京郊有机作物种植的经济效益与环境影响

乔玉辉, 李强, 甄华杨, 冯旭, 张宝贵

乔玉辉, 李强, 甄华杨, 冯旭, 张宝贵. 京郊有机作物种植的经济效益与环境影响[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240198
引用本文: 乔玉辉, 李强, 甄华杨, 冯旭, 张宝贵. 京郊有机作物种植的经济效益与环境影响[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240198
QIAO Y H, LI Q, ZHEN H Y, FENG X, ZHANG B G. Economic benefits and environmental impacts of organic cropping in the Beijing suburban area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240198
Citation: QIAO Y H, LI Q, ZHEN H Y, FENG X, ZHANG B G. Economic benefits and environmental impacts of organic cropping in the Beijing suburban area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240198
乔玉辉, 李强, 甄华杨, 冯旭, 张宝贵. 京郊有机作物种植的经济效益与环境影响[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. CSTR: 32371.14.cjea.20240198
引用本文: 乔玉辉, 李强, 甄华杨, 冯旭, 张宝贵. 京郊有机作物种植的经济效益与环境影响[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. CSTR: 32371.14.cjea.20240198
QIAO Y H, LI Q, ZHEN H Y, FENG X, ZHANG B G. Economic benefits and environmental impacts of organic cropping in the Beijing suburban area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. CSTR: 32371.14.cjea.20240198
Citation: QIAO Y H, LI Q, ZHEN H Y, FENG X, ZHANG B G. Economic benefits and environmental impacts of organic cropping in the Beijing suburban area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. CSTR: 32371.14.cjea.20240198

京郊有机作物种植的经济效益与环境影响

基金项目: 北京市社会科学基金项目(21JJB04)资助
详细信息
    作者简介:

    乔玉辉, 主要研究研方向为有机农业与生态农业。E-mail: qiaoyh@cau.edu.cn

  • 中图分类号: S345

Economic benefits and environmental impacts of organic cropping in the Beijing suburban area

Funds: This study was supported by the Social Science Foundation of Beijing (21JJB04).
More Information
  • 摘要:

    随着城市居民对食品安全和环境保护的日益关注, 都市型有机种植业近年来得到了快速发展。明确都市型有机种植业发展现状、经济效益和环境影响, 对有机种植业可持续发展具有重要意义。本研究以北京市有机种植业(水果、蔬菜、薯类及薯芋类、坚果和谷物)为研究对象, 基于农场调研数据, 采用成本效益分析和生命周期评价(LCA)方法, 分别分析了有机作物生产的经济效益及其环境影响。本研究结果表明, 相比常规种植, 5种作物的有机种植降低了农作物的产量。不同作物之间的经济与环境表现存在较大差异。有机生产成本投入较高, 尽管有机种植增加了作物利润, 但是其成本利润率却低于其对应的常规对照。相比常规种植, 有机种植降低了环境影响水平(LCA标准化结果), 各作物的减少幅度依次为谷物>薯类及薯芋类>水果>蔬菜=坚果。考虑到粮食安全(常规种植与有机种植的产量差)、消费者负担能力(常规种植与有机种植的价格差)以及有机生产减少环境影响的幅度(常规种植与有机种植的LCA标准化结果差), 政府应对有机谷物生产加大补贴力度。北京市有机种植业仍具有较大发展潜力, 政府应针对有机农业制定相应补偿政策, 从而激励有机农业的进一步发展。

    Abstract:

    With growing concerns among urban residents about food safety and environmental protection, the urban organic farming sector has experienced rapid development in recent years. It is crucial to assess the current status, economic benefits, and environmental impacts of urban organic farming to ensure its sustainable growth. In this study, we analyzed the economic benefits and environmental impacts of organic crop production in Beijing suburb using farm survey data with cost-benefit analysis, and life cycle assessment (LCA). The study revealed that organic cultivation of five types of crops resulted in lower crop yields compared to conventional methods.Variations in economic and environmental performances were notable across different crop types. Although organic farming tended to increase crop profit due to higher price premium, the profit margin remained lower compared to conventional farming. Specifically, organic cultivation significantly reduced environmental impacts as indicated by the LCA standardized value, with the order of reductions observed in cereals > potatoes and tubers > fruits > vegetables = nuts. Given considerations of food security (yield differentials), consumer affordability (price premium), and environmental impact reductions (LCA standardized value), the study recommends increasing government subsidies for organic grains production. The development of organic farming in Beijing still has great potential, and the government should formulate corresponding compensation policies for organic agriculture to stimulate its further development.

