秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响

孙旭超, 张紫薇, 王若飞, 冯成, 曹凑贵, 王浩, 杨青华, 张学林, 胡权义

孙旭超, 张紫薇, 王若飞, 冯成, 曹凑贵, 王浩, 杨青华, 张学林, 胡权义. 秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响[J]. 中国生态农业学报 (中英文), 2024, 32(9): 1556−1565. DOI: 10.12357/cjea.20240204
引用本文: 孙旭超, 张紫薇, 王若飞, 冯成, 曹凑贵, 王浩, 杨青华, 张学林, 胡权义. 秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响[J]. 中国生态农业学报 (中英文), 2024, 32(9): 1556−1565. DOI: 10.12357/cjea.20240204
SUN X C, ZHANG Z W, WANG R F, FENG C, CAO C G, WANG H, YANG Q H, ZHANG X L, HU Q Y. Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1556−1565. DOI: 10.12357/cjea.20240204
Citation: SUN X C, ZHANG Z W, WANG R F, FENG C, CAO C G, WANG H, YANG Q H, ZHANG X L, HU Q Y. Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1556−1565. DOI: 10.12357/cjea.20240204
孙旭超, 张紫薇, 王若飞, 冯成, 曹凑贵, 王浩, 杨青华, 张学林, 胡权义. 秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响[J]. 中国生态农业学报 (中英文), 2024, 32(9): 1556−1565. CSTR: 32371.14.cjea.20240204
引用本文: 孙旭超, 张紫薇, 王若飞, 冯成, 曹凑贵, 王浩, 杨青华, 张学林, 胡权义. 秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响[J]. 中国生态农业学报 (中英文), 2024, 32(9): 1556−1565. CSTR: 32371.14.cjea.20240204
SUN X C, ZHANG Z W, WANG R F, FENG C, CAO C G, WANG H, YANG Q H, ZHANG X L, HU Q Y. Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1556−1565. CSTR: 32371.14.cjea.20240204
Citation: SUN X C, ZHANG Z W, WANG R F, FENG C, CAO C G, WANG H, YANG Q H, ZHANG X L, HU Q Y. Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning[J]. Chinese Journal of Eco-Agriculture, 2024, 32(9): 1556−1565. CSTR: 32371.14.cjea.20240204

秸秆还田下氮肥水平对秸秆碳固定及土壤有机碳储量的影响

基金项目: 国家自然科学基金项目(31670447)资助
详细信息
    作者简介:

    孙旭超, 主要从事农业技术推广研究。E-mail: 1017253536@qq.com

    通讯作者:

    张学林, 主要从事作物生理生态研究, E-mail: xuelinzhang1998@163.com

    胡权义, 主要从事农田固碳减排研究, E-mail: quanyihu@126.com

  • 中图分类号: S153

Effects of nitrogen fertilizer level on straw carbon sequestration and soil organic carbon stock under straw returning

Funds: This study was supported by the National Natural Science Foundation of China (31670447).
More Information
  • 摘要:

    土壤有机碳(SOC)库在养分循环和缓解全球温室效应方面起重要作用。为了探究氮肥对秸秆碳在土壤中的转化以及SOC库的影响, 本研究采用盆栽试验, 向不同施氮水平[0 kg(N)∙hm−2 (N0)、120 kg(N)∙hm−2 (N120)、240 kg(N)∙hm−2 (N240)、360 kg(N)∙hm−2 (N360)]的稻田土壤中添加13C标记的小麦秸秆, 在水稻成熟后采集土样测定不同碳组分含量以及δ13C值, 并分析土壤微生物群落组成。研究结果显示, 与N0处理相比, N240和N360处理中SOC显著提高7.8%和7.4%, 全氮显著提高37.2%和34.3%, 溶解性有机碳显著提高33.7%和48.6%, 微生物量碳显著提高97.9%和89.6%; 但土壤碳氮比显著降低21.6%和20.0%。相比N0处理, N120处理的SOC、全氮、碳氮比和溶解性有机碳并没有显著差异, 但显著提高微生物量碳的含量。此外, 秸秆还田条件下施用氮肥使细菌含量显著提高24.7%~55.4%, 真菌含量显著提高18.3%~30.2%, 总磷脂脂肪酸含量显著提高18.1%~45.2%。施用氮肥提高>2000 μm和250~2000 μm团聚体的占比以及游离态颗粒有机碳(fPOC)和微团聚内颗粒有机碳(iPOC)组分的有机碳储量, 同时分别显著增加了fPOC和iPOC组分中δ13C值128.3%~194.8%和105.6%~216.9%。但是在高氮(N360)处理下, 除fPOC组分外, 其他各有机碳组分储量未持续增加。结构方程表明, 施用氮肥可通过增加溶解性有机碳含量, 增加土壤中fPOC组分中有机碳储量, 或者促进微生物群落活性增加iPOC组分中有机碳储量来提高SOC含量。本研究结果表明, 秸秆还田条件下施用适量氮肥能够促进秸秆碳在土壤中的固定并且增加SOC含量。

