AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响

张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰

张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
引用本文: 张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
Citation: ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
引用本文: 张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
Citation: ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414

AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响

基金项目: 国家自然科学基金项目(31500443)、福建省自然科学基金项目(2022J01139)、福建省财政林业科技研究项目(2023FKJ26)、福建农林大学科技创新专项(KFb22046XA, KJb22019XA)和福建农林大学生态学一流学科建设项目资助
详细信息
    作者简介:

    张清旭, 主要研究方向为森林生态学和分子生态学。E-mail: zqx19940817@163.com

    通讯作者:

    吴则焰, 主要研究方向为森林生态学和分子生态学。E-mail: wuzeyan0977@126.com

  • 中图分类号: S154.4

Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions

Funds: This study was supported by the National Natural Science Foundation of China (31500443), Fujian Provincial Natural Science Foundation (2022J01139), Fujian Provincial Finance and Forestry Science and Technology Research Project (2023FKJ26), Fujian Agriculture and Forestry University Science and Technology Innovation Project (KFb22046XA, KJb22019XA), and Fujian Agriculture and Forestry University First-class Ecological Discipline Construction Project.
More Information
  • 摘要:

    根际是由植物根系和土壤微生物之间相互作用形成的一种特殊环境, 根际微生物群落的宏基因组是植物微生物组的重要组成部分。植物与根际微生物之间的相互作用是一个复杂的过程。在根际环境中, 微生物群落利用复杂的种内和种间信号传导机制招募特定的微生物, 协调并控制混合群落的行为, 从而影响植物的生长发育和健康。根际微生物能够自发产生、释放特定的信号分子, 并能感知其浓度变化, 从而调节微生物的群体行为, 这一调控系统称为群体感应(quorum sensing, QS)。QS系统的特征是合成和释放特定的信号分子。根际土壤细菌中存在多种QS信号分子, 如N-酰基高丝氨酸内酯(AHLs)、二酮哌嗪、扩散信号因子、次生代谢物、植物激素类分子等。AHLs作为细菌中被广泛研究的QS信号分子, 在植物与根际微生物的相互作用中发挥重要作用。本文综述了AHLs介导的群体感应机制, 并讨论了AHLs在植物与根际微生物相互作用中的调节作用, 包括AHLs对植物的生长发育、逆境耐受性和抗病性等方面的有益影响, 以及AHLs介导的QS系统调控导致的根际致病菌对植物的有害影响, 同时还探讨了基于AHLs的群体淬灭对植物-根际微生物相互作用的影响, 以期为植物健康与农业生产提供新的思路和方法, 推动可持续农业的发展。

    Abstract:

    The rhizosphere is a unique environment that arises from the interaction between plant roots and soil microorganisms. The metagenome of the microbial community in the rhizosphere plays a crucial role in shaping the plant microbiome. The interaction between plants and rhizosphere microorganisms is a complex process. In the rhizosphere environment, the microbial community recruits specific microorganisms through intricate signaling mechanisms within and between species. This coordination and control of the mixed community ultimately impacts the growth, development and health of plants. From an academic perspective, rhizosphere signaling mechanisms can be categorized into three primary types. Firstly, plants transmit signals to microorganisms by secreting low molecular weight molecules. Secondly, there is inter- and intraspecific microbial signaling. Lastly, microorganisms transmit signals to plants through compounds they produce. Rhizosphere microbes utilize quorum sensing (QS) to autonomously generate and release distinct signaling molecules, enabling them to detect variations in their concentrations and thereby regulate microbial quorum behavior. QS is a bacterial intercellular communication mechanism that regulates the expression of numerous bacterial genes, which are involved in various plant-microbe interactions. These interactions encompass functions such as biofilm formation, nitrogen fixation, hydrolysis, enzyme and extracellular polysaccharide synthesis, toxin production, cell movement, and intercellular connectivity. QS systems are characterized by the synthesis and release of specific signaling molecules. This process is crucial in rhizosphere communication as it enables the transmission of inter- and intraspecific information through the necessary signaling molecules. Due to the high density and diversity of rhizosphere bacteria, the rhizosphere may facilitate the transmission of QS signals. Additionally, these signaling molecules aid in the colonization of plant root surfaces or other rhizosphere-related areas by rhizosphere bacteria through gene expression mediated by QS. Recent research has revealed the presence of N-acyl-homoserine lactones (AHLs), diketopiperazines, diffusible signaling factor, secondary metabolites, phytohormonelike molecules and other QS signaling molecules in rhizosphere soil bacteria. AHLs are the most extensively studied quorum sensing signaling molecules in bacteria. They not only mediate bacterial quorum sensing, but also have a significant impact on the interaction between plants and rhizosphere microorganisms. This includes the colonization of rhizosphere microorganisms, the maintenance of soil ecosystems and the effects on plant growth. An in-depth understanding of the quorum sensing mechanism mediated by AHLs holds significant importance in promoting agricultural production, enhancing plant health, and fostering sustainable development. This article presents a review of the quorum sensing mechanism mediated by AHLs and discusses the regulatory role of AHLs in the interaction between plants and rhizosphere microorganisms. It explores the beneficial effects of AHLs on plant growth and development, stress tolerance and disease resistance, as well as the harmful effects of rhizosphere pathogenic bacteria on plants due to AHLs-mediated regulation of the QS system. Additionally, the article explores the impact of AHLs-based quorum quenching on plant-rhizosphere microbial interactions, aiming to provide valuable insights for plant health and agricultural production. The article also proposes new ideas and methods to promote the development of sustainable agriculture.

