不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响

刘威帆, 赵匆, 刘昊, 屈小玉, 刘吉利, 吴娜

刘威帆,  赵匆,  刘昊,  屈小玉,  刘吉利,  吴娜. 不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响[J].  中国生态农业学报 (中英文),  2024,  32(9): 1492−1502

. DOI: 10.12357/cjea.20240008
引用本文:

刘威帆,  赵匆,  刘昊,  屈小玉,  刘吉利,  吴娜. 不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响[J].  中国生态农业学报 (中英文),  2024,  32(9): 1492−1502

. DOI: 10.12357/cjea.20240008

LIU W F, ZHAO C, LIU H, QU X Y, LIU J L, WU N. Effects of different phosphorus supply levels on the organic acids, inorganic phosphorus, and microorganisms in the rhizosphere soil of switchgrass (Panicum virgatum L.)[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1492−1502

. DOI: 10.12357/cjea.20240008
Citation:

LIU W F, ZHAO C, LIU H, QU X Y, LIU J L, WU N. Effects of different phosphorus supply levels on the organic acids, inorganic phosphorus, and microorganisms in the rhizosphere soil of switchgrass (Panicum virgatum L.)[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1492−1502

. DOI: 10.12357/cjea.20240008

刘威帆,  赵匆,  刘昊,  屈小玉,  刘吉利,  吴娜. 不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响[J].  中国生态农业学报 (中英文),  2024,  32(9): 1492−1502

. CSTR: 32371.14.cjea.20240008
引用本文:

刘威帆,  赵匆,  刘昊,  屈小玉,  刘吉利,  吴娜. 不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响[J].  中国生态农业学报 (中英文),  2024,  32(9): 1492−1502

. CSTR: 32371.14.cjea.20240008

LIU W F, ZHAO C, LIU H, QU X Y, LIU J L, WU N. Effects of different phosphorus supply levels on the organic acids, inorganic phosphorus, and microorganisms in the rhizosphere soil of switchgrass (Panicum virgatum L.)[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1492−1502

. CSTR: 32371.14.cjea.20240008
Citation:

LIU W F, ZHAO C, LIU H, QU X Y, LIU J L, WU N. Effects of different phosphorus supply levels on the organic acids, inorganic phosphorus, and microorganisms in the rhizosphere soil of switchgrass (Panicum virgatum L.)[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1492−1502

. CSTR: 32371.14.cjea.20240008

不同供磷水平对柳枝稷根际土壤有机酸、无机磷及微生物的影响

基金项目: 国家自然科学基金项目(31860344)和宁夏自然科学基金项目(2022AAC03062)资助
详细信息
    作者简介:

    刘威帆, 主要研究方向为作物高产栽培研究。E-mail: 12022131346@stu.nxu.edu.cn

    通讯作者:

    吴娜, 主要研究方向为作物高产栽培研究。E-mail: wunanxy@nxu.edu.cn

  • 中图分类号: S543.9

Effects of different phosphorus supply levels on the organic acids, inorganic phosphorus, and microorganisms in the rhizosphere soil of switchgrass (Panicum virgatum L.)

Funds: This study was supported by the National Natural Science Foundation of China (31860344), and the Natural Science Foundation of Ningxia (2022AAC03062).
More Information
  • 摘要:

    本研究旨在探索不同供磷水平对根际土壤有机酸、无机磷和微生物群落的影响, 挖掘根际土壤微生态特征, 对促进土壤磷素循环具有重要意义。本试验采用随机区组试验设计, 以柳枝稷‘Alamo’和‘Pathfinder’品种为材料, 设置3个磷水平: P0 (0 kg∙hm−2)、P30 (30 kg∙hm−2)和P90 (90 kg∙hm−2), 研究不同磷水平下柳枝稷根际土壤有机酸组成及含量、无机磷形态及含量以及微生物种群落多样性。研究结果表明, 施磷水平对根际土壤有机酸、无机磷含量和微生物群落有显著影响。与P0相比, 不同施磷水平下 ‘Alamo’品种的根际土壤有机酸含量增幅更大, 无机磷含量更高。而在微生物群落方面, ‘Alamo’和‘Pathfinder’品种呈现相似的变化规律。在P30和P90处理下, 根际土壤中琥珀酸、苹果酸、马来酸和丙二酸含量显著增加, 辛二酸含量降低。此外, 施磷后根际土壤中的Ca2-P、Al-P、Fe-P、O-P和Ca10-P含量均显著增加。细菌群落的Chao1指数、ACE指数、Shannon指数和Simpson指数在施磷后也显著增加, 而物种组成在门水平上以变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)和绿弯菌门(Chloroflexi)为优势菌门。综合分析发现, 不同磷水平下, 柳枝稷根际土壤中的有机酸与无机磷间关系不显著。细菌群落的丰富度和多样性受有机酸和无机磷的共同影响, 不同优势菌门与有机酸和无机磷的关系具有差异性。综上所述, 有机酸—无机磷—微生物构成的根际土壤微生态系统是相互协调的系统, 对磷资源的高效利用具有积极作用。

    Abstract:

    This study aimed to explore the effects of different phosphorus supply levels on soil organic acids and inorganic phosphorus contents, and microbial communities, as well as to investigate the microbial ecological characteristics in the rhizosphere. The results are important for promoting soil phosphorus cycling. The experiment employed a randomized block design with ‘Alamo’ and ‘Pathfinder’ varieties ofPanicum virgatumL. Three phosphorus levels were set: P0 (0 kg·hm–2), P30 (30 kg·hm–2), and P90 (90 kg·hm–2), to study the composition and content of rhizosphere soil organic acids, inorganic phosphorus, and microbial population diversity. The results showed that phosphorus levels had a significant impact on rhizosphere soil organic acids and inorganic phosphorus contents, and microbial communities. At two phosphorus application levels, the ‘Alamo’ variety exhibited a greater increase in rhizosphere soil organic acid content and higher levels of rhizosphere soil inorganic phosphorus, compared with P0 treatment. In terms of microbial communities, both ‘Alamo’ and ‘Pathfinder’ varieties showed similar patterns of change. Under the P30 and P90 treatments, the succinic, malic, maleic, and malonic acid contents in the rhizosphere soil significantly increased, whereas the suberic acid content decreased. Additionally, the contents of Ca2-P, Al-P, Fe-P, O-P, and Ca10-P in the rhizosphere soil significantly increased after phosphorus application. Furthermore, the Chao1, ACE, Shannon, and Simpson indices of the bacterial communities significantly increased after phosphorus application, with the phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi dominating at the phylum level. The comprehensive analysis found that under different phosphorus levels, the relationship between organic acids and inorganic phosphorus was not significant. The abundance and diversity of bacterial communities were jointly influenced by organic acids and inorganic phosphorus, and the relationships between the dominant bacterial phyla, organic acids, and inorganic phosphorus varied. In conclusion, the rhizosphere soil microecosystem, composed of organic acids, inorganic phosphorus, and microorganisms were a harmonious system that played a positive role in the efficient utilization of phosphorus resources.

  • 图  1   供磷水平对柳枝稷品种‘Alamo’(A、C)和‘Pathfinder’(B、D)根际土壤有机酸种类及含量和无机磷种类及含量的影响

    P0: 不施磷肥; P30: 施磷肥30 kg·hm−2; P90: 施磷肥90 kg·hm−2。不同小写字母表示不同磷水平间差异显著(P<0.05)。P0: no phosphorus fertilizer application; P30: 30 kg·hm−2 phosphorus fertilizer application; P90: 90 kg·hm−2 phosphorus fertilizer application. Different lowercase letters indicate significant differences among different phosphorus levels at P<0.05 level.

    Figure  1.   Effects of phosphorus supply levels on the types and contents of organic acids and inorganic phosphorus in the rhizosphere soils of ‘Alamo’ (A, C) and ‘Pathfinder’ (B, D) varieties of Panicum virgatum L.