  • 图  1   研究区域与样本分布示意图

    Figure  1.   Schematic diagram of the study area and sample distribution

    图  2   有机种植系统的生命周期评价系统边界

    Figure  2.   Life Cycle Assessment system boundaries of organic cropping

    图  3   2021年北京市不同作物类型有机种植总面积及总产量

    Figure  3.   Total area and yield of different organic crops in Beijing in 2021

    图  4   2021年北京市不同作物生产成本及其构成

    Figure  4.   Production cost and its compositions of different crops in Beijing in 2021

    图  5   2019—2021年北京市有机作物生产面积和产量变化趋势

    Figure  5.   Trends of organic crop area and yield in Beijing from 2019 to 2021

    表  1   2021年北京市主要作物类型有机种植面积、产量及其占该作物有机和常规种植总量的比例

    Table  1   Total areas and yields of major organic crops and their proportions to the total of the corresponding crop under organic and conventional cropping system in Beijing in 2021

    有机作物类型
    Organic crop type
    种植面积 Planting area产量 Yield
    总面积
    Total area (hm2)
    占比
    Proportion (%)
    总产量
    Total yield (t)
    占比
    Proportion (%)
    有机坚果 Organic nuts5734.351.028469.7
    有机水果 Organic fruits3277.98.317 2823.5
    有机谷物 Organic grains789.31.410 9393.0
    有机蔬菜 Organic vegetables715.21.320 8271.0
    有机薯类及薯芋类 Organic potatoes and tubers192.112.029963.3
    总计 Total11 600.09.958 2002.0
    下载: 导出CSV

    表  2   2021年北京市不同作物类型有机与常规种植的产量、价格及经济效益对比

    Table  2   Comparison of yields, prices, and economic performance under organic and conventional crop production in Beijing in 2021

    作物类型
    Crop type
    种植方式
    Planting method
    产量
    Yield
    (t∙hm−2)
    价格
    Price
    (×104 ¥∙t−1)
    成本
    Cost
    (×104 ¥∙hm−2)
    收入
    Income
    (×104 ¥∙hm−2)
    利润
    Profit
    (×104 ¥∙hm−2)
    利润率
    Profit margin (%)
    水果 Fruits 有机 Organic 15.10±6.01b 4.50±0.54a 42.16±5.91a 67.94±9.85a 25.78±8.03a 0.38±7.56b
    常规 Conventional 29.00±7.18a 1.20±0.63b 18.09±9.35b 34.20±8.71b 16.11±9.77b 0.47±0.05a
    蔬菜 Vegetables 有机 Organic 38.50±7.65b 1.50±6.33a 40.24±15.84a 58.75±19.23a 18.51±8.41a 0.32±0.06b
    常规 Conventional 51.80±5.96a 0.50±0.01b 14.10±0.88b 26.27±6.44b 12.17±5.16b 0.46±0.03a
    薯类及薯芋类 Potatoes and tubers 有机 Organic 52.50±16.31b 0.50±0.02a 17.23±2.77a 26.36±8.59a 9.14±3.16a 0.35±0.09b
    常规 Conventional 60.00±13.40a 0.20±0.04b 4.37±0.16b 11.40±6.93b 7.03±0.47b 0.62±0.07a
    坚果 Nuts 有机 Organic 5.70±1.95b 2.10±0.08a 10.39±5.37a 12.04±1.69a 1.65±0.05a 0.14±0.01b
    常规 Conventional 7.50±0.74a 0.70±0.06b 4.04±1.08b 5.49±0.66b 1.45±0.09a 0.26±0.02a
    谷物 Grains 有机 Organic 6.10±0.83b 0.60±0.01a 3.02±0.39a 3.41±0.85a 0.39±0.01a 0.11±0.01a
    常规 Conventional 7.20±2.68a 0.30±0.09b 1.52±0.07b 1.79±0.68b 0.27±0.03a 0.15±0.03a
      同列不同小写字母表示同一种作物的有机和常规种植之间在P<0.05水平差异显著。Different lowercase letters indicate significant differences between organic and conventional cropping of the same crop type at P<0.05 level.
    下载: 导出CSV

    表  3   2021年北京市不同类型作物有机和常规种植的单位面积生命周期评价特征化结果

    Table  3   Life cycle assessment characterization results of organic and conventional crops in Beijing in 2021