  • 表  1   不同类型N-酰基高丝氨酸内酯(AHLs)和分泌AHLs的根际细菌对植物的影响

    Table  1   The effects of different types of N-acyl-homoserine lactones (AHLs) and AHLs-producing rhizosphere bacteria on plants

    相关植物
    Associated plant
    AHLs/分泌AHLs的细菌
    AHLs/AHLs-secreting bacteria
    主要影响
    Major effect
    参考文献
    Reference
    拟南芥
    Arabidopsis thaliana
    3-oxo-C6-HSL增强拟南芥的耐盐性
    Enhance salt tolerance in A. thaliana
    [47]
    3-oxo-C6-HSL, 3-oxo-C8-HSL激发GCR1/GPA1基因, 促进根系生长
    Stimulate the GCR1/GPA1 genes, promote root growth
    [48]
    C6-HSL改变植物激素平衡
    Change the balance of phytohormone
    [50]
    C4-HSL诱导根细胞细胞内钙离子升高
    Induce intracellular calcium elevation in root cells
    [51]
    蒺藜苜蓿
    Medicago truncatula
    3-oxo-C12-HSL, 3-oxo-C16:1-HSL诱导生长素反应蛋白和类黄酮合成蛋白, 分泌群体感应拟态物质
    Induce auxin-responsive and flavonoid synthesis proteins, secrete mimetics of quorum sensing
    [52]
    3-oxo-C14-HSL增加根系结瘤数量
    Increase the number of nodules formed on root systems
    [53]
    番茄
    Solanum lycopersicum
    AHL/液化沙雷氏菌 MG1和
    恶臭假单胞菌 IsoF
    AHL/Serratia liquefaciens MG1 and
    Pseudomonas putida IsoF
    增加植物系统抗性, 增加水杨酸含量, 诱导防御基因的表达发生变化
    Increase systemic resistance of plants, increase salicylic acid content, induce changes in the expression of defense genes
    [54]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    禾谷伯克霍尔德菌 M12和M14
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    Burkholderia graminis M12 and M14
    促进植物生长, 诱导抗盐胁迫
    Promote plant growth, induce protection against salt stress
    [56]
    3-oxo-C14-HSL保护番茄免受晚疫病
    Protect S. lycopersicum from late blight disease
    [57]
    3-oxo-C6-HSL, 3-oxo-C8-HSL,
    3-oxo-C12-HSL, 3-oxo-C14-HSL
    促进植物生长, 诱导对植物病原体的抗性
    Promote plant growth, induce resistance to plant pathogens
    [58]
    小麦
    Triticum aestivum
    3-oxo-C6-HSL增强小麦的耐盐性
    Enhance salt tolerance in T. aestivum
    [47]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    AHL/致黄假单胞菌
    AHL/Pseudomonas aureofaciens
    AHL介导的交流
    AHL-mediated communication
    [59]
    C4-HSL提高植物对真菌病原体的防御能力
    Improve plant defense against the fungal pathogens
    [60]
    油菜
    Brassica napus
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    普城沙雷氏菌 HRO-C48
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Serratia plymuthica HRO-C48
    降低大丽轮枝菌对作物的致病性, 保护作物免受黄萎病的危害,
    诱导产生抗真菌挥发物和水解酶
    Reduce the pathogenicity of Verticillium dahliae to crops, protect crops against Verticillium wilt, and induce the production of antifungal volatiles and hydrolytic enzymes
    [61-62]
    黄瓜
    Cucumis sativus
    C6-HSL, 3-oxo-C10-HSL促进主根伸长, 促进植物生长
    Promote primary root elongation, enhance plant growth
    [63]
    3-oxo-C14-HSL增强植株对病原体的防御能力
    Enhance the plant’s defense against pathogens
    [63]
    鹰嘴豆
    Cicer arietinum
    C4-HSL提高植物的生长能力和植物对真菌病原体的防御能力
    Improve the plant growth and plant defense against the fungal pathogens
    [60]
    大麦
    Hordeum vulgare
    3-OH-C10-HSL/食酸菌 N35
    3-OH-C10-HSL/Acidovorax radicis N35
    诱导有益菌根际定植, 提高幼苗防御能力
    Induce beneficial mycorrhizal colonization, improve seedling defense
    [64]
    燕麦
    Avena sativa
    AHL/变形菌门
    AHL/Proteobacteria
    控制细胞外酶活性
    Control extracellular enzyme activity
    [65]
    玉米
    Zea mays
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    绿针假单胞菌 449
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Pseudomonas chlororaphis 449
    对植物病原真菌具有拮抗活性
    Antagonistic activity against phytopathogenic fungi
    [66]
    芝麻
    Sesamum indicum
    C6-HSL, C8-HSL/沙雷氏菌属 GS2
    C6-HSL, C8-HSL/Serratia glossinae GS2
    形成生物膜, 促进植物生长
    Form biofilms, promote plant growth
    [67]
    水稻
    Oryza sativa
    C4-HSL/气单胞菌属, 肠杆菌属, 肺炎克雷伯菌, 考氏科萨克氏菌, 水性鞘氨醇单胞菌, 斯惠假单胞菌和Providentia rettigeri
    C4-HSL/Aeromonas sp., Enterobacter sp., Klebsiella pneumoniae, Kosakonia cowanii, Sphingomonas aquatilis, Pseudomonas sihuiensis and Providentia rettigeri
    形成生物膜
    Form biofilms
    [68]
    千年芋
    Xanthosoma sagittifolium
    AHL/假单胞菌 CMR12a
    AHL/Pseudomonas CMR12a
    对群结腐霉(Pythium myriotylum)具有拮抗活性
    Antagonistic activity against P. myriotylum
    [69]
    绿豆
    Vigna radiata
    3-oxo-C10-HSL促进根系分枝, 改变根系结构
    Promote root formation, change the root architecture
    [70]
    菜豆
    Phaseolus vulgaris
    3O-C7-HSL, 3OH-C7-HSL/
    苍白杆菌属 Pv2Z2
    3O-C7-HSL, 3OH-C7-HSL/
    Ochrobactrum sp. Pv2Z2
    促进植物生长和生物降解潜力
    Promote plant growth and biodegradation potential
    [71]
    马铃薯
    Solanum tuberosum
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    欧文氏菌
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    Erwinia carotovora
    抑制毒力因子
    Inhibit virulence factor
    [72]
    烟草
    Nicotiana tabacum
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    粘质沙雷氏菌
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    Serratia marcescens
    诱导植物系统抗性
    Induce systemic resistance (ISR)
    [73]
    地黄
    Rehmannia glutinosa
    AHL/假单胞菌属, 肠杆菌属
    AHL/Pseudomonas, Enterobacteriaceae
    对植物病原体具有拮抗活性, 引起地黄组培苗枯萎病
    Antagonistic activity against plant pathogen, cause severe wilt disease in the tissue culture seedlings of R. glutinosa
    [74]
    人参
    Panax ginseng
    C8-HSL, C10-HSL, C12-HSL改变土壤微生物群落结构
    Alter the soil microbial community structure
    [75]
    碱蓬
    Suaeda glauca
    芦苇
    Phragmites australis
    C6-HSL, C8-HSL/红细菌目
    C6-HSL, C8-HSL/Rhodobacterales
    形成生物膜, 降解二甲基巯基丙酸内盐和油
    Form bioflms, degrade Dimethylsulfoniopropionate and oil
    [76]
    洋葱
    Allium cepa
    C6-HSL, 3-oxo-C6-HSL/菠萝泛菌 SK-1
    C6-HSL, 3-oxo-C6-HSL/Pantoea ananatis SK-1
    引起洋葱中心腐烂病
    Cause center rot disease of A. cepa
    [77]
    太子参
    Pseudostellaria heterophylla
    AHL/粘质沙雷氏菌
    AHL/S. marcescens
    导致太子参枯萎病
    Cause P. heterophylla wilt disease
    [78]
    下载: 导出CSV