    Abstract:

    Soil organic carbon (SOC) plays a crucial role in nutrient cycling and mitigating global greenhouse gas effects. This study aimed to assess the influence of nitrogen fertilizer on straw carbon dynamics in soil and its implications for SOC accumulation. A pot experiment was conducted using paddy soil with wheat straw returning subjected to varying nitrogen application levels [0, 120, 240, 360 kg(N)∙hm−2], denoted as N0, N120, N240, and N360, respectively. 13C-labeled wheat straw was applied, and soil samples were collected after rice maturity to analyze various carbon fractions, δ13C values, and soil microbial community composition. The results demonstrated that compared to the N0 treatment, SOC content significantly increased by 7.8% and 7.4% in the N240 and N360 treatments, respectively. Total nitrogen content significantly increased by 37.2% and 34.3%, dissolved organic carbon significantly increased by 33.7% and 48.6%, and microbial biomass carbon significantly increased by 97.9% and 89.6%, respectively. However, compared to N0 treatment, soil carbon-to-nitrogen ratios significantly decreased by 21.6% and 20.0% in N240 and N360 treatments, respectively. In the N120 treatment, no significant differences were observed in SOC, total nitrogen, carbon-to-nitrogen ratio, or dissolved organic carbon compared to the N0 treatment, although microbial biomass carbon content was significantly higher. Moreover, nitrogen fertilization with straw return significantly increased bacterial content by 24.7% to 55.4%, fungal content significantly increased by 18.3% to 30.2%, and total phospholipid fatty acid content significantly increased by 18.1% to 45.2%. Application of nitrogen fertilizer also enhanced the proportion of >2000 μm and 250–2000 μm aggregates, as well as the organic carbon stock in the free particulate organic carbon (fPOC) and intra-microaggregate particulate organic carbon (iPOC) fractions. Additionally, δ13C values in the fPOC and iPOC fractions significantly increased by 128.3% to 194.8% and 105.6% to 216.9%, respectively. However, at the highest nitrogen level [360 kg(N)∙hm−2], the stocks of organic carbon fractions, except for the fPOC fraction, did not continue to increase. Structural equation modeling indicated that nitrogen fertilizer application enhanced SOC content by increasing dissolved organic carbon, augmenting organic carbon stock in the fPOC fraction, or stimulating microbial activity to boost organic carbon in the iPOC fraction. This study underscores the potential of judicious nitrogen fertilizer application under straw return to enhance straw carbon sequestration in soil and elevate soil organic carbon levels.

  • 图  3   秸秆还田条件下不同氮肥水平对土壤有机碳(SOC)组分δ13C值的影响

    N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。fPOC: 游离态颗粒有机碳; iPOC: 微团聚体内颗粒有机碳; iSOC: 微团聚体内粉黏粒有机碳; fSOC: 游离态粉黏粒有机碳。相同有机碳组分不同小写字母表示处理间差异显著(P<0.05)。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively. fPOC: free particulate organic carbon; iPOC: intra-microaggregate particulate organic carbon; iSOC: silt-clay sized fraction organic carbon within microaggregates; fSOC: free silt-clay sized fraction organic carbon. Different lowercase letters of the same organic carbon fraction mean significant differences among different treatments at P<0.05 level.

    Figure  3.   Effect of different nitrogen fertilizer levels under straw returning on δ13C values of soil organic carbon (SOC) fractions

    图  1   秸秆还田条件下不同氮肥水平对土壤团聚体组成的影响

    N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。同一团聚体粒径不同小写字母表示处理间差异显著(P<0.05)。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively. Different lowercase letters for the same size of soil aggregates mean significant differences among different treatments at P<0.05 level.

