粮食主产区农业社会化服务对农业碳排放强度的影响及空间溢出效应

张甜, 张艳荣

张甜, 张艳荣. 粮食主产区农业社会化服务对农业碳排放强度的影响及空间溢出效应[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240274
引用本文: 张甜, 张艳荣. 粮食主产区农业社会化服务对农业碳排放强度的影响及空间溢出效应[J]. 中国生态农业学报 (中英文), 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240274
ZHANG T, ZHANG Y R. Impact of agricultural social service on the intensity of agricultural carbon emissions in major grain-producing areas and its spatial spillover effect[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240274
Citation: ZHANG T, ZHANG Y R. Impact of agricultural social service on the intensity of agricultural carbon emissions in major grain-producing areas and its spatial spillover effect[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−14. DOI: 10.12357/cjea.20240274

粮食主产区农业社会化服务对农业碳排放强度的影响及空间溢出效应

基金项目: 甘肃省乡村振兴战略的制度供给研究(GSAU-XKJS-2018-245)资助
详细信息
    作者简介:

    张甜, 主要从事农业生态环境研究。E-mail: 2404123448@qq.com

    通讯作者:

    张艳荣, 主要从事农村经济、农业生态等方面应用研究。E-mail: 1296503929@qq.com

  • 中图分类号: F294

Impact of agricultural social service on the intensity of agricultural carbon emissions in major grain-producing areas and its spatial spillover effect

Funds: This study was supported by the Study on institutional supply of rural revitalization strategy in Gansu Province (GSAU-XKJS-2018-245).
More Information
  • 摘要:

    粮食主产区承担着粮食和生态的双安全重担, 探究其农业社会化服务对农业碳排放强度的影响机制, 对于推进粮食主产区农业低碳转型具有现实意义。本文通过选取2008—2022年粮食主产区13个省份(自治区)面板数据, 运用普通最小二乘法、中介效应模型和时间固定效应的空间杜宾模型, 进一步探讨农业社会化服务对农业碳排放强度的直接影响、间接影响和空间溢出效应。本文主要结论如下: 1)农业社会化服务对农业碳排放强度具有显著“减碳效应”, 从农业社会化服务的4个维度来看, 农业信息化服务、农村公共服务和农业金融保险服务均显著降低了农业碳排放强度, 而农资服务提高了农业碳排放强度。2)基于经济发展水平将粮食主产区划分为三大流域发现: 长江流域和黄河流域农业社会化服务一定程度上降低了农业碳排放强度, 而松花江流域农业社会化服务在一定程度上提高了农业碳排放强度。3)农业经营规模和农业财政扶持在农业社会化服务对农业碳排放强度的作用过程中存在中介效应, 即农业社会化服务能够通过促进农业经营规模扩大和降低农业财政扶持所带来的负面环境效应间接降低农业碳排放强度。4)粮食主产区农业社会化服务对农业碳排放强度具有较强的负向空间溢出效应, 本省份农业社会化服务每增加1%, 邻近省份农业碳排放强度降低7.035%。基于上述结论得出如下政策启示, 政府应提高粮食主产区各省份农业社会化服务发展水平, 合理规划农业社会化服务发展方向和范围, 并构建粮食主产区各省份农业社会化服务和农业碳减排交流渠道, 以此来降低粮食主产区农业碳排放强度, 助力粮食主产区早日实现农业绿色低碳化转型。

    Abstract:

    Major grain-producing areas bear the double burden of food and ecology security. Therefore, it is practically significant to explore the influence mechanism of agricultural social service on the intensity of agricultural carbon emissions to promote the low-carbon transformation of agriculture in the major grain-producing areas. This study analyzed panel data from 13 provinces (autonomous regions) in major grain-producing areas from 2008 to 2022 using the Ordinary Least Squares Method, the Mediation Effect Model, and Spatial Durbin Model of the time fixed effect to determine the direct and indirect impacts of agricultural social service on agricultural carbon emission intensity and spatial spillover effects. The main conclusions of this study were as follows: 1) Agricultural social service had a significant “carbon reduction effect” on agricultural carbon emission intensity. From the perspective of the four dimensions of agricultural social service, agricultural information services, rural public services, and agricultural finance and insurance services reduced agricultural carbon emission intensity, while agricultural material services increased agricultural carbon emission intensity. 2) Based on their level of economic development, the main grain-producing areas could be divided into three major river basins. It was found that the agricultural social service in the Yangtze and Yellow River basins reduced agricultural carbon emission intensity to a certain extent, while the agricultural social service in the Songhua River Basin increased agricultural carbon emission intensity to a certain extent. 3) The agricultural operation scale and agricultural financial support were found to have mediating effects on agricultural carbon emission intensity; that is, agricultural social service can indirectly reduce agricultural carbon emission intensity by promoting the expansion of agricultural operation scale and reducing the negative environmental effects caused by agricultural financial support. 4) Agricultural social service in the main grain-producing areas had a significant negative spatial spillover effect on the intensity of agricultural carbon emissions, and every 1% increase in agricultural social service in this province reduced the intensity of agricultural carbon emissions in neighboring provinces by 7.035%. Based on these findings, the government should improve the development level of agricultural social service in the provinces of the main grain-producing areas, as well as reasonably plan the development direction and scope of agricultural social service. Further developments should seek to build communication channels between agricultural social service and agricultural carbon emission reduction in the provinces of the main grain-producing areas. This will help reduce the intensity of agricultural carbon emissions and assist in transforming the main grain-producing areas into green and low-carbon agriculture in the near future.