    表  2   植物根际土壤或土壤中存在的群体淬灭细菌及作用

    Table  2   The quorum-quenching bacteria and their effects present in the plant rhizosphere soil or soil

    相关植物或土壤来源
    Associated plants or soil source
    群体淬灭细菌
    Quorum quenching bacteria
    主要作用
    Major effect
    参考文献
    Reference
    烟草
    Nicotiana tabacum
    芽孢杆菌、变形杆菌、鞘氨醇单胞菌和博斯氏菌
    Bacillus, Proteobacteria, Sphingomonas, Bosea
    降解 AHLs Degrade AHLs[37]
    地黄
    Rehmannia glutinosa
    不动杆菌属 Acinetobacter sp.破坏有益菌的群体感应系统
    Disrupt the quorum sensing system of the beneficial bacteria
    [74]
    太子参
    Pseudostellaria heterophylla
    苏云金芽孢杆菌 Bacillus thuringiensis缓解由粘质沙雷氏菌引起的枯萎病
    Alleviate wilt disease caused by Serratia marcescens
    [78]
    马铃薯
    Solanum tuberosum
    红平红球菌 Rhodococcus erythropolis保护马铃薯免受果胶杆菌属(Pectobacterium)细菌的侵害
    Protect S. tuberosum against the pathogen Pectobacterium
    [126]
    短小芽孢杆菌、荧光假单胞菌、假单胞菌属
    Bacillus pumilus, Pseudomonas fluorescens, Pseudomonas
    对软腐病原体具有生物防治活性
    Have a biocontrol activity against soft-rot pathogens
    [128]
    芽孢杆菌属 EM84 Bacillus EM84抑制病原菌生长, 降低马铃薯块茎中黑腐果胶杆菌 SM1 (Pectobacterium atrosepticum SM1)的致病性
    Inhibit growth of pathogen, reduce the pathogenicity of P. atrosepticum SM1 in S. tuberosum tubers
    [130]
    辣椒
    Capsicum annuum
    苏云金芽孢杆菌 B. thuringiensis保护植物免受由欧文氏菌(Erwinia carotovora)所造成的根腐病的侵害
    Protect the plant from root rot caused by E. carotovora
    [131]
    黄瓜
    Cucumis sativus
    不动杆菌属 C1010 Acinetobacter sp. C1010降解AHLs, 减轻由欧文氏菌引起的软腐病
    Degrade AHLs, attenuate soft rot symptom caused by E. carotovora
    [132]
    生姜
    Zingiber officinale
    不动杆菌 GG2、克雷伯氏菌 Se14
    Acinetobacter GG2, Klebsiella Se14
    降低植物病原体中毒力因子的产生
    Attenuate virulence factor production in plant pathogens
    [133]
    胡萝卜、马铃薯和黄瓜
    Daucus carota, Solanum tuberosum and Cucumis sativus
    蜡样芽孢杆菌 RC1 Bacillus cereus RC1缓解由河生肠杆菌(Lelliottia amnigena)引起的
    软腐病
    Alleviate soft rot caused by L. amnigena
    [134]
    印度36种不同植物根际土壤
    Rhizosphere soil of 36 different plant species in India
    阿氏芽孢杆菌 J1D、蜡样芽孢杆菌 G
    Priestia aryabhattai J1D, B. cereus G
    水解AHL信号分子, 阻断群体感应系统
    Hydrolyse AHL signalling molecules, and block the quorum sensing system
    [107]
    泰国不同省份的根际土壤
    Rhizosphere soils in different provinces of Thailand
    链霉菌 Streptomyces抑制马铃薯软腐病
    Inhibit soft rot of S. tuberosum
    [135]
    农业污染土壤
    Agricultural contaminated soil
    不动杆菌属 XN-10
    Acinetobacter sp. XN-10
    降低胡萝卜果胶杆菌(Pectobacterium carotovorum)的致病性
    Attenuate the pathogenicity of P. carotovorum
    [136]
    下载: 导出CSV
  • [1]