    Figure  1.   Effect of different nitrogen fertilizer levels under straw returning on soil aggregates composition

    图  2   秸秆还田条件下不同氮肥水平对土壤不同有机碳组分储量的影响

    N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。fPOC: 游离态颗粒有机碳; iPOC: 微团聚体内颗粒有机碳; iSOC: 微团聚体内粉黏粒有机碳; fSOC: 游离态粉黏粒有机碳。相同有机碳组分不同小写字母表示处理间差异显著(P<0.05)。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively. fPOC: free particulate organic carbon; iPOC: intra-microaggregate particulate organic carbon; iSOC: silt-clay sized fraction organic carbon within microaggregates; fSOC: free silt-clay sized fraction organic carbon. Different lowercase letters of the same organic carbon fraction mean significant differences among different treatments at P<0.05 level.

    Figure  2.   Effect of different nitrogen fertilizer levels under straw returning on stocks of different soil organic carbon fractions

    图  4   秸秆还田条件下不同氮肥处理对土壤有机碳影响的结构方程模型

    SOC: 土壤有机碳; fPOC: 游离态颗粒有机碳; iPOC: 微团聚体内颗粒有机碳。实线和虚线分别表示正相关路径和负相关路径。*、**和***分别表示在P<0.05、P<0.01和P<0.001水平显著。用总磷脂脂肪酸含量表示土壤微生物群落。SOC: soil organic carbon; fPOC: free particulate organic carbon; iPOC: intra-microaggregate particulate organic carbon. The solid and dashed lines represent positive and negative paths, respectively. *, ** and *** mean significance at P<0.05, P<0.01 and P<0.001 levels, respectively. Soil microbial community was represented by total phospholipid fatty acid content.

    Figure  4.   Structural equation model of the effects of different nitrogen fertilizer treatments on soil organic carbon under straw returning

    表  1   不同处理每个盆栽桶中肥料和秸秆施用量

    Table  1   Fertilizer and straw applied amounts in each pot bucket of different treatments

    处理
    Treatment
    氮肥
    Nitrogen fertilizer (g)
    磷肥
    Phosphorus fertilizer (g)
    钾肥
    Potassium fertilizer (g)
    秸秆
    Straw (g)
    N0 0 0.41 0.81 20.35
    N120 0.54 0.41 0.81 20.35
    N240 1.09 0.41 0.81 20.35
    N360 1.63 0.41 0.81 20.35
      N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively.
    下载: 导出CSV

    表  2   秸秆还田条件下不同氮肥水平对土壤理化性质的影响

    Table  2   Effect of different nitrogen fertilizer levels under straw returning on soil physicochemical properties

    处理
    Treatment
    土壤有机碳
    Soil organic carbon
    (g∙kg−1)
    全氮
    Total nitrogen
    (g∙kg−1)
    碳氮比
    Carbon-to-nitrogen
    ratio in soil
    溶解性有机碳
    Dissolved organic carbon
    (mg∙kg−1)
    微生物量碳
    Microbial biomass carbon
    (mg∙kg−1)
    pH
    N0 17.66±0.38b 1.37±0.05b 12.93±0.57a 155.76±15.72b 165.48±9.21c 6.67±0.13a
    N120 18.47±0.60ab 1.53±0.12b 12.09±0.97a 168.72±18.58b 221.36±26.15b 6.63±0.07a
    N240 19.03±0.42a 1.88±0.10a 10.14±0.52b 208.18±8.50a 327.52±15.72a 6.53±0.06ab
    N360 18.97±0.85a 1.84±0.14a 10.35±0.85b 231.41±22.98a 313.74±35.33a 6.45±0.02b
      N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。同列不同小写字母表示处理间差异显著(P<0.05)。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively. Different lowercase letters in the same column mean significant differences among different treatments at P<0.05 level.
    下载: 导出CSV

    表  3   秸秆还田条件下不同氮肥水平对土壤微生物群落的影响

    Table  3   Effect of different nitrogen fertilizer levels under straw returning on soil microbial communities