  • 图  1   农业社会化服务对农业碳排放强度的影响机理

    Figure  1.   The influence mechanism of agricultural social service on agricultural carbon emission intensity

    表  1   农业生产碳排放源碳排放系数

    Table  1   Carbon emission factor of carbon emission sources in agricultural production

    碳排放源
    Carbon emission sources
    碳排放系数
    Carbon emission factor
    数据来源
    Data sources
    作物种植
    Crop cultivation
    水稻
    Rice
    0.240 kg(N2O)·hm−2 [16]
    小麦
    Wheat
    冬小麦: 1.750 kg(N2O)·hm−2
    Winter wheat: 1.750 kg(N2O)·hm−2
    春小麦: 0.400 kg(N2O)·hm−2
    Spring wheat: 0.400 kg(N2O)·hm−2
    玉米
    Maize
    2.530 kg(N2O)·hm−2 [17]
    豆类
    Beans
    0.770 kg(N2O)·hm−2 [18]
    薯类
    Tubers
    0.950 kg(N2O)·hm−2 [16]
    农用物资投入
    Input of agricultural materials
    化肥
    Chemical fertilizer
    0.896 kg(C)·kg−1 美国橡树岭国家实验室
    Oak Ridge National Laboratory, USA
    农药
    Pesticide
    4.934 kg(C)·kg−1
    农用薄膜
    Agricultural plastic film
    5.180 kg(C)·kg−1 南京农业大学农业资源与环境研究所
    Research Institute of Agricultural Resources and Environment, Nanjing Agricultural University
    农用柴油
    Agricultural diesel
    0.593 kg(C)·kg−1 联合国政府间气候变化专门委员会
    United Nations Intergovernmental Panel on Climate Change
    农业翻耕
    Agricultural ploughing
    312.600 kg(C)·km−1 中国农业大学生物学院
    College of Biology, China Agricultural University
    农业灌溉
    Agricultural irrigation
    266.480 kg(C)·hm−1 [19]
      本文采用的各省早季稻、晚季稻和中季稻CH4排放系数源于参考文献[16]研究, 详见电子版附件。此外, 由于粮食主产区果树种植面积较粮食作物播种面积较少, 农用物资投入中农膜和农药在果树上的消耗较小, 故忽略不计。The emission coefficient of CH4 of early-season rice, late-season rice and mid-season rice in this study was derived from reference [16], and details can be seen in the electronic attachments. In addition, the planting area of fruit trees in the main grain-producing areas is much less than that of grain crops, and the consumption of agricultural plastic film and pesticide on the fruit trees is very less and ignored in this study.
    下载: 导出CSV

    表  2   粮食主产区农业社会化服务发展水平评价指标体系

    Table  2   Evaluation index system of the development level of agricultural social service in major grain-producing areas