    环境影响类别
    Environmental impact category
    单位 Unit 蔬菜 Vegetables 水果 Fruits 谷物 Grains 薯类及薯芋类
    Potatoes and tubers
    坚果 Nuts
    有机
    Organic
    常规Conventional 有机
    Organic
    常规Conventional 有机
    Organic
    常规Conventional 有机
    Organic
    常规
    Conventional
    有机
    Organic
    常规Conventional
    全球暖化
    Global warming
    t(CO2 eq)∙hm−2 45.20±9.67a 37.50±7.94b 51.20±12.50a 18.90±3.01b 38.40±5.34a 12.90±2.76b 19.50±4.81b 95.10±23.60a 23.30±3.21b 54.00±14.40a
    平流层臭氧消耗
    Stratospheric ozone depletion
    kg(CFC11 eq)∙hm−2 0.12±0.01a 0.12±0.01a 0.22±0.01a 0.37±0.02a 0.52±0.03a 0.22±0.01b 0.41±0.02b 1.38±0.04a 0.45±0.04b 0.87±0.06a
    电离辐射
    Ionizing radiation
    kBq(Co-60 eq)∙hm−2 32.50±12.30b 128.00±12.30a 31.00±2.30b 83.60±6.25a 17.90±1.02b 39.50±5.03a 17.80±3.87b 36.60±10.70a 47.10±11.80b 192.00±30.80a
    臭氧形成-人类健康
    Ozone formation-human health
    kg(NOx eq)∙hm−2 15.00±2.10b 18.90±1.57a 21.60±2.17b 57.20±5.89a 75.10±7.23a 34.40±3.15b 9.81±1.75b 27.00±5.32a 15.30±3.79b 36.80±7.54a
    细颗粒物的形成
    Fine particulate matter formation
    kg(PM2.5 eq)∙hm−2 20.10±1.36b 48.20±6.19a 42.80±3.78b 66.70±4.68a 6.87±1.55b 58.00±9.67a 8.11±1.31b 15.00±7.44a 71.60±17.10b 94.30±17.30a
    臭氧形成-生态系统损伤
    Ozone formation-damage of terrestrial ecosystems
    kg(NOx eq)∙hm−2 14.70±1.98b 18.40±1.32a 20.90±2.11b 55.70±5.67a 10.67±2.39b 48.90±8.11a 13.90±2.07b 38.50±9.51a 21.80±6.38b 52.30±11.50a
    陆地酸化
    Terrestrial acidification
    kg(SO2 eq)∙hm−2 90.70±6.92b 179.00±13.10a 271.00±16.00b 361.00±21.30a 73.60±13.51b 606.00±35.10a 209.00±15.60b 324.00±22.70a 17.30±3.95b 186.00±36.10a
    淡水富营养化
    Freshwater eutrophication
    kg(P eq)∙hm−2 3.25±0.64b 7.89±2.00a 7.54±1.24b 22.90±5.01a 9.85±2.62a 3.66±0.41b 2.14±0.09b 46.30±12.10a 1.32±0.22b 4.55±0.85a
    海洋富营养化
    Marine eutrophication
    kg(N eq)∙hm−2 37.00±5.36b 48.80±6.71a 8.80±0.91b 12.40±2.77a 6.11±0.87b 13.90±2.33a 6.14±0.13b 16.30±6.42a 15.00±4.19b 78.20±12.90a
    陆地生态毒性
    Terrestrial ecotoxicity
    t(1,4-DCB)∙hm−2 1.18±0.07b 320.00±81.30a 2.86±0.45b 591.00±165.00a 3.46±0.42b 197.00±17.50a 3.62±0.36b 223.00±24.30a 0.96±0.02b 117.00±19.40a
    淡水生态毒性
    Freshwater ecotoxicity
    kg(1,4-DCB)∙hm−2 12.40±2.03b 203.00±32.60a 32.70±9.61b 623.00±175.00a 18.20±3.67b 256.00±12.90a 8.46±1.21b 341.00±37.80a 4.38±0.81b 298.00±76.30a
    海洋生态毒性
    Marine ecotoxicity
    t(1,4-DCB)∙hm−2 0.16±0.01b 1.28±0.11a 0.38±0.01b 7.90±0.99a 0.31±0.01a 0.51±0.02a 0.01±0.00b 6.67±1.54a 0.07±0.01b 0.58±0.03a
    人类致癌毒性
    Human carcinogenic toxicity
    kg(1,4-DCB)∙hm−2 109.00±21.10b 489.00±61.30a 167.00±23.80b 485.00±56.70a 6.10±0.67b 419.00±28.00a 67.10±11.80b 552.00±232.00a 148.00±35.20b 475.00±23.60a
    人类非致癌毒性
    Human non-carcinogenic toxicity
    t(1,4-DCB)∙hm−2 674.00±134.00b 962.00±174.00a 326.00±81.40a 69.30±14.50b 11.60±3.18b 191.00±17.60a 53.10±15.30b 255.00±78.20a 279.00±25.80a 223.00±67.90b
    土地利用
    Land use
    m2(crop eq)∙hm−2 37.80±13.40b 281.00±101.00a 105.00±21.30b 203.00±74.60a 28.00±6.50b 92.10±20.10a 28.40±8.31b 87.30±21.70a 70.70±18.40b 472.00±167.00a
    矿产资源稀缺
    Mineral resource scarcity
    kg(Cu eq)∙hm−2 2.18±0.07b 62.00±9.12a 7.13±1.26b 38.00±6.97a 0.31±0.01b 84.10±13.20a 3.24±0.45b 80.20±30.10a 0.85±0.02b 42.30±13.50a
    化石资源稀缺
    Fossil resource scarcity
    kg(oil eq)∙hm−2 1131.00±136.00b 1689.00±250.00a 1222.00±114.00b 5172.00±326.00a 734.00±42.70b 3386.00±284.00a 723.00±50.90b 3300.00±421.00a 1369.00±238.00b 2238.00±187.00a
    水资源消耗
    Water consumption
    ×103m3∙hm−2 6.67±0.34b 7.29±0.62a 1.65±0.03a 1.91±0.04a 5.84±0.73b 10.40±1.39a 7.26±1.14a 3.38±1.01b 0.14±0.01b 0.58±0.04a
      同行不同小写字母表示同一作物有机和常规种植在P<0.05水平差异显著。Different lowercase letters in the same line indicate significant differences between organic and conventional cropping of the same crop at P<0.05 level.
    下载: 导出CSV

    表  4   2021年北京市有机和常规作物的单位面积生命周期评价标准化结果

    Table  4   Standardized value of life cycle assessment for organic and conventional crops in Beijing in 2021

