J]. Scientific Reports, 2016, 6: 36602 doi: 10.1038/srep36602

    [30] 孟庆英, 邹洪涛, 韩艳玉, 等. 秸秆还田量对土壤团聚体有机碳和玉米产量的影响[J]. 农业工程学报, 2019, 35(23): 119−125 doi: 10.11975/j.issn.1002-6819.2019.23.015

    MENG Q Y, ZOU H T, HAN Y Y, et al. Effects of straw application rates on soil aggregates, soil organic carbon content and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 119−125 doi: 10.11975/j.issn.1002-6819.2019.23.015

    [31] 闫雷, 董天浩, 喇乐鹏, 等. 免耕和秸秆还田对东北黑土区土壤团聚体组成及有机碳含量的影响[J]. 农业工程学报, 2020, 36(22): 181−188 doi: 10.11975/j.issn.1002-6819.2020.22.020

    YAN L, DONG T H, LA Y P, et al. Effects of no-tillage and straw returning on soil aggregates composition and organic carbon content in black soil areas of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 181−188 doi: 10.11975/j.issn.1002-6819.2020.22.020

    [32] 邓华, 高明, 龙翼, 等. 生物炭和秸秆还田对紫色土旱坡地土壤团聚体与有机碳的影响[J]. 环境科学, 2021, 42(11): 5481−5490 doi: 10.13227/j.hjkx.202103257

    DENG H, GAO M, LONG Y, et al. Effects of biochar and straw return on soil aggregate and organic carbon on purple soil dry slope land[J]. Environmental Science, 2021, 42(11): 5481−5490 doi: 10.13227/j.hjkx.202103257

    [33] 黄璐, 赵国慧, 李廷亮, 等. 秸秆还田对黄土旱塬麦田土壤团聚体有机碳组分的影响[J]. 农业工程学报, 2022, 38(13): 123−132

    HUANG L, ZHAO G H, LI T L, et al. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 123−132

    [34] 王秀娟, 解占军, 董环, 等. 秸秆还田对玉米产量和土壤团聚体组成及有机碳分布的影响[J]. 玉米科学, 2018, 26(1): 108−115

    WANG X J, XIE Z J, DONG H, et al. Effects of straw returning on yield and soil aggregates composition and organic carbon distribution[J]. Journal of Maize Sciences, 2018, 26(1): 108−115

    [35] 乔丹丹, 吴名宇, 张倩, 等. 秸秆还田与生物炭施用对黄褐土团聚体稳定性及有机碳积累的影响[J]. 中国土壤与肥料, 2018, 3: 92−99

    QIAO D D, WU M Y, ZHANG Q, et al. Effect of biochar and straw with chemical fertilizers on soil aggregate distribution and organic carbon content in yellow cinnamon soil[J]. Soil and Fertilizer Sciences in China, 2018, 3: 92−99

    [36] 赵哲萱, 冉成, 孟祥宇, 等. 秸秆还田对苏打盐碱稻区土壤团聚体分布及有机碳含量的影响[J]. 吉林农业大学学报, 2023, 45(5): 582–591

    ZHAO Z X, RAN C, MENG X Y, et al. Effect of straw repatriation on the distribution of soil aggregates and organic carbon content in saline-sodic rice areas[J]. Journal of Jilin Agricultural University, 2023, 45(5): 582–591

    [37] 李传友, 郝东生, 杨立国, 等. 水稻小麦秸秆成分近红外光谱快速分析研究[J]. 中国农学通报, 2014, 30(20): 133−140

    LI C Y, HAO D S, YANG L G, et al. Rapid analysis of rice and wheat straw components by near-infrared spectroscopy[J]. Chinese Agricultural Science Bulletin, 2014, 30(20): 133−140

    [38] 曹莹菲, 张红, 赵聪, 等. 秸秆腐解过程中结构的变化特征[J]. 农业环境科学学报, 2016, 35(5): 976−984 doi: 10.11654/jaes.2016.05.023

    CAO Y F, ZHANG H, ZHAO C, et al. Changes of organic structures of crop residues during decomposition[J]. Journal of Agro-Environment Science, 2016, 35(5): 976−984 doi: 10.11654/jaes.2016.05.023

    [39] 吴超玉, 贾小旭, 刘晨, 等. 基于文献计量的近25年深层土壤碳循环研究进展分析[J]. 林业与生态科学, 2023, 38(1): 80−87

    WU C Y, JIA X X, LIU C, et al. Research hotspots and progress of deep soil carbon dynamics in the past 25 years based on bibliometrics analysis[J]. Forestry and Ecological Sciences, 2023, 38(1): 80−87

    [40]

    ZHANG P, WEI T, LI Y L, et al. Effects of straw incorporation on the stratification of the soil organic C, total N and C∶N ratio in a semiarid region of China[J]. Soil & Tillage Research, 2015, 153: 28−35

    [41]

    WANG C, ZHANG Z Y, FAN S M, et al. Effects of straw incorporation on desiccation cracking patterns and horizontal flow in cracked clay loam[J]. Soil & Tillage Research, 2018, 182: 130−143

    [42] 张玉铭, 胡春胜, 陈素英, 等. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1558−1570

    ZHANG Y M, HU C S, CHEN S Y, et al. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1558−1570

    [43]