    一级指标
    Level 1 indicator
    二级指标
    Level 2 indicator
    指标解释
    Index interpretation
    指标属性
    Index attribute
    权重
    Weight
    农资服务
    Agricultural material services (A1)
    农业机械供应量
    Supply of agricultural machinery
    农业机械总动力
    Total power of agricultural machinery (×104 kW)
    + 0.081
    水利设施水平
    Water conservancy facilities level
    水库数量
    Number of reservoirs
    + 0.143
    农业生产服务价格指数
    Agricultural production and service price index
    农业生产服务价格指数
    Agricultural production and service price index
    + 0.063
    农业信息化服务
    Agricultural information services (A2)
    移动电话普及量
    Mobile phone popularity
    移动电话普及率
    Mobile phone penetration rate [phone·(100 people)−1]
    + 0.036
    农村邮政投递路线长度
    Length of rural postal delivery routes
    农村投递路线长度
    Rural delivery route length (km)
    + 0.081
    农村互联网使用水平
    Internet use level in rural areas
    农村宽带接入用户
    Rural broadband access users (×104 household)
    + 0.132
    农村公共服务
    Rural public services (A3)
    有效灌溉面积
    Effective irrigation area
    有效灌溉面积
    Effective irrigated area (×103 hm2)
    + 0.062
    农村用电量
    Rural electricity consumption
    农村用电量
    Rural electricity consumption (×108 kWh)
    + 0.181
    财政支农支出
    Fiscal expenditure to support agriculture
    地方财政农林水事务支出
    Local financial expenditure on agriculture, forestry and water resources affairs (×108 ¥)
    + 0.048
    农业金融保险服务
    Agricultural finance and insurance services (A4)
    农业贷款额
    Agricultural loan amount
    涉农贷款余额
    Balance of agriculture-related loans (×108 ¥)
    + 0.098
    农业保险水平
    Agricultural insurance level
    农业保险保费收入
    Agricultural insurance premium income (×106 ¥)
    + 0.073
    下载: 导出CSV

    表  3   各变量的描述性统计

    Table  3   Descriptive statistics for each variable

    变量种类
    Variable species
    变量
    Variable
    变量说明
    Variable declaration
    平均值
    Average
    标准差
    Standard deviation
    最小值
    Minimum
    最大值
    Maximum
    被解释变量
    Explained variable
    农业碳排放强度
    Agricultural carbon emission intensity (ACI)
    0.430 0.246 0.139 1.530
    解释变量
    Explanatory variable
    农业社会化服务
    Agricultural social service (ASS)
    0.274 0.131 0.046 0.615
    中介变量
    Mediation variable
    农业经营规模
    Scale of agricultural operation
    (AOS)
    农作物播种面积/农林牧渔业从业人数
    Crop sown area / number of employees in agriculture, forestry, animal husbandry and fishery (hm2·cap.−1)
    0.914 0.497 0.418 2.920
    农业财政扶持
    Agricultural financial support
    (AFS)
    农林水事务支出/财政一般性支出
    Expenditure on agricultural, forestry and water affairs / general fiscal expenditure
    0.115 0.023 0.069 0.190
    控制变量
    Controlled variable
    农业产业结构
    Agricultural industrial structure
    (AIS)
    第一产业增加值/地区GDP
    The added value of the primary industry / regional GDP
    0.117 0.039 0.043 0.259
    城镇化水平
    Urbanization level (URB)
    城镇人口/总人口
    Urban population / total population
    0.560 0.086 0.360 0.744
    工业化水平
    Industrial level (LOI)
    地区规模以上工业企业数的对数
    Take the logarithm of number of industrial enterprises above regional scale
    9.464 0.779 7.938 11.090
    人力资本水平
    Human capital level (LHC)
    农村平均受教育年限
    The average number of years of education was received in rural areas (a)
    9.075 0.549 7.440 10.560
    农业生产环境
    Agricultural production environment (APE)
    农作物成灾面积/当年实际播种面积
    Crop disaster area / actual sown area of the year
    0.080 0.068 0.005 0.376
      —代表该变量由作者计算得到。以上变量观测值均为195。— represent that the variable was calculated by the authors. The number of all the above variables are 195.
    下载: 导出CSV

    表  4   2008年和2022年粮食主产区各地区农业社会化服务水平及农业碳排放强度水平

    Table  4   The level of agricultural social service and the level of agricultural carbon emission intensity in different regions of the major grain-producing areas in 2008 and 2022