     
    环境影响类别
    Environmental impact category
    蔬菜 Vegetables 水果 Fruits 谷物 Grains 薯类及薯芋类
    Potatoes and tubers
    坚果 Nuts
    有机
    Organic
    常规
    Conventional
    有机
    Organic
    常规
    Conventional
    有机
    Organic
    常规
    Conventional
    有机
    Organic
    常规
    Conventional
    有机
    Organic
    常规
    Conventional
    全球暖化
    Global warming
    7.79±1.67a 6.47±1.37b 8.83±2.16a 3.26±0.52b 5.20±1.05a 1.74±0.31b 7.26±1.73a 1.29±0.21b 3.16±0.74a 7.31±0.87b
    平流层臭氧消耗
    Stratospheric ozone depletion
    1.71±0.14a 1.71±0.14a 3.14±0.14b 5.29±0.29a 0.58±0.13b 2.41±0.68a 0.46±0.08b 1.55±0.32a 0.50±0.09b 0.97±0.04a
    电离辐射
    Ionizing radiation
    0.05±0.00b 0.18±0.02a 0.04±0.00b 0.12±0.01a 0.00±0.00b 0.44±0.05a 0.02±0.01a 0.04±0.01a 0.01±0.00b 0.22±0.06a
    臭氧形成-人类健康
    Ozone formation-human health
    0.73±0.08a 0.92±0.10a 1.05±0.11b 2.78±0.29a 0.08±0.01b 0.38±0.08a 1.10±0.05b 3.02±0.47a 0.17±0.01b 0.41±0.02a
    细颗粒物的形成
    Fine particulate matter formation
    0.79±0.05b 1.89±0.24a 1.67±0.15b 2.61±0.18a 0.77±0.14a 0.65±0.02a 0.91±0.03b 1.68±0.38a 0.80±0.02b 1.06±0.27a
    臭氧形成-生态系统损伤
    Ozone formation-damage of terrestrial ecosystems
    0.83±0.07b 1.04±0.11a 1.18±0.12b 3.14±0.32a 1.27±0.32b 5.80±0.93a 1.65±0.33b 4.56±1.03a 0.26±0.04b 0.62±0.11a
    陆地酸化
    Terrestrial acidification
    2.21±0.17b 4.37±0.32a 6.61±0.39b 8.81±0.52a 8.73±1.17a 7.18±1.23b 2.48±0.42b 3.84±0.34a 2.05±0.58b 2.21±0.36a
    淡水富营养化
    Freshwater eutrophication
    5.00±0.98b 12.10±3.08a 11.60±1.91b 35.20±7.71a 11.70±1.38b 43.40±8.54a 2.54±0.67b 54.90±9.73a 1.56±0.31b 5.39±1.03a
    海洋富营养化
    Marine eutrophication
    8.01±1.16b 10.60±1.45a 1.90±0.03b 6.80±0.90a 7.25±0.87b 16.50±3.18a 0.73±0.04b 19.40±5.47a 1.78±0.18b 9.27±0.81a
    陆地生态毒性
    Terrestrial ecotoxicity
    0.07±0.00b 19.50±4.96a 0.17±0.03b 36.00±10.10a 0.41±0.06b 23.40±6.74a 0.04±0.01b 26.50±3.34a 0.11±0.02b 13.90±4.08a
    淡水生态毒性
    Freshwater ecotoxicity
    0.43±0.07b 7.00±1.12a 1.13±0.33b 21.50±6.03a 0.22±0.09b 30.30±12.50a 1.00±0.15b 40.40±8.39a 5.19±1.83a 3.54±0.77b
    海洋生态毒性
    Marine ecotoxicity
    0.64±0.04b 5.12±0.44a 1.52±0.04b 31.60±3.96a 0.36±0.14b 59.40±17.20a 1.67±0.40b 7.92±0.85a 0.88±0.07b 6.93±1.42a
    人类致癌毒性
    Human carcinogenic toxicity
    10.60±2.05b 47.50±5.95a 16.20±2.31b 47.10±5.50a 6.79±0.65b 46.90±18.30a 7.51±1.72b 61.80±11.40a 16.60±3.98b 53.20±13.90a
    人类非致癌毒性
    Human non-carcinogenic toxicity
    21.50±4.28b 30.70±5.56a 10.40±2.60b 2.21±0.46a 12.90±2.04b 21.40±5.61a 5.95±1.11b 28.50±4.19a 31.20±5.87b 25.00±4.26a
    土地利用
    Land use
    0.01±0.00b 0.05±0.02a 0.01±0.00a 0.03±0.01a 0.03±0.01b 0.11±0.02a 0.34±0.04a 0.01±0.00b 0.01±0.00b 0.06±0.02a
    矿产资源稀缺
    Mineral resource scarcity
    0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a 0.00±0.00a
    化石资源稀缺
    Fossil resource scarcity
    1.98±0.24b 2.96±0.44a 2.14±0.00b 9.08±0.57a 0.03±0.01b 1.21±0.21a 1.18±0.32b 2.58±0.63a 0.08±0.01b 4.89±0.62a
    水资源消耗
    Water consumption
    25.00±1.27b 27.30±2.32a 6.18±0.11b 7.15±0.15a 1.09±0.16b 19.00±7.11a 29.30±8.27a 13.10±2.91b 2.75±0.66a 1.06±0.08b
    总值
    Total
    87.40±9.57b 179.00±15.20a 73.80±6.33b 223.00±21.00a 57.40±4.82b 280.00±26.10a 65.60±12.40b 270.00±17.30a 67.20±7.55b 136.00±16.20a
      同行不同小写字母表示同一作物有机和常规种植在P<0.05水平差异显著。Different lowercase letters in the same line indicate significant differences between organic and conventional cropping of the same crop at P<0.05 level.
    下载: 导出CSV
  • [1]

