不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析

陈锐峰, 曾全超, 胡漫, 周连昊, 马茂华

陈锐峰, 曾全超, 胡漫, 周连昊, 马茂华. 不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1709−1718. DOI: 10.12357/cjea.20240151
引用本文: 陈锐峰, 曾全超, 胡漫, 周连昊, 马茂华. 不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1709−1718. DOI: 10.12357/cjea.20240151
CHEN R F, ZENG Q C, HU M, ZHOU L H, MA M H. Ecological stoichiometry characteristics of soil extracellular enzymes under different citrus ages and analysis of their driving factors[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1709−1718. DOI: 10.12357/cjea.20240151
Citation: CHEN R F, ZENG Q C, HU M, ZHOU L H, MA M H. Ecological stoichiometry characteristics of soil extracellular enzymes under different citrus ages and analysis of their driving factors[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1709−1718. DOI: 10.12357/cjea.20240151
陈锐峰, 曾全超, 胡漫, 周连昊, 马茂华. 不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1709−1718. CSTR: 32371.14.cjea.20240151
引用本文: 陈锐峰, 曾全超, 胡漫, 周连昊, 马茂华. 不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析[J]. 中国生态农业学报 (中英文), 2024, 32(10): 1709−1718. CSTR: 32371.14.cjea.20240151
CHEN R F, ZENG Q C, HU M, ZHOU L H, MA M H. Ecological stoichiometry characteristics of soil extracellular enzymes under different citrus ages and analysis of their driving factors[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1709−1718. CSTR: 32371.14.cjea.20240151
Citation: CHEN R F, ZENG Q C, HU M, ZHOU L H, MA M H. Ecological stoichiometry characteristics of soil extracellular enzymes under different citrus ages and analysis of their driving factors[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1709−1718. CSTR: 32371.14.cjea.20240151

不同柑橘种植年限土壤胞外酶生态化学计量特征及其驱动因子解析

基金项目: 国家自然科学基金项目(42277351)和三峡工程后续规划项目(5000002021BF40001)资助
详细信息
    作者简介:

    陈锐峰, 主要研究方向为柑橘土壤碳磷循环的微生物学机制。E-mail: crf233@icloud.com

    通讯作者:

    曾全超, 主要研究方向为土壤有机碳循环的微生物学机制。E-mail: zengchao256@126.com

  • 中图分类号: S714

Ecological stoichiometry characteristics of soil extracellular enzymes under different citrus ages and analysis of their driving factors

Funds: This study was supported by the National Natural Science Foundation of China (42277351) and the Three Gorges Project Follow-up Planning Project (5000002021BF40001).
More Information
  • 摘要:

    土壤胞外酶生态化学计量特征可用于评估微生物对资源和养分的获取情况, 是评价土壤肥力和微生物活性的重要指标。然而, 高强度集约化柑橘种植对土壤胞外酶计量特征的影响机制尚不清楚。为探讨集约化农业种植对土壤酶化学计量特征及其对种植年限的响应, 本研究以三峡库区河岸带不同种植年限柑橘为研究对象, 采集根际土壤, 测定与碳氮磷循环相关的胞外酶活性和功能微生物基因丰度, 通过胞外酶生态化学计量特征去评估土壤微生物对氮磷养分及资源的需求状况。结果表明, 柑橘种植年限的增加会提高土壤有效氮和有效磷的含量, 其中磷素累积更为明显。种植30 a的柑橘土壤有效磷含量约为5 a柑橘土壤的3.5倍, 远高于柑橘生长需求阈值。柑橘种植年限增加会显著降低土壤碳磷循环相关酶活性, 增加氮获取酶活性。从功能基因角度来看, 编码碱性磷酸酶的phoD基因丰度显著下降, 从4.84×107 copies·g−1下降至9.24×106 copies·g−1。土壤功能微生物基因丰度的下降是导致碱性磷酸酶活性降低的直接因素。土壤酶化学计量特征也随着柑橘种植年限的增加而改变。土壤酶矢量角度由58.21°降低至18.70°, 表明土壤微生物对养分的需求由磷限制转换为氮限制, 低柑橘种植年限土壤微生物以磷限制为主, 高柑橘年限土壤微生物以氮限制为主。高强度柑橘种植过程中, 需减少磷肥施用, 增加有机肥等碳源投入, 提高微生物活性。研究结果可为高强度集约化柑橘种植土壤质量提升和果园的可持续管理提供理论依据。