    地区 Region 农业社会化服务发展水平
    Development level of agricultural social service
    农业碳排放强度
    Agricultural carbon emission intensity
    2008 类型 Type 2022 类型 Type 2008 类型 Type 2022 类型 Type
    江西 Jiangxi 0.159 B3 0.297 B2 1.530 C4 0.616 C2
    安徽 Anhui 0.154 B3 0.376 B1 1.084 C3 0.473 C1
    湖北 Hubei 0.173 B3 0.327 B2 0.841 C3 0.314 C1
    湖南 Hunan 0.287 B2 0.477 B1 0.663 C2 0.223 C1
    江苏 Jiangsu 0.318 B2 0.504 B1 0.808 C3 0.290 C1
    四川 Sichuan 0.192 B3 0.478 B1 0.503 C2 0.139 C1
    吉林 Jilin 0.046 B4 0.132 B4 0.507 C2 0.309 C1
    黑龙江 Heilongjiang 0.075 B4 0.253 B2 0.611 C2 0.207 C1
    辽宁 Liaoning 0.113 B4 0.135 B4 0.415 C1 0.164 C1
    河北 Hebei 0.245 B3 0.419 B1 0.459 C1 0.156 C1
    山东 Shandong 0.357 B1 0.561 B1 0.368 C1 0.143 C1
    河南 Henan 0.225 B3 0.483 B1 0.423 C1 0.159 C1
    内蒙古 Inner Mongolia 0.070 B4 0.219 B3 0.488 C1 0.243 C1
      B1: 高农业社会化服务水平; B2: 中高农业社会化服务水平; B3: 中低农业社会化服务水平; B4: 低农业社会化服务水平; C1: 低碳排放强度水平; C2: 中等碳排放强度水平; C3: 较高碳排放强度水平; C4: 高碳排放强度水平。B1: high level of agricultural social service; B2: medium-high level of agricultural social service; B3: medium-low level of agricultural social service; B4: low level of agricultural social service; C1: low carbon emission intensity level; C2: moderate carbon intensity level; C3: medium-high carbon intensity level; C4: high carbon intensity level.
    下载: 导出CSV

    表  5   农业社会化服务对农业碳排放强度的普通最小二乘法回归结果

    Table  5   The regression result of Ordinary Least Square Method on agricultural carbon emission intensity of agricultural social service

    变量
    Variable
    ACI
    模型1 Model 1 模型2 Model 2 模型3 Model 3 模型4 Model 4 模型5 Model 5 模型6 Model 6
    ASS −0.650*** (0.127) −0.863*** (0.144) −0.849*** (0.129) −0.857*** (0.177) −0.831*** (0.173) −0.764*** (0.178)
    AIS −1.420** (0.486) −2.165*** (0.446) −2.142*** (0.564) −2.232*** (0.551) −2.277*** (0.550)
    URB −1.247*** (0.176) −1.241*** (0.196) −0.430 (0.314) −0.461* (0.314)
    LOI 0.003 (0.037) −0.020* (0.036) −0.018* (0.036)
    LHC −0.158** (0.049) −0.152** (0.049)
    APE 0.350* (0.236)
    常数项
    Constant term
    0.608*** (0.039) 0.833*** (0.086) 1.615*** (0.134) 1.587*** (0.424) 2.789*** (0.555) 2.685*** (0.558)
    N 195 195 195 195 195 195
    R2 0.115 0.148 0.322 0.319 0.352 0.356
      *: P<0.1; **: P<0.05; ***: P<0.01。ACI: 农业碳排放强度; ASS: 农业社会化服务; AIS: 农业产业结构; URB: 城镇化水平; LOI: 工业化水平; LHC: 人力资本水平; APE: 农业生产环境。括号内为标准误。ACI: agricultural carbon emission intensity; ASS: agricultural social service; AIS: agricultural industrial structure ; URB: urbanization level; LOI: industrial level; LHC: human capital level; APE: agricultural production environment. Values in parentheses were standard error。
    下载: 导出CSV

    表  6   农业社会化服务不同维度异质性结果

    Table  6   Heterogeneity results of different dimensions of agricultural social service

    变量
    Variable
    ACI
    模型1 Model 1 模型2 Model 2 模型3 Model 3 模型4 Model 4
    A1 0.347 (0.404)
    A2 −2.842*** (0.408)
    A3 −1.123* (0.455)
    A4 −4.047*** (0.822)
    控制变量 Controlled variable Yes Yes Yes Yes
    常数项 Constant term 3.641*** (0.538) 2.266*** (0.518) 3.074*** (0.573) 2.881*** (0.528)
    N 195 195 195 195
    R2 0.295 0.437 0.315 0.373
      *: P<0.1; ***: P<0.01。ACI: 农业碳排放强度; A1: 农资服务; A2: 农业信息化服务; A3: 农村公共服务; A4: 农业金融保险服务。括号内为标准误。ACI: agricultural carbon emission intensity; A1: agricultural material services ; A2: agricultural information service; A3: rural public services; A4: agricultural finance and insurance services. Values in parentheses were standard error.
    下载: 导出CSV