    处理
    Treatment
    细菌
    Bacteria
    (nmol∙g−1)
    真菌
    Fungi
    (nmol∙g−1)
    放线菌
    Actinomycetes
    (nmol∙g−1)
    真菌/细菌
    Fungi/bacteria
    革兰氏阳性菌/革兰氏阴性菌
    Gram-positive bacteria/
    Gram-negative bacteria
    总磷脂脂肪酸
    Total phospholipid fatty acid
    (nmol∙g−1)
    N0 39.93±0.22c 13.80±0.10c 13.61±0.14b 0.35±0.10a 0.70±0.01a 90.28±0.53c
    N120 49.80±2.53b 17.64±0.04ab 14.32±0.75b 0.35±0.02a 0.65±0.02b 106.62±5.75b
    N240 60.94±2.31a 17.97±1.03a 19.05±1.05a 0.29±0.01b 0.63±0.02b 131.11±5.34a
    N360 62.05±3.75a 16.33±1.19b 17.89±1.02a 0.26±0.01c 0.64±0.04b 129.47±7.29a
      N0、N120、N240和N360的氮肥施用量分别为0 kg(N)∙hm−2、120 kg(N)∙hm−2、240 kg(N)∙hm−2和360 kg(N)∙hm−2。同列不同小写字母表示处理间差异显著(P<0.05)。N0, N120, N240 and N360 are treatments of N fertilizer rates of 0, 120, 240 and 360 kg(N)∙hm−2, respectively. Different lowercase letters in the same column mean significant differences among different treatments at P<0.05 level.
    下载: 导出CSV

    表  4   土壤生物和非生物特性与土壤有机碳(SOC)组分储量和δ13C值的相关性

    Table  4   Correlation of soil abiotic and biotic properties with stocks and δ13C of different soil organic carbon (SOC) fractions

    fPOC iPOC iSOC fSOC δ13C-SOC δ13C-fPOC δ13C-iPOC δ13C-iSOC δ13C-fSOC
    土壤有机碳
    Soil organic carbon
    0.733** 0.661* −0.197 0.622* 0.717** 0.701* 0.704* 0.678* 0.634*
    全氮
    Total nitrogen
    0.637* 0.742** −0.431 0.359 0.766** 0.774** 0.827** 0.737** 0.701*
    溶解性有机碳
    Dissolved organic carbon
    0.762** 0.509 −0.511 0.278 0.792** 0.760** 0.819** 0.776** 0.770**
    微生物量碳
    Microbial biomass carbon
    0.519 0.724** −0.656* 0.088 0.816** 0.841** 0.892** 0.809** 0.775**
    pH −0.808** −0.564 0.336 −0.340 −0.669* −0.641* −0.697* −0.656* −0.650*
    细菌
    Bacteria
    0.703* 0.744** −0.493 0.273 0.862** 0.876** 0.911** 0.847** 0.793**
    真菌
    Fungi
    0.320 0.479 −0.295 0.045 0.733** 0.788** 0.714** 0.739** 0.663*
    放线菌
    Actinomyces
    0.594* 0.779** −0.543 0.324 0.795** 0.786** 0.866** 0.769** 0.774**
    革兰氏阳性菌/革兰氏阴性菌
    Gram-positive bacteria/
    Gram-negative bacteria
    −0.243 −0.461 0.623* 0.241 −0.674* −0.744** −0.711** −0.700* −0.627*
    总磷脂脂肪酸
    Total phospholipid fatty acid
    0.655* 0.766** −0.521 0.258 0.853** 0.867** 0.910** 0.838** 0.797**
      fPOC: 游离态颗粒有机碳; iPOC: 微团聚体内颗粒有机碳; iSOC: 微团聚体内粉黏粒有机碳; fSOC: 游离态粉黏粒有机碳; *: P<0.05; **: P<0.01。fPOC: free particulate organic carbon; iPOC: intra-microaggregate particulate organic carbon; iSOC: silt-clay sized fraction organic carbon within microaggregates; fSOC: free silt-clay sized fraction organic carbon; *: P<0.05; **: P<0.01.
    下载: 导出CSV
  • [1]

    LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623−1627 doi: 10.1126/science.1097396

    [2]

    HU Q Y, LIU T Q, DING H N, et al. Application rates of nitrogen fertilizers change the pattern of soil organic carbon fractions in a rice-wheat rotation system in China[J]. Agriculture Ecosystems & Environment, 2022, 338: 108081

    [3] 徐嘉晖, 孙颖, 高雷, 等. 土壤有机碳稳定性影响因素的研究进展[J]. 中国生态农业学报, 2018, 26(2): 222−230

    XU J H, SUN Y, GAO L, et al. Research progress on influencing factors of soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 222−230

    [4]

    XU Y, ZHAN M, CAO C G, et al. Effects of irrigation management during the rice growing season on soil organic carbon pools[J]. Plant and Soil, 2017, 421(1): 337−351