    Abstract:

    The ecological stoichiometric characteristics of soil extracellular enzymes can be used to evaluate the acquisition of resources and nutrients by microorganisms, sensitively reflect the metabolic characteristics of soil microorganisms, and are important indicators to evaluate soil fertility and microbial activity. Intensive agriculture is characterized by the long-term application of large amounts of chemical fertilizers, which often leads to changes in the composition and activity of microbial communities in the soil. However, the mechanism by which high-intensity citrus cultivation affects the stoichiometric characteristics of soil extracellular enzymes remains unclear. To investigate the effects of intensive agricultural cultivation on the stoichiometric characteristics of soil enzymes and their responses to planting years, this study focused on citrus orchards with varying planting years in the riparian zones of the Three Gorges Reservoir. Rhizosphere soils were collected to measure extracellular enzyme activity related to carbon, nitrogen, and phosphorus cycling. The ecological stoichiometry of extracellular enzymes was used to assess the demand for nitrogen, phosphorus, and other resources from soil microorganisms. The results indicated that with increasing citrus planting years, the content of available nitrogen and phosphorus in the soil increased, particularly with significant accumulation of soil phosphorus. The soil phosphorus content in 30-year citrus orchards was 2.5 times higher than that in 5-year orchards, far exceeding the threshold required for citrus growth. Additionally, in citrus soils with long citrus planting years, other forms of phosphorus also accumulate in large amounts. In citrus soils with different planting years, enzyme activities related to the acquisition of carbon, nitrogen, and phosphorus was different. Increasing the citrus planting year significantly reduced the activity of soil enzymes related to carbon and phosphorus cycling, while increasing nitrogen acquisition enzyme activity. From a functional gene perspective, the abundance of the phoD gene encoding alkaline phosphatase significantly decreased from 4.84×107 copies·g−1 to 9.24×106 copies·g−1. Decrease in the abundance of soil functional microbial genes directly contribute to the reduction in the alkaline phosphatase activity. The stoichiometric characteristics of soil enzymes also changed with increasing citrus planting duration, and the enzyme vector model revealed that the soil enzyme vector angle decreased from 58.21° to 18.70°, indicating a transition in soil microbial nutrient demand from phosphorus to nitrogen limitation. Soil microbial communities in the 5-year citrus orchards were primarily P-limited, whereas those in the 30-year orchards were primarily N-limited. In the process of high-intensity citrus planting, it is necessary to reduce the application of phosphate fertilizers and increase the input of carbon sources to promote phosphorus utilization through carbon and alleviate microbial nutrient limitations. Alkaline conditioners should be appropriately added to soils with high citrus planting years to alleviate soil acidification. These findings provide a theoretical basis for improving soil quality and sustainable management of orchards under intensive citrus cultivation.

  • 图  1   不同柑橘种植年限(5 a和30 a)土壤胞外酶之间的回归关系

    BG: β-1, 4-葡萄糖苷酶; CBH: 纤维二糖水解酶; NAG: β-N-乙酰氨基葡萄糖苷酶; ALP: 碱性磷酸酶。BG: β-1,4-glucosidase; CBH: cellobiohydrolase; NAG: β-N-acetylglucosaminidase; ALP: alkaline phosphatase.

    Figure  1.   Regression relationship between extracellular enzymes in soil under different planting years (5 a and 30 a) of citrus

    图  2   不同种植年限(5 a和30 a)土壤胞外酶矢量特征

    C: 碳获取酶活性; N: 氮获取酶活性; P: 磷获取酶活性。C: carbon acquisition enzyme activity; N: nitrogen acquisition enzyme activity; P: phosphorus acquisition enzyme activity.