    表  7   流域异质性结果

    Table  7   Results of basin heterogeneity

    变量
    Variable
    ACI
    长江流域(模型1)
    Yangtze River Basin (Model 1)
    黄河流域(模型2)
    Yellow River Basin (Model 2)
    松花江流域(模型3)
    Songhua River Basin (Model 3)
    ASS −1.679*** (0.310) −0.573*** (0.101) 0.287 (0.365)
    控制变量 Controlled variable Yes Yes Yes
    常数项 Constant term 5.519*** (1.068) 1.109*** (0.274) 2.682*** (0.326)
    N 90 60 45
    R2 0.612 0.902 0.863
      ***: P<0.01。ACI: 农业碳排放强度; ASS: 农业社会化服务。括号内为标准误。长江流域主要包括江西、安徽、湖北、湖南、江苏和四川, 黄河流域主要包括河北、山东、河南和内蒙古, 松花江流域主要包括吉林、辽宁和黑龙江。ACI: agricultural carbon emission intensity; ASS: agricultural social service. Values in parentheses were standard error。The Yangtze River Basin mainly includes Jiangxi, Anhui, Hubei, Hunan, Jiangsu and Sichuan, the Yellow River Basin mainly includes Hebei, Shandong, Henan and Inner Mongolia, and the Songhua River Basin mainly includes Jilin, Liaoning and Heilongjiang.
    下载: 导出CSV

    表  8   中介效应检验结果

    Table  8   Results of the mediation effect tests

    变量
    Variable
    效应名称
    Effect name
    模型1
    Model 1 (AOS)
    模型2
    Model 2 (ACI)
    模型3
    Model 3
    模型4
    Model 4 (AFS)
    模型5
    Model 5 (ACI)
    ASS 0.009 (0.359) −0.753*** (0.206) −0.124*** (0.037) −0.644** (0.210)
    AOS −0.017 (0.045)
    AFS −0.876* (0.434)
    Bootstrap _bs_1 0.321*** (0.078)
    _bs_2 1.085*** (0.139)
    控制变量 Controlled variable Yes Yes Yes Yes
    常数项 Constant term −0.457 (0.684) 3.434*** (0.392) 0.055 (0.070) 3.378*** (0.388)
    N 195 195 195 195
    R2 0.956 0.941 0.777 0.942
      *: P<0.1; **: P<0.05; ***: P<0.01。AOS: 农业经营规模; ACI: 农业碳排放强度; AFS: 农业财政扶持; ASS: 农业社会化服务;_bs_1: 间接效应结果; _bs_2: 直接效应结果。括号内为标准误。AOS: scale of agricultural operation; ACI: agricultural carbon emission intensity; AFS: agricultural financial support; ASS: agricultural social service; _bs_1: indirect effect results; _bs_2: direct effect results. Values in parentheses were standard error.
    下载: 导出CSV

    表  9   2008—2022年粮食主产区农业社会化服务发展水平和农业碳排放强度的全局Moran’s I指数

    Table  9   Global Moran’s I index of the development level of agricultural social service and agricultural carbon emission intensity in major grain-producing areas from 2008 to 2022

    年份
    Year
    农业社会化服务
    Agricultural social service
    农业碳排放强度
    Agricultural carbon emission intensity
    2008 0.089** 0.110***
    2009 0.078** 0.091***
    2010 0.051** 0.050**
    2011 0.079** 0.047**
    2012 0.061** 0.049**
    2013 0.066** 0.064***
    2014 0.078** 0.059***
    2015 0.077** 0.056***
    2016 0.033** 0.012*
    2017 0.070** 0.014*
    2018 0.087** 0.011*
    2019 0.098** 0.011*
    2020 0.140*** 0.02*
    2021 0.154*** 0.021*
    2022 0.163*** 0.023*
      *: P<0.1; **: P<0.05; ***: P<0.01。全局Moran’s I是在地理距离权重矩阵条件下利用Stata 17所得。Global Moran’s I is obtained using Stata 17 under the geographic distance weight matrix condition。
    下载: 导出CSV

    表  10   拉格朗日乘数检验(LM)、似然比检验(LR)、沃尔德检验(Wald)及豪斯曼(Hausman)检验结果

    Table  10   Results of the Lagrange Multiplier Checkout (LM), Likelihood Ratio Checkout (LR), Wald Checkout and Hausman Checkout