    KAŠTOVSKÁ E, CARDENAS-HERNANDEZ J, KUZYAKOV Y. Priming effects in the rhizosphere and root detritusphere of two wet-grassland graminoids[J]. Plant and Soil, 2022, 472(1): 105−126

    [2]

    BENITEZ M S, EWING P M, OSBORNE S L, et al. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance[J]. Soil Biology and Biochemistry, 2021, 159: 108309 doi: 10.1016/j.soilbio.2021.108309

    [3]

    BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001

    [4]

    SINGH R N, SINGH R P, SHARMA A, et al. Modeling of PrnD protein from Pseudomonas fluorescens RajNB11 and its comparative structural analysis with PrnD proteins expressed in Burkholderia and Serratia[J]. Turkish Journal of Biology, 2016, 40: 623−633 doi: 10.3906/biy-1501-4

    [5]

    PRAJAKTA B M, SUVARNA P P, RAGHVENDRA S P, et al. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere[J]. SN Applied Sciences, 2019, 1(10): 1−11

    [6]

    ALTAF M M, AHMAD KHAN M S, ABULREESH H H, et al. Quorum sensing in plant growth-promoting rhizobacteria and its impact on plant-microbe interaction[M]// Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer, 2017: 311–331

    [7]

    VENTURI V, KEEL C. Signaling in the rhizosphere[J]. Trends in Plant Science, 2016, 21(3): 187−198 doi: 10.1016/j.tplants.2016.01.005

    [8]

    SINGH K, CHANDRA R, PURCHASE D. Unraveling the secrets of rhizobacteria signaling in rhizosphere[J]. Rhizosphere, 2022, 21: 100484 doi: 10.1016/j.rhisph.2022.100484

    [9]

    FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269−275 doi: 10.1128/jb.176.2.269-275.1994

    [10]

    GONZÁLEZ J E, MARKETON M M. Quorum sensing in nitrogen-fixing rhizobia[J]. Microbiology and Molecular Biology Reviews: MMBR, 2003, 67(4): 574−592 doi: 10.1128/MMBR.67.4.574-592.2003

    [11]

    LUPP C, RUBY E G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors[J]. Journal of Bacteriology, 2005, 187(11): 3620−3629 doi: 10.1128/JB.187.11.3620-3629.2005

    [12]

    NAZZARO F, FRATIANNI F, COPPOLA R. Quorum sensing and phytochemicals[J]. International Journal of Molecular Sciences, 2013, 14(6): 12607−12619 doi: 10.3390/ijms140612607

    [13]

    JAMIL F, MUKHTAR H, FOUILLAUD M, et al. Rhizosphere signaling: insights into plant-rhizomicrobiome interactions for sustainable agronomy[J]. Microorganisms, 2022, 10(5): 899 doi: 10.3390/microorganisms10050899

    [14]

    BESSET-MANZONI Y, RIEUSSET L, JOLY P, et al. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies[J]. Environmental Science and Pollution Research, 2018, 25(30): 29953−29970 doi: 10.1007/s11356-017-1152-2

    [15]

    BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234 doi: 10.1016/j.soilbio.2012.11.009

    [16]

    WILLIAMS P, WINZER K, CHAN W C, et al. Look who’s talking: communication and quorum sensing in the bacterial world[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1119−1134 doi: 10.1098/rstb.2007.2039

    [17]

    OSTROUMOVA O S, EFIMOVA S S, MALEV V V. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning[J]. International Review of Cell and Molecular Biology, 2015, 315: 245−297

    [18]

    BUKHAT S, IMRAN A, JAVAID S, et al. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling[J]. Microbiological Research, 2020, 238: 126486 doi: 10.1016/j.micres.2020.126486

    [19]

    HAQUE M, ISLAM S, SHEIKH M A, et al. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases[J]. Expert Review of Anti-Infective Therapy, 2021, 19(5): 571−586 doi: 10.1080/14787210.2021.1843427

    [20]

    WILLIAMS P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world[J]. Microbiology, 2007, 153(12): 3923−3938

    [21]

    WATERS C M, BASSLER B L. Quorum sensing: cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 2005, 21: 319−346 doi: 10.1146/annurev.cellbio.21.012704.131001

    [22]

    KALIA V C. Quorum sensing inhibitors: an overview[J]. Biotechnology Advances, 2013, 31(2): 224−245 doi: 10.1016/j.biotechadv.2012.10.004

    [23]

    SCHENK S T, HERNÁNDEZ-REYES C, SAMANS B, et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway[J]. The Plant Cell, 2014, 26(6): 2708−2723 doi: 10.1105/tpc.114.126763

    [24]

    SCHIKORA A, SCHENK S T, HARTMANN A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group[J]. Plant Molecular Biology, 2016, 90(6): 605−612 doi: 10.1007/s11103-016-0457-8

    [25]

    VERBEKE F, DE CRAEMER S, DEBUNNE N, et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels In vitro and In vivo[J]. Frontiers in Neuroscience, 2017, 11: 183

    [26]

    CHENG F F, MA A Z, ZHUANG G Q, et al. Exogenous N-acyl-homoserine lactones enhance the expression of flagella of Pseudomonas syringae and activate defence responses in plants[J]. Molecular Plant Pathology, 2018, 19(1): 104−115 doi: 10.1111/mpp.12502

    [27]

    MIDDLETON B, RODGERS H C, CÁMARA M, et al. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum[J]. FEMS Microbiology Letters, 2002, 207(1): 1−7 doi: 10.1111/j.1574-6968.2002.tb11019.x

    [28]

    ZAITSEVA Y V, POPOVA A A, KHMEL I A. Quorum sensing regulation in bacteria of the family Enterobacteriaceae[J]. Russian Journal of Genetics, 2014, 50(4): 323−340 doi: 10.1134/S1022795414030120

    [29]