    [5]

    DOU X L, XU X, SHU X, et al. Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China[J]. Ecological Engineering, 2016, 87: 263−270 doi: 10.1016/j.ecoleng.2015.11.052

    [6]

    JIN Z Q, SHAH S, ZHANG L, et al. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review[J]. Food and Energy Security, 2020, 9(2): e200 doi: 10.1002/fes3.200

    [7] 王治统, 凌俊, 刘子熙, 等. 秸秆还田方式对土壤理化性质和玉米产量的影响[J]. 中国生态农业学报(中英文), 2024, 32(4): 663−674 doi: 10.12357/cjea.20230517

    WANG Z T, LING J, LIU Z X, et al. Effect of straw return practices on soil physico-chemical properties and maize yield[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 663−674 doi: 10.12357/cjea.20230517

    [8]

    HU Q Y, LIU T Q, JIANG S S, et al. Combined effects of straw returning and chemical N fertilization on greenhouse gas emissions and yield from paddy fields in Northwest Hubei Province, China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 392−406 doi: 10.1007/s42729-019-00120-0

    [9]

    TANG J C, ZHANG R Y, LI H C, et al. The combination of different nitrogen fertilizer types could promote rice growth by alleviating the inhibition of straw decomposition[J]. Food and Energy Security, 2021, 10(3): e298 doi: 10.1002/fes3.298

    [10]

    WANG J, WANG D J, ZHANG G, et al. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention[J]. Agricultural Water Management, 2014, 141: 66−73 doi: 10.1016/j.agwat.2014.04.008

    [11]

    LIU B, XIA H, JIANG C C, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment, 2022, 841: 156608 doi: 10.1016/j.scitotenv.2022.156608

    [12]

    HU Q Y, LIU T Q, DING H N, et al. Effects of nitrogen fertilizer on soil microbial residues and their contribution to soil organic carbon and total nitrogen in a rice-wheat system[J]. Applied Soil Ecology, 2023, 181: 104648 doi: 10.1016/j.apsoil.2022.104648

    [13]

    XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Global Change Biology, 2021, 27(6): 1170−1180 doi: 10.1111/gcb.15489

    [14]

    YIN H J, ZHAO W Q, LI T, et al. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2): 2695−2702

    [15]

    MOORE J M, KLOSE S, TABATABAI M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems[J]. Biology and Fertility of Soils, 2000, 31(3): 200−210

    [16]

    JIANG P, XU Q, XU Z H, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. Forest Ecology and Management, 2006, 236: 30−36 doi: 10.1016/j.foreco.2006.06.010

    [17] 吴梦琴, 曹凑贵, 刘天奇, 等. 长期有机无机氮肥配施对玉米-豇豆复种土壤团聚体碳含量和官能团分子结构的影响[J]. 土壤学报, 2023, 60(6): 1822−1831 doi: 10.11766/trxb202203200122

    WU M Q, CAO C G, LIU T Q, et al. Effect of long-term organic and inorganic nitrogen fertilization on carbon content and molecular structure of functional groups in soil aggregates in maize-cowpea cropping systems[J]. Acta Pedologica Sinica, 2023, 60(6): 1822−1831 doi: 10.11766/trxb202203200122

    [18] 林佳敏, 郑甜甜, 袁慧兰, 等. 生态系统生境改变对土壤微生物群落结构的影响[J]. 土壤通报, 2024, 55(1): 149−160

    LIN J M, ZHENG T T, YUAN H L, et al. Effects of ecosystem habitat changes on the response of microbial community structure[J]. Chinese Journal of Soil Science, 2024, 55(1): 149−160

    [19]

    FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests[J]. Biogeochemistry, 2014, 121(2): 305−316 doi: 10.1007/s10533-014-0004-0

    [20]

    ZHANG Y, E S Z, WANG Y N, et al. Long term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics[J]. Catena, 2021, 203: 105342 doi: 10.1016/j.catena.2021.105342

    [21]

    ÅGREN G I, BOSATTA E, MAGILL A H. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition[J]. Oecologia, 2001, 128(1): 94−98 doi: 10.1007/s004420100646

    [22]

    ZHONG W H, GU T, WANG W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant and Soil, 2010, 326(1): 511−522

    [23]

    GIACOMETTI C, DEMYAN M S, CAVANI L, et al. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems[J]. Applied Soil Ecology, 2013, 64: 32−48 doi: 10.1016/j.apsoil.2012.10.002