    图  2   不同磷水平下柳枝稷品种‘Alamo’和‘Pathfinder’根际土壤细菌群落β多样性(A)以及α多样性(B、C、D、E)

    P0: 不施磷肥; P30: 施磷肥30 kg·hm−2; P90: 施磷肥90 kg·hm−2。不同小写字母表示不同磷水平间差异显著(P<0.05)。P0: no phosphorus fertilizer application; P30: 30 kg·hm−2 phosphorus fertilizer application; P90: 90 kg·hm−2 phosphorus fertilizer application. Different lowercase letters indicate significant differences among different phosphorus levels at P<0.05 level.

    Figure  2.   β-diversity (A) and α-diversity (B, C, D, E) of bacterial communities in rhizosphere soil of ‘Alamo’ and ‘Pathfinder’ varieties of Panicum virgatum L. under different phosphorus levels

    图  3   柳枝稷品种‘Alamo’ (A、C)和‘Pathfinder’ (B、D)根际土壤门水平前10优势菌群(A、B)和属水平前10优势菌群(C、D)相对丰度

    P0: 不施磷肥; P30: 施磷肥30 kg·hm−2; P90: 施磷肥90 kg·hm−2。P0: no phosphorus fertilizer application; P30: 30 kg·hm−2 phosphorus fertilizer application; P90: 90 kg·hm−2 phosphorus fertilizer application.

    Figure  3.   Relative abundances of the top 10 dominant bacterial taxa at the phylum level (A, B) and genus level (C, D) in the rhizosphere soil of ‘Alamo’ (A, C) and ‘Pathfinder’ (B, D) varieties of Panicum virgatum L.

    图  4   柳枝稷根际土壤细菌群落 Mantel test分析

    *: 显著相关(P<0.05); **: 极显著相关(P<0.01)。*: significant correlation at P<0.05; **: highly significant correlation at P<0.01.

    Figure  4.   Mantel test analysis of bacterial community in the rhizosphere soil of Panicum virgatum L.

    图  5   柳枝稷根际土壤细菌群落RDA分析(A)与VPA分析(B)

    Figure  5.   RDA analysis (A) and VPA analysis (B) of bacterial communities in the rhizosphere soil of Panicum virgatum L.

    图  6   磷水平与柳枝稷根际土壤有机酸、无机磷和细菌群落之间相互影响的偏最小二乘法路径分析模型

    *: 显著相关(P<0.05); **: 极显著相关(P<0.01); ns: 不相关。*: significant correlation at P<0.05; **: highly significant correlation at P<0.01; ns: not correlated.

    Figure  6.   Partial least squares path analysis model of interactions among phosphorus level, organic acid, inorganic acid and bacterial community in rhizosphere soil of Panicum virgatum L.

  • [1]

    COONEY D, KIM H, QUINN L, et al. Switchgrass as a bioenergy crop in the Loess Plateau, China: potential lignocellulosic feedstock production and environmental conservation[J]. Journal of Integrative Agriculture, 2017, 16(6): 1211−1226 doi: 10.1016/S2095-3119(16)61587-3

    [2]

    ZHAO C Q, HOU X C, GUO Q, et al. Switchgrass establishment can ameliorate soil properties of the abandoned cropland in northern China[J]. Agriculture, 2022, 12(8): 1138 doi: 10.3390/agriculture12081138

    [3]

    PETIPAS R H, BOWSHER A W, BEKKERING C S, et al. Interactive effects of microbes and nitrogen on Panicum virgatum root functional traits and patterns of phenotypic selection[J]. International Journal of Plant Sciences, 2020, 181(1): 20−32 doi: 10.1086/706198

    [4]

    PARRISH D J, FIKE J H. The biology and agronomy of switchgrass for biofuels[J]. Critical Reviews in Plant Sciences, 2005, 24(5/6): 423−459

    [5] 安雨. 基于资源竞争和化感作用原理的柳枝稷生态适应机制研究[D]. 杨凌: 西北农林科技大学, 2014

    AN Y. Research on switchgrass ecological adaptation mechanism based on resource competition and allelopathy[D]. Yangling: Northwest A & F University, 2014

    [6] 何海锋, 吴娜, 刘吉利, 等. 盐碱条件下施磷对柳枝稷生长发育及耐盐性的影响[J]. 草业学报, 2022, 31(10): 64−74

    HE H F, WU N, LIU J L, et al. Effects of phosphorus application on the growth and salt resistance of switchgrass under saline alkali conditions[J]. Acta Prataculturae Sinica, 2022, 31(10): 64−74