    CHURCHILL M E A, CHEN L L. Structural basis of acyl-homoserine lactone-dependent signaling[J]. Chemical Reviews, 2011, 111(1): 68−85 doi: 10.1021/cr1000817

    [30]

    DIGGLE S P, GRIFFIN A S, CAMPBELL G S, et al. Cooperation and conflict in quorum-sensing bacterial populations[J]. Nature, 2007, 450(7168): 411−414 doi: 10.1038/nature06279

    [31]

    LI X, JIN J, ZHANG X C, et al. Quantifying the optimal strategy of population control of quorum sensing network in Escherichia coli[J]. NPJ Systems Biology and Applications, 2021, 7: 35 doi: 10.1038/s41540-021-00196-4

    [32]

    URVOY M, LAMI R, DREANNO C, et al. Quorum sensing regulates the hydrolytic enzyme production and community composition of heterotrophic bacteria in coastal waters[J]. Frontiers in Microbiology, 2021, 12: 780759 doi: 10.3389/fmicb.2021.780759

    [33]

    GE C, RUN S Q, JIA H K, et al. Leveraging quorum sensing system for automatic coordination of Escherichia coli growth and lactic acid biosynthesis[J]. Annals of Microbiology, 2022, 72(1): 4 doi: 10.1186/s13213-022-01663-x

    [34]

    WHITEHEAD N A, BARNARD A M L, SLATER H, et al. Quorum-sensing in gram-negative bacteria[J]. FEMS Microbiology Reviews, 2001, 25(4): 365−404 doi: 10.1111/j.1574-6976.2001.tb00583.x

    [35]

    AHLGREN N A, HARWOOD C S, SCHAEFER A L, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 7183−7188

    [36]

    D’ANGELO-PICARD C, FAURE D, CARLIER A, et al. Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone[J]. FEMS Microbiology Ecology, 2004, 51(1): 19−29 doi: 10.1016/j.femsec.2004.07.008

    [37]

    D’ANGELO-PICARD C, FAURE D, PENOT I, et al. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere[J]. Environmental Microbiology, 2005, 7(11): 1796−1808 doi: 10.1111/j.1462-2920.2005.00886.x

    [38]

    STEIDLE A, SIGL K, SCHUHEGGER R, et al. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere[J]. Applied and Environmental Microbiology, 2001, 67(12): 5761−5770 doi: 10.1128/AEM.67.12.5761-5770.2001

    [39]

    WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2017, 551(7680): 313−320 doi: 10.1038/nature24624

    [40]

    VON BODMAN S B, BAUER W D, COPLIN D L. Quorum sensing in plant-pathogenic bacteria[J]. Annual Review of Phytopathology, 2003, 41: 455−482 doi: 10.1146/annurev.phyto.41.052002.095652

    [41]

    ZHANG R F, VIVANCO J M, SHEN Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37: 8−14 doi: 10.1016/j.mib.2017.03.008

    [42]

    LOH J, PIERSON E A, PIERSON L S, et al. Quorum sensing in plant-associated bacteria[J]. Current Opinion in Plant Biology, 2002, 5(4): 285−290 doi: 10.1016/S1369-5266(02)00274-1

    [43]

    KHAN M, BHARGAVA P, GOEL R. Quorum sensing molecules of rhizobacteria: a trigger for developing systemic resistance in plants[M]//Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Singapore: Springer, 2019: 117–138

    [44]

    BABENKO L M. Acyl-homoserine lactones for crop production and stress tolerance of agricultural plants (review)[J]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2021, 56(1): 3−19

    [45]

    BASU S, RABARA R, NEGI S. Towards a better greener future—An alternative strategy using biofertilizers. Ⅰ: Plant growth promoting bacteria[J]. Plant Gene, 2017, 12: 43−49 doi: 10.1016/j.plgene.2017.07.004

    [46]

    DING L N, CAO J, DUAN Y F, et al. Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone[J]. Physiologia Plantarum, 2016, 158(4): 414−434 doi: 10.1111/ppl.12476

    [47]

    ZHAO Q, YANG X Y, LI Y, et al. N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat[J]. Botanical Studies, 2020, 61(1): 8 doi: 10.1186/s40529-020-00283-5

    [48]

    LIU F, BIAN Z, JIA Z H, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5): 677−683 doi: 10.1094/MPMI-10-11-0274

    [49]

    SHRESTHA A, SCHIKORA A. AHL-priming for enhanced resistance as a tool in sustainable agriculture[J]. FEMS Microbiology Ecology, 2020, 96(12): fiaa226 doi: 10.1093/femsec/fiaa226

    [50]

    VON RAD U, KLEIN I, DOBREV P I, et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere[J]. Planta, 2008, 229(1): 73−85 doi: 10.1007/s00425-008-0811-4

    [51]

    SONG S S, JIA Z H, XU J Z, et al. N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells[J]. Biochemical and Biophysical Research Communications, 2011, 414(2): 355−360 doi: 10.1016/j.bbrc.2011.09.076

    [52]

    MATHESIUS U, MULDERS S, GAO M S, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1444−1449

    [53]

    VELIZ-VALLEJOS D F, VAN NOORDEN G E, YUAN M Q, et al. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation[J]. Frontiers in Plant Science, 2014, 5: 551

    [54]

    SCHUHEGGER R, IHRING A, GANTNER S, et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria[J]. Plant, Cell & Environment, 2006, 29(5): 909−918

    [55]

    GANTNER S, SCHMID M, DÜRR C, et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots[J]. FEMS Microbiology Ecology, 2006, 56(2): 188−194 doi: 10.1111/j.1574-6941.2005.00037.x

    [56]

    BARRIUSO J, RAMOS SOLANO B, FRAY R G, et al. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria[J]. Plant Biotechnology Journal, 2008, 6(5): 442−452 doi: 10.1111/j.1467-7652.2008.00331.x

    [57]