    KNAPP S, VAN DER HEIJDEN M G A. A global meta-analysis of yield stability in organic and conservation agriculture[J]. Nature Communications, 2018, 9: 3632 doi: 10.1038/s41467-018-05956-1

    [2]

    LOMBARDI G V, SILVIA P, ATZORI R, et al. Sustainable agriculture, food security and diet diversity. The case study of Tuscany, Italy[J]. Ecological Modelling, 2021, 458: 109702 doi: 10.1016/j.ecolmodel.2021.109702

    [3]

    WILLER H, TRÁVNÍČEK J, MEIER C, et al. The World of Organic Agriculture. Statistics and Emerging Trends 2022[R/OL]. Frick: Research Institute of Organic Agriculture FiBL, IFOAM-Organic International, 2022 (2022-02-15). https://www.fibl.org/fileadmin/documents/shop/1344-organic-world-2022.pdf

    [4] 钱永忠, 陈松, 邓玉. 我国有机农业发展的时代特征与对策研究[J]. 农产品质量与安全, 2020(1): 8−11

    QIAN Y Z, CHEN S, DENG Y. Time feature and countermeasures on development of China’s organic agriculture[J]. Quality and Safety of Agro-Products, 2020(1): 8−11

    [5]

    SEUFERT V, RAMANKUTTY N, FOLEY J A. Comparing the yields of organic and conventional agriculture[J]. Nature, 2012, 485: 229−232 doi: 10.1038/nature11069

    [6]

    OFFERMANN F, NIEBERG H. Economic Performance of Organic Farms in Europe[M]. Stuttgart: University of Hohenheim, 2000

    [7]

    ZHEN H Y, GAO W Z, JIA L, et al. Environmental and economic life cycle assessment of alternative greenhouse vegetable production farms in peri-urban Beijing, China[J]. Journal of Cleaner Production, 2020, 269: 122380 doi: 10.1016/j.jclepro.2020.122380

    [8]

    MORANDIN L A, LONG R F, KREMEN C. Pest control and pollination cost-benefit analysis of hedgerow restoration in a simplified agricultural landscape[J]. Journal of Economic Entomology, 2016, 109(3): 1020−1027 doi: 10.1093/jee/tow086

    [9]

    MEIER M S, STOESSEL F, JUNGBLUTH N, et al. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment?[J]. Journal of Environmental Management, 2015, 149: 193−208

    [10]

    MARIO J, LUIS D A. Constructing organic food through urban agriculture, community gardens in Seville[J]. Sustainability, 2021, 13(8): 4091 doi: 10.3390/su13084091

    [11]

    KLÖPFFER W, GRAHL B. Life Cycle Assessment (LCA): A fuide to best practice[J]. The International Journal of Life Cycle Assessemnt, 2016, 21: 1063−1066 doi: 10.1007/s11367-016-1083-z

    [12] 尹炳奎, 黄满红, 张大磊, 等. 菜籽饼施加对镉-铜污染土壤中重金属形态转化及其植物有效性的影响[J]. 环境工程学报, 2017, 11(6): 3879−3883

    YIN B K, HUANG M H, ZHANG D L, et al. Effects of rapeseed cake on cadmium and copper forms and its phytoavailability in heavy metals contaminated paddy soil[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3879−3883

    [13] 左婷, 王新霞, 侯琼, 等. 稻-麦轮作条件下不同施肥模式土壤水溶性氮的变化与籽粒产量的关系[J]. 中国土壤与肥料, 2021(6): 112−119

    ZUO T, WANG X X, HOU Q, et al. Variety of soil water-soluble nitrogen as affected by different fertilization and its relation to grain yields with a rice-wheat rotation[J]. Soil and Fertilizer Sciences in China, 2021(6): 112−119

    [14] 贺小敏, 王敏, 王小东, 等. 微波消解-石墨炉原子吸收光谱法测定菜籽及饼粕中铅和镉[J]. 光谱学与光谱分析, 2007, 27(11): 2353−2356

    HE X M, WANG M, WANG X D, et al. Determination of lead and cadmium in rapeseed and rapeseed meal with microwave digestion by graphite furnace atomic absorption spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2353−2356

    [15] 马林, 魏静, 王方浩, 等. 中国食物链氮素资源流动特征分析[J]. 自然资源学报, 2009, 24(12): 2104−2114

    MA L, WEI J, WANG F H, et al. Analysis on the feature of nitrogen flow from food chain perspective in China[J]. Journal of Natural Resources, 2009, 24(12): 2104−2114

    [16]

    XIONG C H, YANG D G, HUO J W, et al. Agricultural net carbon effect and agricultural carbon sink compensation mechanism in Hotan Prefecture, China[J]. Polish Journal of Environmental Studies, 2017, 26: 365−373 doi: 10.15244/pjoes/65426