    检验方法
    Method of calibration
    检验项目
    Inspecting item
    地理距离权重矩阵
    Geographic distance weight matrix
    统计值 Statistical value PP value
    LM检验
    LM Checkout
    LM(误差)检验 LM-error 8.83 0.000
    稳健LM(误差)检验 Robust-LM-error 5.56 0.000
    LM(滞后)检验 LM-lag 45.30 0.000
    稳健LM(滞后)检验 Robust-LM-lag 42.03 0.000
    LR检验
    LR Checkout
    LR(空间误差)检验 LR-spatial-error 67.00 0.000
    LR(空间滞后)检验 LR-spatial-lag 69.07 0.000
    Wald检验
    Wald Checkout
    Wald(空间误差)检验 Wald-spatial-error 78.71 0.000
    Wald(空间误差)检验 Wald-spatial-lag 82.83 0.000
    豪斯曼检验
    Hausman Checkout
    空间固定的豪斯曼检验 Space-fixed Hausman test 20.48 0.002
    时间固定的豪斯曼检验 Time-fixed Hausman test 67.03 0.000
    时间空间固定的豪斯曼检验 Hausman test with fixed space and time 30.42 0.000
    SDM/SAR/SEM 时间固定效应的SDM模型
    The SDM model for time-fixed effects
      结果由Stata 17软件计算所得。SDM: 空间杜宾模型; SAR: 空间滞后模型; SEM:空间误差模型。Results were calculated by the Stata 17 software。SDM: Spatial Durbin Model; SAR: Spatial Lag Model; SEM: Spatial Error Model.
    下载: 导出CSV

    表  11   地理距离权重矩阵下农业社会化服务对农业碳排放强度影响的分解效应

    Table  11   Decomposition effects of the impact of agricultural social service on agricultural carbon emission intensity under the geographic distance weight matrix

    变量
    Variable
    ACI
    模型系数
    Model coefficient
    直接效应
    Direct effect
    间接效应
    Indirect effect
    总效应
    Gross effect
    ASS −1.664*** (0.297) −1.857*** (0.372) −7.035** (2.626) −8.892** (2.927)
    AIS −2.656** (0.953) −3.040** (1.085) −11.699 (6.125) −14.739* (7.061)
    URB −0.487** (0.381) −0.517** (0.401) −2.105* (2.880) −2.623* (3.099)
    LOI 0.013* (0.055) 0.037* (0.068) 0.954* (0.470) 0.991* (0.527)
    LHC −0.105** (0.070) −0.118** (0.077) −0.298*** (0.549) −0.416** (0.604)
    APE 0.063* (0.251) 0.095 (0.248) 0.842** (1.323) 0.937 (1.371)
    常数项 Constant term 0.027*** (3.80)
    rho 0.240*** (1.55)
    N 195
    R2 0.318
      *: P<0.1; **: P<0.05; ***: P<0.01。ACI: 农业碳排放强度; ASS: 农业社会化服务; AIS: 农业产业结构; URB: 城镇化水平; LOI: 工业化水平; LHC: 人力资本水平; APE: 农业生产环境。括号内为标准误。ACI: agricultural carbon emission intensity; ASS: agricultural social service; AIS: agricultural industrial structure; URB: urbanization level; LOI: industrial level; LHC: human capital level; APE: agricultural production environment. Values in parentheses were standard error.
    下载: 导出CSV

    表  12   内生性检验结果

    Table  12   Results of the endogeneity test

    变量
    Variable
    模型1
    Model 1 (ASS)
    模型2
    Model 2 (ACI)
    L-ASS 1.012*** (0.021)
    ASS −0.802*** (0.139)
    AIS −0.028 (0.061) −2.211*** (0.505)
    URB −0.017 (0.039) −0.411** (0.352)
    LOI −0.000 (0.003) −0.016* (0.033)
    LHC −0.003 (0.004) −0.142** (0.045)
    APE 0.016 (0.022) 0.069** (0.237)
    常数项
    Constant term
    0.053 (0.043) 2.568*** (0.538)
    R2 0.981 0.332
    第一阶段F
    The first stage F value
    1226.95
      *: P<0.1; **: P<0.05; ***: P<0.01。ASS: 农业社会化服务; ACI: 农业碳排放强度; L-ASS:滞后一期的农业社会化服务; AIS: 农业产业结构; URB: 城镇化水平; LOI: 工业化水平; LHC: 人力资本水平; APE: 农业生产环境。括号内为标准误。ASS: agricultural social service; ACI: agricultural carbon emission intensity; L-ASS: lagged behind a period of agricultural social service; AIS: agricultural industrial structure; URB: urbanization level; LOI: industrial level; LHC: human capital level; APE: agricultural production environment. Values in parentheses were standard error.
    下载: 导出CSV