    Figure  2.   Vector characteristics of soil extracellular enzymes under different planting years (5 a and 30 a) of citrus

    图  3   土壤胞外酶与土壤基本特性、磷组分及phoD基因丰度的相关性

    红色圆圈表示正相关, 蓝色圆圈表示负相关; 圆圈大小表示相关性大小。AVP: 有效磷; BG: β-1,4-葡萄糖苷酶; CBH: 纤维二糖水解酶; NAG: β-N-乙酰氨基葡萄糖苷酶; ALP: 碱性磷酸酶; CaCl2-P: 可交换态磷; Citrate-P: 根系分泌有机酸溶解态磷; HCl-P: 矿物结合态磷。Red and blue circles refer to positive and negative correlation, respectively. Circle size refers to the correlation. AVP: available phosphorus; BG: β-1,4-glucosidase; CBH: cellobiohydrolase; NAG: β-N-acetylglucosaminidase; ALP: alkaline phosphatase; CaCl2-P: exchangeable phosphorus; Citrate-P: organic acids dissolved phosphorus of root secretion; HCl-P: mineral bound phosphorus.

    Figure  3.   Correlation between extracellular enzymes in soil and basic soil characteristics, phosphorus components, and abundance of phoD genes

    图  4   酶矢量角度与有效磷、有效氮和phoD基因丰度之间的回归关系

    AVP: 有效磷。AVP: available phosphorus.

    Figure  4.   Regression relationship between enzyme vector angle and available phosphorus, available nitrogen and phoD gene abundance

    图  5   长时间柑橘种植改变土壤微生物对养分的获取策略

    AVP: 有效磷; ALP: 碱性磷酸酶。AVP: available phosphorus; ALP: alkaline phosphatase.

    Figure  5.   Long-term citrus cultivation changes nutrient acquisition strategies of soil microorganisms

    表  1   土壤胞外酶及其编号与底物

    Table  1   Basic information of soil extracellular enzymes

    酶 Enzyme 缩写 Abbreviation 编号 Code 底物 Substrate
    β-1,4-葡萄糖苷酶
    β-1,4-glucosidase
    BG 3.2.1.21 4-MUB-β-D-葡萄糖苷
    4-MUB-β-D-glucoside
    纤维二糖水解酶
    Cellobiohydrolase
    CBH 3.2.1.91 4-MUB-β-D-纤维二糖苷
    4-MUB-β-D-cellobioside
    β-N-乙酰氨基葡萄糖苷酶
    β-N-acetylglucosaminidase
    NAG 3.1.6.1 4-MUB-N-乙酰基-b-D-氨基葡萄糖
    4-MUB-N-acetyl-b-D-glucosaminide
    碱性磷酸酶
    Alkaline phosphatase
    ALP 3.1.3.1 4-MUB-磷酸盐
    4-MUB-phosphate
    下载: 导出CSV

    表  2   不同种植年限柑橘土壤基本理化性质

    Table  2   Basic physical and chemical properties of citrus soil with different planting years

    种植年限
    Planting year (a)
    pH SOM
    (g·kg−1)
    NO3-N
    (mg·kg−1)
    NH4+-N
    (mg·kg−1)
    AVP
    (mg·kg−1)
    CaCl2-P
    (mg·kg−1)
    Citrate-P
    (mg·kg−1)
    HCl-P
    (mg·kg−1)
    5 5.75±0.75a 17.95±6.65a 37.37±36.09b 4.56±2.46b 31.40±21.16b 5.00±3.83b 216.97±242.84a 554.32±406.88b
    30 3.69±0.37b 20.86±4.73a 117.34±60.53a 58.90±41.90a 108.55±26.51a 28.44±13.95a 331.06±89.93a 801.90±212.36a
      同列不同小写字母表示同一指标不同柑橘年限间差异显著(P<0.05)。AVP: 有效磷; CaCl2-P: 可交换态磷; Citrate-P: 根系分泌有机酸溶解态磷; HCl-P: 矿物结合态磷。Different lowercase letters in the same column indicate significant differences between different planting years of the same indicator (P<0.05). AVP: available phosphorus; CaCl2-P: exchangeable phosphorus; Citrate-P: organic acids dissolved phosphorus of root secretion; HCl-P: mineral bound phosphorus.
    下载: 导出CSV

    表  3   不同种植年限柑橘土壤酶活性及酶矢量

    Table  3   Soil enzyme activities and enzyme vectors of citrus with different planting years