    [17]

    XU Q, HU K L, WANG X L, et al. Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 233(5): 782−792

    [18]

    DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906

    [19] 高小叶, 袁世力, 吕爱敏, 等. DNDC模型评估苜蓿绿肥对水稻产量和温室气体排放的影响[J]. 草业学报, 2016, 25(12): 14−26

    GAO X Y, YUAN S L, LYU A M, et al. Effects of alfalfa green manure on rice production and greenhouse gas emissions based on a DNDC model simulation[J]. Acta Prataculturae Sinica, 2016, 25(12): 14−26

    [20] 邢爱华, 马捷, 张英皓, 等. 生物柴油环境影响的全生命周期评价[J]. 清华大学学报(自然科学版), 2010, 50(6): 917−922

    XING A H, MA J, ZHANG Y H, et al. Life cycle assessment of biodiesel environmental effects[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(6): 917−922

    [21] 邢爱华, 马捷, 张英皓, 等. 生物柴油全生命周期资源和能源消耗分析[J]. 过程工程学报, 2010, 10(2): 314−320

    XING A H, MA J, ZHANG Y H, et al. Life cycle assessment of resource and energy consumption for production of biodiesel[J]. The Chinese Journal of Process Engineering, 2010, 10(2): 314−320

    [22]

    BRENTRUP F, KÜSTERS J, KUHLMANN H, et al. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: Ⅰ. Theoretical concept of a LCA method tailored to crop production[J]. European Journal of Agronomy, 2004, 20(3): 247−264 doi: 10.1016/S1161-0301(03)00024-8

    [23]

    PETERSEN B, KNUDSEN M, HERMANSEN J, et al. An approach to include soil carbon changes in life cycle assessments[J]. Journal of Cleaner Production, 2013, 52(5): 217−224

    [24]

    WANG J, WANG D J, ZHANG G, et al. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention[J]. Agricultural Water Management, 2014, 141(2): 66−73

    [25] 王莹, 梁勤爽, 杨志敏, 等. 淋溶对畜禽粪便释放氮磷面源污染物的影响[J]. 西南大学学报(自然科学版), 2012, 34(1): 92−98

    WNAG Y, LIANG Q S, YANG Z M, et al. Effects of soil leachate on release of nitrogenous and phosphorous non-point source pollutants from animal manure[J]. Journal of Southwest University (Natural Science Edition), 2012, 34(1): 92−98

    [26] 山楠, 韩圣慧, 刘继培, 等. 不同肥料施用对设施菠菜地NH3挥发和N2O排放的影响[J]. 环境科学, 2018, 39(10): 4705−4716

    SHAN N, HAN S H, LIU J P, et al. Emission of NH3 and N2O from spinach field treated with different fertilizers[J]. Environmental Science, 2018, 39(10): 4705−4716

    [27] 佟鑫, 王珊珊, 张丽娟, 等. 不同施氮模式对设施茄子产量、品质及氮素气态损失的影响[J]. 土壤通报, 2019, 50(3): 662−669

    TONG X, WANG S S, ZHANG L J, et al. Effects of application levels of nitrogen fertilizer on yield and quality of eggplant and nitrogen gas loss from greenhouse soil[J]. Chinese Journal of Soil Science, 2019, 50(3): 662−669

    [28] 谢国雄, 胡康赢, 王忠, 等. 不同施肥对蔬菜地氮磷垂直淋移影响的研究[J]. 江西农业学报, 2020, 32(3): 1−7

    XIE G X, HU K Y, WANG Z, et al. Effects of different fertilization on vertical leaching of nitrogen and phosphorus in vegetable land[J]. Acta Agriculturae Jiangxi, 2020, 32(3): 1−7

    [29] 杨梦远. 不同添加剂对设施菜地N2O和NH3排放强度的影响[D]. 南京: 南京信息工程大学, 2021

    YANG M Y. Effects of different additives on emission intensity of N2O and NH3 in protected vegetable fields[D]. Nanjing: Nanjing University of Information Science & Technology, 2021

    [30] 万合锋, 赵晨阳, 钟佳, 等. 施用畜禽粪便堆肥品的蔬菜地CH4、N2O和NH3排放特征[J]. 环境科学, 2014, 35(3): 892−900

    WAN H F, ZHAO C Y, ZHONG J, et al. Emission of CH4, N2O and NH3 from vegetable field applied with animal manure composts[J]. Environmental Science, 2014, 35(3): 892−900

    [31]

    JI C, LI S Q, GENG Y J, et al. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations[J]. Geoderma, 2020, 365: 114223 doi: 10.1016/j.geoderma.2020.114223

    [32]

    CHEN D, LI Y, WANG C, et al. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field[J]. Science of the Total Environment, 2019, 693: 133549 doi: 10.1016/j.scitotenv.2019.07.355

    [33]

    FAN J L, LUO R Y, MCCONKEY B G, et al. Effects of nitrogen deposition and litter layer management on soil CO2, N2O, and CH4 emissions in a subtropical pine forestland[J]. Scientific Reports, 2020, 10: 8959 doi: 10.1038/s41598-020-65952-8

    [34]

    HAN W, XU J, KANG W, et al. Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70: 2495−2500 doi: 10.1007/s12665-013-2292-4