    [7] 咸敬甜, 陈小兵, 王上, 等. 盐渍土磷有效性研究进展与展望[J]. 土壤, 2023, 55(3): 474−486

    XIAN J T, CHEN X B, WANG S, et al. Phosphorus availability in saline soil: a review[J]. Soils, 2023, 55(3): 474−486

    [8]

    LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95−123 doi: 10.1146/annurev-arplant-050213-035949

    [9] 丁永祯, 李志安, 邹碧. 土壤低分子量有机酸及其生态功能[J]. 土壤, 2005, 37(3): 243−250

    DING Y Z, LI Z A, ZOU B. Low-molecular-weight organic acids and their ecological roles in soil[J]. Soils, 2005, 37(3): 243−250

    [10] 王树起, 韩晓增, 乔云发, 等. 缺磷胁迫条件下大豆根系有机酸的分泌特性[J]. 大豆科学, 2009, 28(3): 409−414

    WANG S Q, HAN X Z, QIAO Y F, et al. Characteristics of organic acids exudated from soybean (Glycine max L.) roots under P deficiency stress[J]. Soybean Science, 2009, 28(3): 409−414

    [11] 俞元春, 余健, 房莉, 等. 缺磷胁迫下马尾松和杉木苗根系有机酸的分泌[J]. 南京林业大学学报(自然科学版), 2007, 31(2): 9−12

    YU Y C, YU J, FANG L, et al. Organic acids exudation from the roots of Cunninghamia lanceolata and Pinus massoniana seedlings under low phosphorus stress[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(2): 9−12

    [12] 孔旭, 陈玉萌, 赵志远, 等. 生草覆盖下有机无机肥配施对苹果园土壤磷形态分布的影响[J]. 水土保持学报, 2023, 37(2): 336−342

    KONG X, CHEN Y M, ZHAO Z Y, et al. Effects of combined application of organic and inorganic fertilizers on soil phosphorus distribution in apple orchard under grass[J]. Journal of Soil and Water Conservation, 2023, 37(2): 336−342

    [13] 吉冰洁. 不同品种磷肥在塿土中磷形态转化及其有效性[D]. 杨凌: 西北农林科技大学, 2021

    JI B J. Phosphorus fractions transformation and availability of varying synthetic phosphorus varieties in loess soil[D]. Yangling: Northwest A & F University, 2021

    [14] 贾莉洁, 李玉会, 孙本华, 等. 不同管理方式对土壤无机磷及其组分的影响[J]. 土壤通报, 2013, 44(3): 612−616

    JIA L J, LI Y H, SUN B H, et al. Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment[J]. Chinese Journal of Soil Science, 2013, 44(3): 612−616

    [15]

    SAMADDAR S, CHATTERJEE P, TRUU J, et al. Long-term phosphorus limitation changes the bacterial community structure and functioning in paddy soils[J]. Applied Soil Ecology, 2019, 134: 111−115 doi: 10.1016/j.apsoil.2018.10.016

    [16] 冉瑾怡. 磷肥施用与不同优化措施对旱地冬小麦根际过程、产量及磷素利用效率的影响[D]. 杨凌: 西北农林科技大学, 2021

    RAN J Y. Effects of phosphorus fertilizer application and different optimized measures on rhizosphere process, yield and phosphorus use efficiency of winter wheat in dryland[D]. Yangling: Northwest A & F University, 2021

    [17] 张盈盈, 安晓霞, 马春晖, 等. 解磷细菌与磷肥耦合提高苜蓿生长及光合性能[J]. 中国草地学报, 2023, 45(11): 43−51

    ZHANG Y Y, AN X X, MA C H, et al. The coupling of phosphate solubilizing bacteria and phosphate fertilizer to improve the growth and photosynthetic performance of alfalfa[J]. Chinese Journal of Grassland, 2023, 45(11): 43−51

    [18] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究[J]. 中国农业科学, 1989, 22(3): 58−66 doi: 10.3321/j.issn:0578-1752.1989.03.012

    JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58−66 doi: 10.3321/j.issn:0578-1752.1989.03.012

    [19] 沈仁芳, 蒋柏藩. 石灰性土壤无机磷的形态分布及其有效性[J]. 土壤学报, 1992, 29(1): 80−86

    SHEN R F, JIANG B F. Distribution and availability of various forms of inorganic-P in calcareous soils[J]. Acta Pedologica Sinica, 1992, 29(1): 80−86

    [20]

    BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37: 852−857 doi: 10.1038/s41587-019-0209-9

    [21]

    CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13: 581−583 doi: 10.1038/nmeth.3869

    [22]

    JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1): 31−41

    [23] 高雪峰, 贾渊. 荒漠草原植物根分泌物中有机酸组分分析及其生态效应研究[J]. 生态环境学报, 2020, 29(10): 1927−1934

    GAO X F, JIA Y. Analysis of organic acid components in root exudates and their ecological effects of the plants in desert steppe of Inner Mongolia[J]. Ecology and Environmental Sciences, 2020, 29(10): 1927−1934

    [24]

    HOFFLAND E, FINDENEGG G R, NELEMANS J A. Solubilization of rock phosphate by rape[J]. Plant and Soil, 1989, 113(2): 161−165 doi: 10.1007/BF02280176

    [25]

    LIPTON D S, BLANCHAR R W, BLEVINS D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings[J]. Plant Physiology, 1987, 85(2): 315−317 doi: 10.1104/pp.85.2.315

    [26] 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响[J]. 草业学报, 2012, 21(3): 242−249

    REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata[J]. Acta Prataculturae Sinica, 2012, 21(3): 242−249

    [27] 朱蕊. 盐碱胁迫对柳枝稷(Panicum virgatum L.)的生长生理影响研究[D]. 北京: 北京林业大学, 2021

    ZHU R. Effects of saline alkali stress on growth physiology of switchgrass (Panicum virgatum L.)[D]. Beijing: Beijing Forestry University, 2021

    [28] 向春阳, 马艳梅, 田秀平. 长期耕作施肥对白浆土磷组分及其有效性的影响[J]. 作物学报, 2005, 31(1): 48−52

    XIANG C Y, MA Y M, TIAN X P. Effects of long-term culture and fertilization on the contents of forms of phosphorus and their availability in albic soil[J]. Acta Agronomica Sinica, 2005, 31(1): 48−52

    [29] 李若楠, 武雪萍, 张彦才, 等. 节水减氮对温室土壤硝态氮与氮素平衡的影响[J]. 中国农业科学, 2016, 49(4): 695−704

    LI R N, WU X P, ZHANG Y C, et al. Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production[J]. Scientia Agricultura Sinica, 2016, 49(4): 695−704

    [30] 许琛, 沈素素, 何竹, 等. 长期施无机磷肥对黄泥土稻田土壤磷库的影响[J]. 农业环境科学学报, 2022, 41(11): 2506−2514

    XU C, SHEN S S, HE Z, et al. Effects of long-term application of inorganic phosphate fertilizer to soil phosphorus pools in yellow-mud soil paddy fields[J]. Journal of Agro-Environment Science, 2022, 41(11): 2506−2514

    [31] 路鹏, 李文海, 牛金璨, 等. 不同有机碳水平下塿土磷的有效性及无机磷形态转化[J]. 中国农业科学, 2022, 55(1): 111−122

    LU P, LI W H, NIU J C, et al. Phosphorus availability and transformation of inorganic phosphorus forms under different organic carbon levels in a tier soil[J]. Scientia Agricultura Sinica, 2022, 55(1): 111−122

    [32] 王永壮, 陈欣, 史奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7): 2189−2198

    WANG Y Z, CHEN X, SHI Y, et al. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms[J]. Chinese Journal of Ecology, 2018, 37(7): 2189−2198

    [33] 陈娟. 盐碱条件下供磷水平对柳枝稷生长与生理特性的影响[D]. 银川: 宁夏大学, 2020

    CHEN J. Effects of phosphorus supply level on the growth and physiological characteristics of switchgrass under saline and alkaline conditions[D]. Yinchuan: Ningxia University, 2020