    表  13   稳健性检验结果

    Table  13   Results of the robustness test

    变量
    Variable
    更换权重矩阵
    Replace the weight matrix
    更换被解释变量
    Replace the explained variable
    直接效应
    Direct effect
    −0.117*** (0.178) −0.999*** (0.135)
    间接效应
    Indirect effect
    −1.691*** (0.281) −4.391*** (1.238)
    总效应
    Gross effect
    −1.808*** (0.298) −5.390*** (1.359)
    空间系数rho
    Spatial coefficient rho
    0.807*** (0.071) 0.363*** (0.134)
    控制变量
    Controlled variable
    Yes Yes
    N 195 195
    R2 0.541 0.020
      ***: P<0.01。括号内为标准误。Values in parentheses were standard error.
    下载: 导出CSV
  • [1] 何蒲明, 郭宣峰, 魏君英. 农业生产托管与保障粮食安全−基于江汉平原的调研证据[J]. 农业经济, 2024(4): 20−22

    HE P M, GUO X F, WEI J Y. Agricultural production trusteeship and ensuring food security—Based on the investigation evidence of Jianghan Plain[J]. Agricultural Economy, 2024(4): 20−22

    [2] 赵荣钦, 黄贤金, 郧文聚, 等. 碳达峰碳中和目标下自然资源管理领域的关键问题[J]. 自然资源学报, 2022, 37(5): 1123−1136 doi: 10.31497/zrzyxb.20220502

    ZHAO R Q, HUANG X J, YUN W J, et al. Key issues in natural resource management under carbon emission peak and carbon neutrality targets[J]. Journal of Natural Resources, 2022, 37(5): 1123−1136 doi: 10.31497/zrzyxb.20220502

    [3]

    EMMANUEL D, OWUSU-SEKYERE E, OWUSU V, et al. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana[J]. NJAS: Wageningen Journal of Life Sciences, 2016, 79(1): 41−49 doi: 10.1016/j.njas.2016.10.002

    [4] 程永生, 张德元, 汪侠. 农业社会化服务的绿色发展效应−基于农户视角[J]. 资源科学, 2022, 44(9): 1848−1864

    CHENG Y S, ZHANG D Y, WANG X. The green development effect of socialized agricultural services: from the perspective of farmers[J]. Resources Science, 2022, 44(9): 1848−1864

    [5] 高恩凯, 朱建军, 郑军. 农业社会化服务对化肥减量的影响−基于全国31个省区面板数据的双重检验[J]. 中国生态农业学报(中英文), 2023, 31(4): 632–642

    GAO E K, ZHU J J, ZHENG J. Effect of agricultural socialization service on fertilizer reduction: a double test based on panel data from 31 provinces and regions of China [J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 632–642

    [6] 姜松, 曹峥林, 刘晗. 农业社会化服务对土地适度规模经营影响及比较研究−基于CHIP微观数据的实证[J]. 农业技术经济, 2016(11): 4−13

    JIANG S, CAO Z L, LIU H. A comparative study on the impact of agricultural socialization service on moderate scale management of land—An empirical study based on CHIP micro-data[J]. Journal of Agrotechnical Economics, 2016(11): 4−13

    [7] 朱美荣, 王淦秋, 向文凯, 等. 农业社会化服务对农业碳排放的影响及其空间特征[J]. 中国生态农业学报(中英文), 2024, 32(8): 1288−1301

    ZHU M R, WANG G Q, XIANG W K, et al. The influence of agricultural socialization service on agricultural carbon emission and its spatial characteristics[J]. Chinese Journal of Eco-Agriculture, 2024, 32(8): 1288−1301

    [8] 蔡祖梅, 黄森慰, 李学渊, 等. 农业机械化水平对农业碳排放强度的空间溢出效应和门槛效应分析[J]. 福建农林大学学报(哲学社会科学版), 2023, 26(5): 21−29

    CAI Z M, HUANG S W, LI X Y, et al. Spatial spillover effect and threshold effect of agricultural mechanization level on agricultural carbon emission intensity[J]. Journal of Fujian Agriculture and Forestry University (Philosophy and Social Sciences Edition), 2023, 26(5): 21−29

    [9] 卜刚. 水利基础设施对农业经济发展的重要作用探究−评《虚拟水战略与中国农业水资源配置研究》[J]. 人民长江, 2021, 52(4): 233

    Bu G. Study on the important role of water infrastructure in agricultural economic development — Review of Virtual Water Strategy and the Allocation of Agricultural Water Resources in China[J]. Yangtze River, 2019, 52(4): 233

    [10] 罗必良, 张露, 仇童伟. 小农的种粮逻辑−40年来中国农业种植结构的转变与未来策略[J]. 南方经济, 2018(8): 1−28

    LUO B L, ZHANG L, QIU T W. Logics of fmall households’ grain production[J]. South China Journal of Economics, 2018(8): 1−28