    HERNÁNDEZ-REYES C, SCHENK S T, NEUMANN C, et al. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens[J]. Microbial Biotechnology, 2014, 7(6): 580−588 doi: 10.1111/1751-7915.12177

    [58]

    SHRESTHA A, GRIMM M, OJIRO I, et al. Impact of quorum sensing molecules on plant growth and immune system[J]. Frontiers in Microbiology, 2020, 11: 1545 doi: 10.3389/fmicb.2020.01545

    [59]

    PIERSON E A, WOOD D W, CANNON J A, et al. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere[J]. Molecular Plant-Microbe Interactions, 1998, 11(11): 1078−1084

    [60]

    GAHOI P, OMAR R A, VERMA N, et al. Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants[J]. ACS Agricultural Science & Technology, 2021, 1(3): 240−252

    [61]

    LIU X G, BIMEREW M, MA Y X, et al. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica[J]. FEMS Microbiology Letters, 2007, 270(2): 299−305 doi: 10.1111/j.1574-6968.2007.00681.x

    [62]

    MÜLLER H, WESTENDORF C, LEITNER E, et al. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48[J]. FEMS Microbiology Ecology, 2009, 67(3): 468−478 doi: 10.1111/j.1574-6941.2008.00635.x

    [63]

    PAZARLAR S, CETINKAYA N, BOR M, et al. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber[J]. Journal of Experimental Botany, 2020, 71(20): 6638−6654 doi: 10.1093/jxb/eraa384

    [64]

    HAN S C, LI D, TROST E, et al. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35[J]. Frontiers in Plant Science, 2016, 7: 1868

    [65]

    DEANGELIS K M, LINDOW S E, FIRESTONE M K. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil[J]. FEMS Microbiology Ecology, 2008, 66(2): 197−207 doi: 10.1111/j.1574-6941.2008.00550.x

    [66]

    VESELOVA M A, KLEIN S, BASS I A, et al. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium Pseudomonas chlororaphis 449[J]. Russian Journal of Genetics, 2008, 44(12): 1400−1408 doi: 10.1134/S102279540812003X

    [67]

    JUNG B K, KHAN A R, HONG S J, et al. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere[J]. Annals of Microbiology, 2017, 67(9): 623−632 doi: 10.1007/s13213-017-1291-1

    [68]

    BALASUNDARARAJAN V, DANANJEYAN B. Occurrence of diversified N-acyl homoserine lactone mediated biofilm-forming bacteria in rice rhizoplane[J]. Journal of Basic Microbiology, 2019, 59(10): 1031−1039 doi: 10.1002/jobm.201900202

    [69]

    DE MAEYER K, D'AES J, HUA G K H, et al. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere[J]. Microbiology, 2011, 157(2): 459−472

    [70]

    BAI X G, TODD C D, DESIKAN R, et al. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean[J]. Plant Physiology, 2012, 158(2): 725−736 doi: 10.1104/pp.111.185769

    [71]

    IMRAN A, SAADALLA M J A, KHAN S U, et al. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing[J]. Annals of Microbiology, 2014, 64(4): 1797−1806 doi: 10.1007/s13213-014-0824-0

    [72]

    SJÖBLOM S, BRADER G, KOCH G, et al. Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora[J]. Molecular Microbiology, 2006, 60(6): 1474−1489 doi: 10.1111/j.1365-2958.2006.05210.x

    [73]

    RYU C M, CHOI H K, LEE C H, et al. Modulation of quorum sensing in acylhomoserine lactone-producing or -degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166[J]. The Plant Pathology Journal, 2013, 29(2): 182−192 doi: 10.5423/PPJ.SI.11.2012.0173

    [74]

    LI Q, WU Y H, WANG J Y, et al. Linking short-chain N-acyl homoserine lactone-mediated quorum sensing and replant disease: a case study of Rehmannia glutinosa[J]. Frontiers in Plant Science, 2020, 11: 787 doi: 10.3389/fpls.2020.00787

    [75]

    IBAL J C, PARK M K, PARK G S, et al. Use of acyl-homoserine lactones leads to improved growth of ginseng seedlings and shifts in soil microbiome structure[J]. Agronomy, 2021, 11(11): 2177 doi: 10.3390/agronomy11112177

    [76]

    HE C F, ZHENG L, GAO W, et al. Diversity and functions of quorum sensing bacteria in the root environment of the Suaeda glauca and Phragmites australis coastal wetlands[J]. Environmental Science and Pollution Research International, 2022, 29(36): 54619−54631 doi: 10.1007/s11356-022-19564-6

    [77]

    MOROHOSHI T, NAKAMURA Y, YAMAZAKI G, et al. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing[J]. Journal of Bacteriology, 2007, 189(22): 8333−8338 doi: 10.1128/JB.01054-07

    [78]

    ZHANG L Y, GUO Z W, GAO H F, et al. Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture system[J]. Journal of Microbiology and Biotechnology, 2016, 26(12): 2159−2170 doi: 10.4014/jmb.1607.07073

    [79]

    MIAO C J, LIU F, ZHAO Q, et al. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 293−298 doi: 10.1016/j.bbrc.2012.09.044

    [80]

    GÖTZ-RÖSCH C, SIEPER T, FEKETE A, et al. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase Ⅱ detoxification enzymes in barley and yam bean[J]. Frontiers in Plant Science, 2015, 6: 205

    [81]

    RANKL S, GUNSÉ B, SIEPER T, et al. Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley[J]. Plant Science, 2016, 253: 130−140

    [82]

    MOSHYNETS O V, BABENKO L M, ROGALSKY S P, et al. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield[J]. PLoS One, 2019, 14(2): e0209460 doi: 10.1371/journal.pone.0209460

    [83]

    HARJAI K, SABHARWAL N. Biofilm formation and quorum sensing in rhizosphere[J]. Biofilms in Plant and Soil Health, 2017: 111−130