    [34] 施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报, 2014, 34(17): 4943−4949

    SHI Y, WANG Z Q, ZHANG X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia[J]. Acta Ecologica Sinica, 2014, 34(17): 4943−4949

    [35] 刘俊杰, 王光华, 金剑, 等. 磷浓度处理对大豆根际土壤微生物群落结构的影响[J]. 大豆科学, 2008, 27(5): 801−805

    LIU J J, WANG G H, JIN J, et al. Effect of different phosphorus concentrations on microbial communities in soybean rhizosphere[J]. Soybean Science, 2008, 27(5): 801−805

    [36] 郝亚辉. 长期氮磷添加对黄土旱塬农田土壤碳氮磷及细菌特征的影响[D]. 西安: 陕西师范大学, 2017

    HAO Y H. Effects of long-term nitrogen and phosphorus addition on soil carbon, nitrogen, phosphorus and bacterial characteristics in farmland of Loess Plateau[D]. Xi’an: Shaanxi Normal University, 2017

    [37] 邓潜鑫. 施磷对紫色土榨菜-玉米根际微生物群落结构的影响[D]. 重庆: 西南大学, 2022

    DENG Q X. Effects of phosphorus application on microbial community structure in the rhizosphere of mustard-maize in purple soil[D]. Chongqing: Southwest University, 2022

    [38] 甘国渝, 陈佛文, 邹家龙, 等. 长期不同养分缺乏对冬油菜土壤微生物群落组成及多样性的影响[J]. 中国土壤与肥料, 2022(4): 37−46

    GAN G Y, CHEN F W, ZOU J L, et al. Effects of long-term different nutrient deficiency on the composition and diversity of soil microbial community in winter oilseed rape[J]. Soil and Fertilizer Sciences in China, 2022(4): 37−46

    [39] 彭铁双. 磷添加对闽楠人工幼林土壤养分元素及微生物的影响[D]. 长沙: 中南林业科技大学, 2022

    PENG T S. Effects of phosphorus addition on soil nutrient elements and microorganisms in young Phoebe bournei plantations[D]. Changsha: Central South University of Forestry & Technology, 2022

    [40] 张乃于, 闫双堆, 李娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析[J]. 植物营养与肥料学报, 2019, 25(12): 2076−2083 doi: 10.11674/zwyf.19330

    ZHANG N Y, YAN S D, LI J, et al. Meta-analysis on the effects of low molecular weight organic acids on increasing availability of soil phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2076−2083 doi: 10.11674/zwyf.19330

    [41]

    STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biology and Biochemistry, 2005, 37(11): 2046−2054 doi: 10.1016/j.soilbio.2005.03.009

    [42]

    ADELEKE R, NWANGBURUKA C, OBOIRIEN B. Origins, roles and fate of organic acids in soils: a review[J]. South African Journal of Botany, 2017, 108: 393−406 doi: 10.1016/j.sajb.2016.09.002

    [43]

    WHITELAW M A. Growth promotion of plants inoculated with phosphate-solubilizing fungi[M]//Advances in Agronomy. Amsterdam: Elsevier, 1999: 99–151

    [44]

    RODRÍGUEZ H, FRAGA R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4/5): 319−339

    [45] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展[J]. 生态学报, 2023, 43(11): 4390−4399

    TAO D X, GAO Y Z. Advances on the strategies of soil phosphate solubilizing microorganisms to promote plant phosphorus uptake[J]. Acta Ecologica Sinica, 2023, 43(11): 4390−4399

    [46]

    SHARMA S B, SAYYED R Z, TRIVEDI M H, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2013, 2: 587 doi: 10.1186/2193-1801-2-587

    [47] 罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性[J]. 中国农业科学, 2014, 47(5): 955−967

    LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four Citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2014, 47(5): 955−967

图(6)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  8
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-06
  • 修回日期:  2024-03-25
  • 录用日期:  2024-03-27
  • 网络出版日期:  2024-04-06
  • 刊出日期:  2024-09-09

目录

    /

    返回文章
    返回