    NDZELU B S, DOU S, ZHANG X W. Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol[J]. Journal of Arid Land, 2020, 12(6): 1018−1030 doi: 10.1007/s40333-020-0024-7

    [44]

    KUBAR K A, HUANG L, XUE B, et al. Straw management stabilizes the chemical composition of soil organic carbon (SOC): the relationship with aggregate-associated C in a rice-rape cropping system[J]. Land Degradation & Development, 2020, 32(2): 851−866

    [45] 张鹏, 贾志宽, 王维, 等. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J]. 中国农业科学, 2012, 45(8): 1513−1520 doi: 10.3864/j.issn.0578-1752.2012.08.007

    ZHANG P, JIA Z K, WANG W, et al. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8): 1513−1520 doi: 10.3864/j.issn.0578-1752.2012.08.007

    [46] 舒适宜人的黔西南气候[N]. 黔西南日报, 2022-12-14(5)

    Comfortable and pleasant climate in Southwest Guizhou[N]. Qianxinan Ribao, 2022-12-14(5)

    [47] 罗原骏, 蒲玉琳, 龙高飞, 等. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389−1397 doi: 10.3969/j.issn.1004-1524.2018.08.17

    LUO Y J, PU Y L, LONG G F, et al. Effects of fertilization on soil active organic carbon and carbon pool management index[J]. Acta Agriculturae Zhejiangensis, 2018, 30(8): 1389−1397 doi: 10.3969/j.issn.1004-1524.2018.08.17

    [48]

    HUANG R, LAN M L, LIU J, et al. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning[J]. Environmental Science and Pollution Research, 2017, 24(36): 27942−27952 doi: 10.1007/s11356-017-0372-9

    [49]

    ZHANG Y L, LI C H, WANG Y W, et al. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain[J]. Soil & Tillage Research, 2016, 155: 85−94

    [50] 胡心意, 傅庆林, 刘琛, 等. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202−1210

    HU X Y, FU Q L, LIU C, et al. Effects of straw-returning and tillage depth on soil properties in plough layer of paddy soil[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1202−1210

    [51] 刘威, 张国英, 张静, 等. 2种保护性耕作措施对农田土壤团聚体稳定性的影响[J]. 水土保持学报, 2015, 29(3): 117−122

    LIU W, ZHANG G Y, ZHANG J, et al. Effects of two conservation tillage measures on soil aggregate stability[J]. Journal of Soil and Water Conservation, 2015, 29(3): 117−122

    [52] 赵惠丽, 董金琎, 师江澜, 等. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 2021, 58(1): 213−224

    ZHAO H L, DONG J J, SHI J L, et al. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 2021, 58(1): 213−224

    [53] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277−1284

    LIU H M, LI R Y, GAO J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics[J]. Ecology and Environmental Sciences, 2020, 29(6): 1277−1284

    [54] 李琳, 李素娟, 张海林, 等. 保护性耕作下土壤碳库管理指数的研究[J]. 水土保持学报, 2006, 20(3): 106−109 doi: 10.13870/j.cnki.stbcxb.2006.03.026

    LI L, LI S J, ZHANG H L, et al. Study on soil C pool management index of conversation tillage[J]. Journal of Soil and Water Conservation, 2006, 20(3): 106−109 doi: 10.13870/j.cnki.stbcxb.2006.03.026

    [55]

    KURMI B, NATH A J, LAL R, et al. Water stable aggregates and the associated active and recalcitrant carbon in soil under rubber plantation[J]. Science of the Total Environment, 2020, 703: 135498 doi: 10.1016/j.scitotenv.2019.135498

    [56]

    LI N, YOU M Y, ZHANG B, et al. Modeling soil aggregation at the early pedogenesis stage from the parent material of a mollisol under different agricultural practices[J]. Advances in Agronomy, 2017, 142: 181−214

    [57] 王彩霞, 岳西杰, 葛玺祖, 等. 保护性耕作对土壤微团聚体碳、氮分布的影响[J]. 植物营养与肥料学报, 2010, 16(3): 642−649 doi: 10.11674/zwyf.2010.0318

    WANG C X, YUE X J, GE X Z, et al. Effects of conservational tillage measures on distributions of organic carbon and nitrogen in soil microaggregates[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 642−649 doi: 10.11674/zwyf.2010.0318

    [58]

    LIU B, XIA H, JIANG C C, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment, 2022, 841: 156608 doi: 10.1016/j.scitotenv.2022.156608

    [59] 徐国鑫, 王子芳, 高明, 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J]. 环境科学, 2018, 39(1): 355−362 doi: 10.13227/j.hjkx.201705217

    XU G X, WANG Z F, GAO M, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1): 355−362 doi: 10.13227/j.hjkx.201705217

    [60] 曹正男, 赵振东, 张海龙, 等. 黑龙江省水稻秸秆还田现状及展望[J]. 中国稻米, 2022, 28(2): 20−23 doi: 10.3969/j.issn.1006-8082.2022.02.004

    CAO Z N, ZHAO Z D, ZHANG H L, et al. Status and prospect of returning rice straw to field in Heilongjiang Province[J]. China Rice, 2022, 28(2): 20−23 doi: 10.3969/j.issn.1006-8082.2022.02.004

图(7)  /  表(2)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  182
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 录用日期:  2023-10-01
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回