    [24]

    WEI M, HU G Q, WANG H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China[J]. European Journal of Soil Biology, 2017, 82: 27−34 doi: 10.1016/j.ejsobi.2017.08.002

    [25]

    SIX J, ELLIOTT E, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099−2103 doi: 10.1016/S0038-0717(00)00179-6

    [26]

    JIANG Y J, QIAN H Y, WANG X Y, et al. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates[J]. Soil Biology & Biochemistry, 2018, 19: 22−31

    [27]

    KNICKER H. Soil organic N — An under-rated player for C sequestration in soils?[J]. Soil Biology and Biochemistry, 2011, 43(6): 1118−1129 doi: 10.1016/j.soilbio.2011.02.020

    [28]

    OORTS K, BOSSUYT H, LABREUCHE J, et al. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France[J]. European Journal of Soil Science, 2007, 58(1): 248−259 doi: 10.1111/j.1365-2389.2006.00832.x

    [29] 何振超, 苏瑶, 喻曼, 等. 秸秆碳对不同施肥水平低肥力土壤碳组分的影响[J]. 农业资源与环境学报, 2019, 36(3): 304−312

    HE Z C, SU Y, YU M, et al. Effect of straw-derived carbon on carbon component of the low fertility soil at different nitrogen application rates[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 304−312

    [30]

    MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012, 196(1): 79−91 doi: 10.1111/j.1469-8137.2012.04225.x

    [31] 郭琴波, 王小利, 段建军, 等. 氮肥减量配施生物炭对稻田有机碳矿化及酶活性影响[J]. 水土保持学报, 2021, 35(5): 369−374, 383

    GUO Q B, WANG X L, DUAN J J, et al. Effects of nitrogen reduction combined with biochar application on organic carbon mineralization and enzyme activity in paddy field[J]. Journal of Soil and Water Conservation, 2021, 35(5): 369−374, 383

    [32]

    HE Y T, ZHANG W J, XU M G, et al. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China[J]. Science of the Total Environment, 2015, 532: 635−644 doi: 10.1016/j.scitotenv.2015.06.011

    [33]

    HU Z, XU C, MCDOWELL N G, et al. Linking microbial community composition to C loss rates during wood decomposition[J]. Soil Biology and Biochemistry, 2017, 104: 108−116 doi: 10.1016/j.soilbio.2016.10.017

    [34]

    NEFF J C, TOWNSEND A R, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419: 915−917 doi: 10.1038/nature01136

    [35]

    TIAN K, ZHAO Y C, XU X H, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis[J]. Agriculture, Ecosystems and Environment, 2015, 204: 40−50 doi: 10.1016/j.agee.2015.02.008

    [36]

    XU H, LIU K L, ZHANG W J, et al. Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China[J]. Journal of Soils and Sediments, 2020, 20(4): 1824−1833 doi: 10.1007/s11368-019-02544-8

    [37]

    CHANG Y, SOKOL N W, VAN GROENIGEN K J, et al. A stoichiometric approach to estimate sources of mineral-associated soil organic matter[J]. Global Change Biology, 2024, 30(1): e17092 doi: 10.1111/gcb.17092

    [38]

    YU H Y, DING W X, LUO J F, et al. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil[J]. Soil and Tillage Research, 2012, 124: 170−177 doi: 10.1016/j.still.2012.06.011

    [39]

    LIU T Q, GUO L J, CAO C G, et al. Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter[J]. Agriculture Ecosystems and Environment, 2021, 319: 107548 doi: 10.1016/j.agee.2021.107548

    [40]

    SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70: 555−569 doi: 10.2136/sssaj2004.0347

    [41]

    LU X F, HOU E Q, GUO J Y, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis[J]. Global Change Biology, 2021, 27(12): 2780−2792 doi: 10.1111/gcb.15604

    [42] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213

    LIANG C, ZHU X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Scientia Sinica (Terrae), 2021, 51(5): 680−695 doi: 10.1360/SSTe-2020-0213

    [43]

    ZHANG B, HE H B, DING X L, et al. Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem[J]. Soil and Tillage Research, 2012, 124: 153−160 doi: 10.1016/j.still.2012.05.011

图(4)  /  表(4)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  25
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-18
  • 录用日期:  2024-06-10
  • 网络出版日期:  2024-06-27
  • 刊出日期:  2024-09-09

目录

    /

    返回文章
    返回