    种植年限
    Planting year (a)
    BG
    (nmol·g−1·h−1)
    CBH
    (nmol·g−1·h−1)
    NAG
    (nmol·g−1·h−1)
    ALP
    (nmol·g−1·h−1)
    角度
    Angle (°)
    长度
    Length
    5 67.99±44.91a 16.60±9.93a 21.26±18.60b 85.09±47.10a 58.21±10.92a 0.96±0.14a
    30 22.53±14.47b 4.95±4.31b 85.16±80.77a 2.13±2.75b 18.70±10.20b 1.00±0.08a
      同列不同小写字母表示同一指标不同柑橘年限间差异显著(P<0.05)。BG: β-1,4-葡萄糖苷酶; CBH: 纤维二糖水解酶; NAG: β-N-乙酰氨基葡萄糖苷酶; ALP: 碱性磷酸酶。Different lowercase letters in the same column indicate significant differences between different planting years of the same indicator (P<0.05). BG: β-1,4-glucosidase; CBH: cellobiohydrolase; NAG: β-N-acetylglucosaminidase; ALP: alkaline phosphatase.
    下载: 导出CSV
  • [1]

    BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234 doi: 10.1016/j.soilbio.2012.11.009

    [2]

    LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105

    [3]

    SINSABAUGH R L, BELNAP J, FINDLAY S G, et al. Extracellular enzyme kinetics scale with resource availability[J]. Biogeochemistry, 2014, 121(2): 287−304 doi: 10.1007/s10533-014-0030-y

    [4]

    YUAN X B, NIU D C, GHERARDI L A, et al. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment[J]. Soil Biology and Biochemistry, 2019, 138: 107580 doi: 10.1016/j.soilbio.2019.107580

    [5]

    XIAO L, MIN X X, LIU G B, et al. Effect of plant–plant interactions and drought stress on the response of soil nutrient contents, enzyme activities and microbial metabolic limitations[J]. Applied Soil Ecology, 2023, 181: 104666 doi: 10.1016/j.apsoil.2022.104666

    [6]

    SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462: 795−798 doi: 10.1038/nature08632

    [7]

    SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252−1264 doi: 10.1111/j.1461-0248.2008.01245.x

    [8]

    CUI Y X, BING H J, FANG L C, et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems[J]. Plant and Soil, 2021, 458(1): 7−20

    [9]

    ZHENG H F, VESTERDAL L, SCHMIDT I K, et al. Ecoenzymatic stoichiometry can reflect microbial resource limitation, substrate quality, or both in forest soils[J]. Soil Biology and Biochemistry, 2022, 167: 108613 doi: 10.1016/j.soilbio.2022.108613

    [10] 庞丹波, 吴梦瑶, 吴旭东, 等. 贺兰山东坡不同海拔梯度土壤酶化学计量特征[J]. 生态学报, 2023, 43(19): 7950−7962

    PANG D B, WU M Y, WU X D, et al. Responses of soil enzyme activities and their stoichiometric characteristics to different altitude on the eastern slope of Helan Mountain[J]. Acta Ecologica Sinica, 2023, 43(19): 7950−7962

    [11] 李东, 田秋香, 赵小祥, 等. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232−242 doi: 10.17521/cjpe.2021.0215

    LI D, TIAN Q X, ZHAO X X, et al. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China[J]. Chinese Journal of Plant Ecology, 2022, 46(2): 232−242 doi: 10.17521/cjpe.2021.0215

    [12] 张冠华, 易亮, 孙宝洋, 等. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响[J]. 应用生态学报, 2022, 33(7): 1791−1800

    ZHANG G H, YI L, SUN B Y, et al. Effects of moss biocrusts on soil-microbe-ectoenzyme stoichiometric characteristics in a subtropical area[J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1791−1800

    [13] 林惠瑛, 周嘉聪, 曾泉鑫, 等. 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化[J]. 应用生态学报, 2022, 33(1): 33−41

    LIN H Y, ZHOU J C, ZENG Q X, et al. Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 33−41

    [14] 潘森, 卜嘉玮, 甘安琪, 等. 放牧强度对高寒草地土壤微生物胞外酶化学计量的影响[J]. 草地学报, 2023, 31(6): 1780−1787

    PAN S, BU J W, GAN A Q, et al. Effect of grazing intensities on extracellular enzyme stoichiometry of soil microorganisms in alpine grassland[J]. Acta Agrestia Sinica, 2023, 31(6): 1780−1787

    [15] 肖向前, 张海阔, 冯娅斯, 等. 植物残体对青藏高原高寒草甸土壤、微生物和胞外酶C∶N∶P化学计量特征的影响[J]. 应用生态学报, 2023, 34(1): 58−66