    [35]

    ZHAO H Y, LAKSHMANAN P, WANG X Z, et al. Global reactive nitrogen loss in orchard systems: a review[J]. Science of the Total Environment, 2022, 821: 153462 doi: 10.1016/j.scitotenv.2022.153462

    [36]

    CHEN D, LI Y, WANG C, et al. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China[J]. Nutrient Cycling in Agroecosystems, 2017, 107(2): 157−173 doi: 10.1007/s10705-017-9826-1

    [37]

    WANG L M, HUANG D F. Nitrogen and phosphorus losses by surface runoff and soil microbial communities in a paddy field with different irrigation and fertilization managements[J]. PLoS One, 2021, 16(7): e0254227 doi: 10.1371/journal.pone.0254227

    [38]

    HE T H, YUAN J J, LUO J F, et al. Organic fertilizers have divergent effects on soil N2O emissions[J]. Biology and Fertility of Soils, 2019, 55(7): 685−699 doi: 10.1007/s00374-019-01385-4

    [39]

    QI D L, WU Q X, ZHU J Q. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices[J]. Scientific Reports, 2020, 10: 9734 doi: 10.1038/s41598-020-66757-5

    [40]

    CUI N X, CAI M, ZHANG X, et al. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: Effects of long-term chemical N fertilizer and organic manure applications[J]. Global Ecology and Conservation, 2020, 22(4): e01011

    [41]

    GU J X, NIE H H, GUO H J, et al. Nitrous oxide emissions from fruit orchards: A review[J]. Atmospheric Environment, 2019, 201: 166−172 doi: 10.1016/j.atmosenv.2018.12.046

    [42]

    HE S, LI F Y, LIANG X Q, et al. Window phase analysis of nutrient losses from a typical rice-planting area in the Yangtze River Delta Region of China[J]. Environmental Sciences Europe, 2019, 32: 1−12

    [43]

    YAO Z S, ZHENG X H, LIU C Y, et al. Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 248: 386−396 doi: 10.1016/j.agrformet.2017.10.020

    [44]

    DEKKER E, ZIJP M C, VAN DE KAMP M E, et al. A taste of the new ReCiPe for life cycle assessment: Consequences of the updated impact assessment method on food product LCAs[J]. The International Journal of Life Cycle Assessment, 2020, 25(12): 2315−2324 doi: 10.1007/s11367-019-01653-3

    [45]

    CROWDER D W, REGANOLD J P. Financial competitiveness of organic agriculture on a global scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7611−7616

    [46] 国家市场监督管理总局, 国家标准化管理委员会. 有机产品 生产、加工、标识与管理体系要求: GB/T 19630—2019[S]. 北京: 中国标准出版社, 2019

    State Administration of Market Supervision. Requirements for production, processing, labeling and management system of organic products: GB-T 19630—2019[S]. Beijing: China Standard Press, 2019

    [47] 肖梦雪, 何忠伟. 我国生物农药产业发展态势分析[J]. 时代经贸, 2023, 20(5): 158−160

    XIAO M X, HE Z W. Analysis on development trend of Chinese biopesticide industry[J]. Times of Economy & Trade, 2023, 20(5): 158−160

    [48]

    SEUFERT V, RAMANKUTTY N, MAYERHOFER T. What is this thing called organic? — How organic farming is codified in regulations[J]. Food Policy, 2017, 68: 10−20 doi: 10.1016/j.foodpol.2016.12.009

    [49]

    JAENICKE E C, CARLSON A C. Estimating and investigating organic premiums for retail-level food products[J]. Agribusiness, 2015, 31(4): 453−471 doi: 10.1002/agr.21413

    [50]

    YIRIDOE E K, BONTI-ANKOMAH S, MARTIN R C. Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: A review and update of the literature[J]. Renewable Agriculture and Food Systems, 2005, 20(4): 193−205 doi: 10.1079/RAF2005113

    [51]

    FOTEINIS S, CHATZISYMEON E. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece[J]. Journal of Cleaner Production, 2016, 112: 2462−2471 doi: 10.1016/j.jclepro.2015.09.075

    [52]

    HE X Q, QIAO Y H, LIU Y X, et al. Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China[J]. Journal of Cleaner Production, 2016, 134: 251−258 doi: 10.1016/j.jclepro.2015.12.004

    [53]

    RASHMI I, ROY T, KARTIKA K S, et al. Organic and inorganic fertilizer contaminants in agriculture: impact on soil and water resources[M]//NAEEM M, ANSARI A, GILL S. Contaminants in Agriculture. Cham: Springer, 2020: 3–41

    [54]

    MARGENAT A, YOU R, CAÑAMERAS N, et al. Occurrence and human health risk assessment of antibiotics and trace elements in Lactuca sativa amended with different organic fertilizers[J]. Environmental Research, 2020, 190: 109946 doi: 10.1016/j.envres.2020.109946

    [55]

    UGULU I, AHMAD K, KHAN Z I, et al. Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.)[J]. Environmental Science and Pollution Research, 2021, 28(10): 12533−12545 doi: 10.1007/s11356-020-11271-4

    [56]

    WEIDEMA B P, STYLIANOU K S. Nutrition in the life cycle assessment of foods — function or impact?[J]. The International Journal of Life Cycle Assessment, 2020, 25(7): 1210−1216 doi: 10.1007/s11367-019-01658-y