    [84]

    SCHIKORA A, SCHENK S T, STEIN E, et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6[J]. Plant Physiology, 2011, 157(3): 1407−1418 doi: 10.1104/pp.111.180604

    [85]

    PANG Y D, LIU X G, MA Y X, et al. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones[J]. European Journal of Plant Pathology, 2009, 124(2): 261−268 doi: 10.1007/s10658-008-9411-1

    [86]

    ELASRI M, DELORME S, LEMANCEAU P, et al. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp.[J]. Applied and Environmental Microbiology, 2001, 67(3): 1198−1209 doi: 10.1128/AEM.67.3.1198-1209.2001

    [87]

    PODILE A R, VUKANTI R R, SRAVANI A, et al. Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion[J]. Proceedings of the Indian National Science Academy, 2014, 80(2): 407 doi: 10.16943/ptinsa/2014/v80i2/55117

    [88]

    BHATTACHARYA A, SOOD P, CITOVSKY V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705−719

    [89]

    HELMAN Y, CHERNIN L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease[J]. Molecular Plant Pathology, 2015, 16(3): 316−329 doi: 10.1111/mpp.12180

    [90]

    PIQUÉ N, MIÑANA-GALBIS D, MERINO S, et al. Virulence factors of Erwinia amylovora: a review[J]. International Journal of Molecular Sciences, 2015, 16(12): 12836−12854 doi: 10.3390/ijms160612836

    [91]

    ZAYTSEVA Y V, SIDOROV A V, MARAKAEV O A, et al. Plant-microbial interactions involving quorum sensing regulation[J]. Microbiology, 2019, 88(5): 523−533 doi: 10.1134/S0026261719040131

    [92]

    BARNARD A M L, SALMOND G P C. Quorum sensing in Erwinia species[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2): 415−423 doi: 10.1007/s00216-006-0701-1

    [93]

    DONG Y H, XU J L, LI X Z, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3526−3531

    [94]

    MOROHOSHI T, NAKAZAWA S, EBATA A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(7): 1887−1893 doi: 10.1271/bbb.80139

    [95]

    PARK S Y, KANG H O, JANG H S, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Applied and Environmental Microbiology, 2005, 71(5): 2632−2641 doi: 10.1128/AEM.71.5.2632-2641.2005

    [96]

    UROZ S, OGER P, CHHABRA S R, et al. N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1[J]. Archives of Microbiology, 2007, 187(3): 249−256 doi: 10.1007/s00203-006-0186-5

    [97]

    GRANDCLÉMENT C, TANNIÈRES M, MORÉRA S, et al. Quorum quenching: role in nature and applied developments[J]. FEMS Microbiology Reviews, 2016, 40(1): 86−116 doi: 10.1093/femsre/fuv038

    [98]

    MOURA-ALVES P, PUYSKENS A, STINN A, et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection[J]. Science, 2019, 366(6472): eaaw1629 doi: 10.1126/science.aaw1629

    [99]

    OUYANG J, SUN F, FENG W, et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa[J]. Journal of Applied Microbiology, 2016, 120(4): 966−974 doi: 10.1111/jam.13073

    [100]

    SARKAR R, MONDAL C, BERA R, et al. Antimicrobial properties of Kalanchoe blossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation[J]. The Journal of Pharmacy and Pharmacology, 2015, 67(7): 951−962 doi: 10.1111/jphp.12397

    [101]

    ZHU H, SUN S J. Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract[J]. Current Microbiology, 2008, 57(5): 418−422 doi: 10.1007/s00284-008-9215-8

    [102]

    TUROVSKIY Y, KASHTANOV D, PASKHOVER B, et al. Quorum sensing: fact, fiction, and everything in between[J]. Advances in Applied Microbiology, 2007, 62: 191−234

    [103]

    LIN Y H, XU J L, HU J Y, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003, 47(3): 849−860 doi: 10.1046/j.1365-2958.2003.03351.x

    [104]

    CHAN K G, WONG C S, YIN W F, et al. Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil[J]. Antonie Van Leeuwenhoek, 2010, 98(3): 299−305 doi: 10.1007/s10482-010-9438-0

    [105]

    DONG Y H, WANG L Y, ZHANG L H. Quorum-quenching microbial infections: mechanisms and implications[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1201−1211 doi: 10.1098/rstb.2007.2045

    [106]

    CZAJKOWSKI R, JAFRA S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules[J]. Acta Biochimica Polonica, 2009, 56(1): 1−16

    [107]

    SHEVATE S N, SHINDE S S, BANKAR A V, et al. Identification of quorum quenching N-acyl homoserine lactonases from Priestia aryabhattai J1D and Bacillus cereus G isolated from the rhizosphere[J]. Current Microbiology, 2023, 80(3): 86 doi: 10.1007/s00284-023-03186-3

    [108]

    ZHANG H B, WANG L H, ZHANG L H. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7): 4638−4643

    [109]

    WAHJUDI M, MURUGAPPAN S, VAN MERKERK R, et al. Development of a dry, stable and inhalable acyl-homoserine-lactone-acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections[J]. European Journal of Pharmaceutical Sciences, 2013, 48(4/5): 637−643

    [110]

    CRÉPIN A, BARBEY C, CIROU A, et al. Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum[J]. Plant and Soil, 2012, 358(1): 27−37

    [111]

    HASSAN R, SHAABAN M I, ABDEL BAR F M, et al. Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil[J]. Frontiers in Microbiology, 2016, 7: 659

    [112]

    MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55: 165−199 doi: 10.1146/annurev.micro.55.1.165

    [113]

    KRYSCIAK D, SCHMEISSER C, PREUSS S, et al. Involvement of multiple loci in quorum quenching of autoinducer Ⅰ molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234[J]. Applied and Environmental Microbiology, 2011, 77(15): 5089−5099 doi: 10.1128/AEM.00112-11