    XIAO X Q, ZHANG H K, FENG Y S, et al. Effects of plant residues on C∶N∶P of soil, microbial biomass, and extracellular enzyme in an alpine meadow on the Qinghai-Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 58−66

    [16] 周连昊, 曾全超, 梅唐英泽, 等. 集约化柑橘种植抑制土壤磷循环微生物活性[J]. 环境科学, 2024, 45(5): 2881−2890

    ZHOU L H, ZENG Q C, MEI T Y Z, et al. Intensive citrus cultivation suppresses soil phosphorus cycling microbial activity[J]. Environmental Science, 2024, 45(5): 2881−2890

    [17]

    NIU Y H, WANG L, WAN X G, et al. A systematic review of soil erosion in citrus orchards worldwide[J]. CATENA, 2021, 206: 105558 doi: 10.1016/j.catena.2021.105558

    [18]

    ZENG Q C, MEI T, DELGADO-BAQUERIZO M, et al. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization[J]. Agriculture, Ecosystems & Environment, 2022, 323: 107679

    [19]

    ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biology and Biochemistry, 2007, 39(7): 1770−1781 doi: 10.1016/j.soilbio.2007.02.006

    [20]

    CUI Y X, FANG L C, GUO X B, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology and Biochemistry, 2018, 116: 11−21 doi: 10.1016/j.soilbio.2017.09.025

    [21]

    MOORHEAD D L, SINSABAUGH R L, HILL B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics[J]. Soil Biology and Biochemistry, 2016, 93: 1−7 doi: 10.1016/j.soilbio.2015.10.019

    [22]

    SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313−343 doi: 10.1146/annurev-ecolsys-071112-124414

    [23]

    XIA L Z, HOERMANN G, MA L, et al. Reducing nitrogen and phosphorus losses from arable slope land with contour hedgerows and perennial alfalfa mulching in Three Gorges Area, China[J]. CATENA, 2013, 110: 86−94 doi: 10.1016/j.catena.2013.05.009

    [24]

    ZENG Q C, MEI T, WANG M X, et al. Intensive citrus plantations suppress the microbial profiles of the β-glucosidase gene[J]. Agriculture, Ecosystems & Environment, 2022, 323: 107687

    [25] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil Agrochemical Analysis[M]. 3rd Ed. Beijing: China Agricultural Press, 2000

    [26]

    WEI X M, HU Y J, RAZAVI B S, et al. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization[J]. Soil Biology and Biochemistry, 2019, 131: 62−70 doi: 10.1016/j.soilbio.2018.12.025

    [27]

    ZHONG W H, GU T, WANG W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant and Soil, 2010, 326(1): 511−522

    [28]

    BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities[J]. Journal of Visualized Experiments: JoVE, 2013(81): e50961

    [29]

    DEFOREST J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180−1186 doi: 10.1016/j.soilbio.2009.02.029

    [30]

    FRASER T D, LYNCH D H, BENT E, et al. Soil bacterial phoD gene abundance and expression in response toapplied phosphorus and long-term management[J]. Soil Biology and Biochemistry, 2015, 88: 137−147 doi: 10.1016/j.soilbio.2015.04.014

    [31]

    SAKURAI M, WASAKI J, TOMIZAWA Y, et al. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter[J]. Soil Science and Plant Nutrition, 2008, 54(1): 62−71 doi: 10.1111/j.1747-0765.2007.00210.x

    [32]

    TAN H, BARRET M, MOOIJ M J, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biology and Fertility of Soils, 2013, 49(6): 661−672 doi: 10.1007/s00374-012-0755-5

    [33]

    MOORHEAD D L, RINKES Z L, SINSABAUGH R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 2013, 4: 223

    [34]

    FEYISSA A, GURMESA G A, YANG F, et al. Soil enzyme activity and stoichiometry in secondary grasslands along a climatic gradient of subtropical China[J]. The Science of the Total Environment, 2022, 825: 154019 doi: 10.1016/j.scitotenv.2022.154019

    [35]

    GRÖMPING U. Estimators of relative importance in linear regression based on variance decomposition[J]. The American Statistician, 2007, 61(2): 139−147 doi: 10.1198/000313007X188252

    [36]

    ZENG Q C, AN S S, LIU Y, et al. Biogeography and the driving factors affecting forest soil bacteria in an arid area[J]. Science of the Total Environment, 2019, 680: 124−131 doi: 10.1016/j.scitotenv.2019.04.184