    [57]

    MILÀ I CANALS L, COWELL S J, SIM S, et al. Comparing domestic versus imported apples: a focus on energy use[J]. Environmental Science and Pollution Research - International, 2007, 14(5): 338−344 doi: 10.1065/espr2007.04.412

    [58]

    MARTIN-GORRIZ B, GALLEGO-ELVIRA B, MARÍNEZ-ALVAREZ V, et al. Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices[J]. Journal of Cleaner Production, 2020, 265(2): 121656

    [59]

    RODRIGUES V L, PIERRE-LUC D, CHARLES M, et al. Would transitioning from conventional to organic oat grains production reduce environmental impacts? A LCA case study in North-East Canada[J]. Journal of Cleaner Production, 2022, 349: 131344 doi: 10.1016/j.jclepro.2022.131344

    [60]

    PEANO C, BAUDINO C, TECCO N, et al. Green marketing tools for fruit growers associated groups: application of the Life Cycle Assessment (LCA) for strawberries and berry fruits ecobranding in northern Italy[J]. Journal of Cleaner Production, 2015, 104: 59−67 doi: 10.1016/j.jclepro.2015.04.087

    [61]

    ALI CHANDIO A, AKRAM W, AHMAD F, et al. Dynamic relationship among agriculture-energy-forestry and carbon dioxide (CO2) emissions: empirical evidence from China[J]. Environmental Science and Pollution Research, 2020, 27(27): 34078−34089 doi: 10.1007/s11356-020-09560-z

    [62]

    ZHEN H Y, JIA L, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263 (Pt A): 114552

    [63]

    TIAN W, ZHANG Z H, HU X F, et al. Short-term changes in total heavy metal concentration and bacterial community composition after replicated and heavy application of pig manure-based compost in an organic vegetable production system[J]. Biology and Fertility of Soils, 2015, 51(5): 593−603 doi: 10.1007/s00374-015-1005-4

    [64] 诸葛玉平, 苏志慧, 张彤, 等. 北京郊区有机蔬菜土壤养分平衡及δ15N特征分析[J]. 农业环境科学学报, 2011, 30(11): 2313−2318

    ZHUGE Y P, SU Z H, ZHANG T, et al. Soil nutrients balance and δ15N characteristics for organic vegetable production in Beijing suburbs[J]. Journal of Agro-Environment Science, 2011, 30(11): 2313−2318

    [65]

    OELOFSE M, HØGH-JENSEN H, ABREU L S, et al. Organic farm conventionalisation and farmer practices in China, Brazil and Egypt[J]. Agronomy for Sustainable Development, 2011, 31(4): 689−698 doi: 10.1007/s13593-011-0043-z

    [66]

    SEIDEL C, HECKELEI T, LAKNER S. Conventionalization of organic farms in Germany: an empirical investigation based on a composite indicator approach[J]. Sustainability, 2019, 11(10): 2934 doi: 10.3390/su11102934

    [67]

    LØES A K, BÜNEMANN E K, COOPER J, et al. Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries[J]. Organic Agriculture, 2017, 7(4): 395−418 doi: 10.1007/s13165-016-0165-3

    [68]

    MIGLIORINI P, WEZEL A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review[J]. Agronomy for Sustainable Development, 2017, 37(6): 63 doi: 10.1007/s13593-017-0472-4

    [69]

    DARNHOFER I, LINDENTHAL T, BARTEL-KRATOCHVIL R, et al. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 67−81 doi: 10.1051/agro/2009011

    [70] 刘某承, 熊英, 伦飞, 等. 欧盟农业生态补偿对中国GIAHS保护的启示[J]. 世界农业, 2014(6): 83–88, 103, 227–228

    LIU M C, XIONG Y, LUN F, et al. Inspiration of EU’s agricultural eco-compensation policy to China’s GIAHS management[J]. World Agriculture, 2014(6): 83–88, 103, 227–228

    [71] 张鹏, 梅杰. 欧盟共同农业政策: 绿色生态转型、改革趋向与发展启示[J]. 世界农业, 2022(2): 5−14

    ZHANG P, MEI J. The EU common agricultural policy: green ecological transformation, reform trends and implications[J]. World Agriculture, 2022(2): 5−14

    [72] 姜达炳. 日本生态农业考察的启示[J]. 农业环境与发展, 2002, 19(4): 42−44

    JIANG D B. Enlightenment from the investigation of ecological agriculture in Japan[J]. Agro-Environment and Development, 2002, 19(4): 42−44

    [73] 穆建华, 徐继东. 美国有机农业发展及对我国的启示[J]. 中国食物与营养, 2021, 27(3): 18−22

    MU J H, XU J D. Development of organic agriculture in America and its implications for China[J]. Food and Nutrition in China, 2021, 27(3): 18−22

    [74]

    SEARCHINGER T D, MALINS C, DUMAS P, et al. Revising Public Agricultural Support to Mitigate Climate Change[M]. Washington, DC: World Bank Group, 2020

    [75]

    JACK B K, KOUSKY C, SIMS K R E. Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9465−9470

图(5)  /  表(4)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 录用日期:  2024-06-01
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回