    [114]

    AZIZ M, CHAPMAN K D. Fatty acid amide hydrolases: an expanded capacity for chemical communication?[J]. Trends in Plant Science, 2020, 25(3): 236−249 doi: 10.1016/j.tplants.2019.11.002

    [115]

    BILLOT R, PLENER L, JACQUET P, et al. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control[J]. Journal of Biological Chemistry, 2020, 295(37): 12993−13007 doi: 10.1074/jbc.REV120.013531

    [116]

    DONG Y H, WANG L H, XU J L, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase[J]. Nature, 2001, 411(6839): 813−817 doi: 10.1038/35081101

    [117]

    TEPLITSKI M, ROBINSON J B, BAUER W D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria[J]. Molecular Plant-Microbe Interactions, 2000, 13(6): 637−648 doi: 10.1094/MPMI.2000.13.6.637

    [118]

    KOH C L, SAM C K, YIN W F, et al. Plant-derived natural products as sources of anti-quorum sensing compounds[J]. Sensors, 2013, 13(5): 6217−6228 doi: 10.3390/s130506217

    [119]

    ASFOUR H Z. Anti-quorum sensing natural compounds[J]. Journal of Microscopy and Ultrastructure, 2018, 6(1): 1−10 doi: 10.4103/JMAU.JMAU_10_18

    [120]

    RASMUSSEN T B, SKINDERSOE M E, BJARNSHOLT T, et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species[J]. Microbiology, 2005, 151(5): 1325−1340

    [121]

    MCDOUGALD D, RICE S A, KJELLEBERG S. Bacterial quorum sensing and interference by naturally occurring biomimics[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2): 445−453 doi: 10.1007/s00216-006-0761-2

    [122]

    VANDEPUTTE O M, KIENDREBEOGO M, RASAMIRAVAKA T, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1[J]. Microbiology, 2011, 157(Pt 7): 2120−2132

    [123]

    VIKRAM A, JAYAPRAKASHA G K, JESUDHASAN P R, et al. Suppression of bacterial cell-cell signalling, biofilm formation and type Ⅲ secretion system by citrus flavonoids[J]. Journal of Applied Microbiology, 2010, 109(2): 515−527 doi: 10.1111/j.1365-2672.2010.04677.x

    [124]

    BABENKO L M, KOSAKIVSKA I V, ROMANENKO К О. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants[J]. Cell Biology International, 2022, 46(4): 523−534 doi: 10.1002/cbin.11749

    [125]

    PÉREZ-MONTAÑO F, JIMÉNEZ-GUERRERO I, SÁNCHEZ-MATAMOROS R C, et al. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria[J]. Research in Microbiology, 2013, 164(7): 749−760 doi: 10.1016/j.resmic.2013.04.001

    [126]

    CIROU A, MONDY S, AN S, et al. Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing[J]. Applied and Environmental Microbiology, 2012, 78(2): 481−492 doi: 10.1128/AEM.06159-11

    [127]

    BARBEY C, CRÉPIN A, BERGEAU D, et al. In planta biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway[J]. PLoS One, 2013, 8(6): e66642 doi: 10.1371/journal.pone.0066642

    [128]

    ALINEJAD F, SHAHRYARI F, EINI O, et al. Screening of quorum-quenching bacteria associated with rhizosphere as biocontrol agents of Pectobacterium carotovorum subsp. carotovorum[J]. Archives of Phytopathology and Plant Protection, 2020, 53(11/12): 509−523

    [129]

    MOLINA L, CONSTANTINESCU F, MICHEL L, et al. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism[J]. FEMS Microbiology Ecology, 2003, 45(1): 71−81 doi: 10.1016/S0168-6496(03)00125-9

    [130]

    MAHMOUDI E, HASANZADEH N, TABATABAEI B E S, et al. Isolation and identification of N-acylhomoserin lactone degrading bacteria from potato rhizosphere[J]. Advanced Journal of Microbiology Research, 2019, 13(3): 1−8

    [131]

    PARK S J, PARK S Y, RYU C M, et al. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence[J]. Journal of Microbiology and Biotechnology, 2008, 18(9): 1518−1521

    [132]

    KANG B R, LEE J H, KO S J, et al. Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010[J]. Canadian Journal of Microbiology, 2004, 50(11): 935−941 doi: 10.1139/w04-083

    [133]

    CHAN K G, ATKINSON S, MATHEE K, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia[J]. BMC Microbiology, 2011, 11: 51 doi: 10.1186/1471-2180-11-51

    [134]

    KACHHADIA R, KAPADIA C, SINGH S, et al. Quorum sensing inhibitory and quenching activity of Bacillus cereus RC1 extracts on soft rot-causing bacteria Lelliottia amnigena[J]. ACS Omega, 2022, 7(29): 25291−25308 doi: 10.1021/acsomega.2c02202

    [135]

    CHANKHAMHAENGDECHA S, HONGVIJIT S, SRICHAISUPAKIT A, et al. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes[J]. BioMed Research International, 2013, 2013: 782847

    [136]

    ZHANG W P, LUO Q Q, ZHANG Y Y, et al. Quorum quenching in a novel Acinetobacter sp. XN-10 bacterial strain against Pectobacterium carotovorum subsp. carotovorum[J]. Microorganisms, 2020, 8(8): 1100 doi: 10.3390/microorganisms8081100

    [137]

    REIMMANN C, GINET N, MICHEL L, et al. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1[J]. Microbiology, 2002, 148(Pt 4): 923−932

    [138]

    GUALPA J, LOPEZ G, NIEVAS S, et al. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity[J]. Journal of Applied Microbiology, 2019, 126(6): 1850−1860 doi: 10.1111/jam.14269

表(2)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  92
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 录用日期:  2023-08-24
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回