    [37] 鲁剑巍, 陈防, 王富华, 等. 湖北省柑橘园土壤养分分级研究[J]. 植物营养与肥料学报, 2002, 8(4): 390−394 doi: 10.3321/j.issn:1008-505X.2002.04.002

    LU J W, CHEN F, WANG F H, et al. Study of classification of the soil nutrient status of citrus orchard in Hubei Province[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(4): 390−394 doi: 10.3321/j.issn:1008-505X.2002.04.002

    [38]

    CHU H Y, GAO G F, MA Y Y, et al. Soil microbial biogeography in a changing world: recent advances and future perspectives[J]. mSystems, 2020, 5(2): e00803−19

    [39]

    ZENG Q C, AN S S, LIU Y. Soil bacterial community response to vegetation succession after fencing in the grassland of China[J]. Science of the Total Environment, 2017, 609: 2−10 doi: 10.1016/j.scitotenv.2017.07.102

    [40]

    ZENG Q C, JIA P L, WANG Y, et al. The local environment regulates biogeographic patterns of soil fungal communities on the Loess Plateau[J]. CATENA, 2019, 183: 104220 doi: 10.1016/j.catena.2019.104220

    [41]

    LIU X C, ZHANG S T. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 2019, 440(1): 11−24

    [42]

    CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2018, 252: 126–131

    [43]

    RÓŻYŁO K, BOHACZ J. Microbial and enzyme analysis of soil after the agricultural utilization of biogas digestate and mineral mining waste[J]. International Journal of Environmental Science and Technology, 2020, 17(2): 1051−1062 doi: 10.1007/s13762-019-02522-0

    [44]

    CUI Y X, ZHANG Y L, DUAN C J, et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems[J]. Soil and Tillage Research, 2020, 197: 104463 doi: 10.1016/j.still.2019.104463

    [45]

    ZENG Q C, CHEN Z, TAN W F. Plant litter quality regulates soil eco-enzymatic stoichiometry and microbial nutrient limitation in a citrus orchard[J]. Plant and Soil, 2021, 466(1): 179−191

    [46]

    ZHAO F Z, REN C J, HAN X H, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems[J]. Forest Ecology and Management, 2018, 427: 289−295 doi: 10.1016/j.foreco.2018.06.011

    [47]

    YANG Y, LIANG C, WANG Y Q, et al. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration[J]. Soil Biology and Biochemistry, 2020, 149: 107928 doi: 10.1016/j.soilbio.2020.107928

    [48]

    FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631

    [49]

    CALABRESE S, MOHANTY B P, MALIK A A. Soil microorganisms regulate extracellular enzyme production to maximize their growth rate[J]. Biogeochemistry, 2022, 158(3): 303−312 doi: 10.1007/s10533-022-00899-8

    [50]

    XU H W, QU Q, LI G W, et al. Impact of nitrogen addition on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation[J]. Soil Biology and Biochemistry, 2022, 170: 108714 doi: 10.1016/j.soilbio.2022.108714

    [51]

    XIAO H, YANG H L, ZHAO M L, et al. Soil extracellular enzyme activities and the abundance of nitrogen-cycling functional genes responded more to N addition than P addition in an Inner Mongolian meadow steppe[J]. Science of the Total Environment, 2021, 759: 143541 doi: 10.1016/j.scitotenv.2020.143541

    [52] 李欣蔚, 肖元明, 李春丽, 等. 青藏高原高寒草甸微地形对土壤胞外酶活性及生态化学计量比的影响[J]. 应用与环境生物学报, 2024, 30(2): 212−219

    LI X W, XIAO Y M, LI C L, et al. Effects of microtopography on enzyme activities and ecological stoichiometry in an alpine meadow on the Qinghai-Tibet Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(2): 212−219

    [53]

    WANG N Y, REN L H, ZHANG J C, et al. Activities of functional enzymes involved in C, N, and P conversion and their stoichiometry during agricultural waste composting with biochar and biogas residue amendments[J]. Bioresource Technology, 2022, 345: 126489 doi: 10.1016/j.biortech.2021.126489

图(5)  /  表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-05
  • 录用日期:  2024-05-10
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-10-09

目录

    /

    返回文章
    返回