    [11] 纪龙, 徐春春, 李凤博, 等. 农地经营对水稻化肥减量投入的影响[J]. 资源科学, 2018, 40(12): 2401−2413

    JI L, XU C C, LI F B, et al. Impact of farmland management on fertilizer reduction in rice production[J]. Resources Science, 2018, 40(12): 2401−2413

    [12] 王利荣. 农业补贴政策对环境的影响分析[J]. 中共山西省委党校学报, 2010, 33(1): 54−56

    WANG L R. Analysis on the impact of agricultural subsidy policy on the environment[J]. Journal of Shanxi Provincial Commettee Party School of C.P.C, 2010, 33(1): 54−56

    [13]

    REPETTO R. Economic incentives for sustainable production[J]. The Annals of Regional Science, 1987, 21(3): 44−59 doi: 10.1007/BF01287282

    [14] 杨秀玉, 乔翠霞. 农业补贴对生态环境的影响−从化肥使用角度分析[J]. 中国农业资源与区划, 2018, 39(7): 47−53

    YANG X Y, QIAO C X. Impacts of agricultural subsidies on ecological environment—From the perspective of fertilizer use[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(7): 47−53

    [15] 曹昱亮, 倪珣, 巩红禹. 长江经济带农业碳排放影响因素及脱钩效应[J/OL]. 环境科学, 1–18[2024–06–20]

    CAO Y L, NI X, GONG H Y. The Yangtze River Economic Belt agriculture influences on carbon emissions and decoupling effect[J/OL]. Environmental Science, 1–18[2024–06–20]

    [16] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    [17] 黄国宏, 陈冠雄, 吴杰, 等. 东北典型旱作农田N2O和CH4排放通量研究[J]. 应用生态学报, 1995, 6(4): 383−386

    HUANG G H, CHEN G X, WU J, et al. Study on N2O and CH4 emission fluxes from typical dry farmland in Northeast China[J]. Chinese Journal of Applied Ecology, 1995, 6(4): 383−386

    [18] 刘杨, 刘鸿斌. 山东省农业碳排放特征、影响因素及达峰分析[J]. 中国生态农业学报(中英文), 2022, 30(4): 558−569

    LIU Y, LIU H B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 558−569

    [19] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203−208

    DUAN H P, ZHANG Y, ZHAO J B, et al. Carbon footprint analysis of farmland ecosystems in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203−208

    [20] 刘洋, 余国新. 农业社会化服务与农业现代化耦合协调发展研究−以新疆为例[J]. 经济问题, 2020(8): 99−106

    LIU Y, YU G X. Research on the coordinated development of agricultural socialization service and agricultural modernization: Taking Xinjiang as an example[J]. On Economic Problems, 2020(8): 99−106

    [21] 许钰莎, 何鹏, 李晓. 农业大省农业社会化服务、农业现代化评价及耦合协调度分析−以四川省为例[J]. 农村经济, 2022(11): 115−124

    XU Y S, HE P, LI X. Evaluation of agricultural socialization service and agricultural modernization in agricultural provinces and analysis of coupling coordination degree—Taking Sichuan Province as an example[J]. Rural Economy, 2022(11): 115−124

    [22] 马九杰, 杨晨, 崔恒瑜, 等. 农业保险的环境效应及影响机制−从中国化肥面源污染视角的考察[J]. 保险研究, 2021(9): 46−61

    MA J J, YANG C, CUI H Y, et al. The environmental effect and formation mechanisms of the promotion of agricultural insurance—From the perspective of non-point source pollution of chemical fertilizers in China[J]. Insurance Studies, 2021(9): 46−61

    [23] 曹俊勇, 张乐柱, 韩利. 财政支农对农业现代化的动态影响研究−基于系统GMM及门槛效应的检验[J]. 南方农村, 2024, 40(2): 4–14

    CAO J Y, ZHANG L Z, HAN L. Study on the dynamic influence of financial support to agriculture on agricultural modernization: Based on system GMM and threshold effect test[J]. Rural South China, 2024, 40(2): 4–14

    [24] 温忠麟. 部分参数先验估计与分段回归的进一步讨论[J]. 应用概率统计, 1988, 4(3): 232−239

    WEN Z L. Further discussion on a prior estimator for part of a parameter vector and piecewise regression[J]. Chinese Journal of Applied Probability and Statistics, 1988, 4(3): 232−239

    [25] 蔡冰冰, 赵威, 李政旸, 等. 长江经济带外向型经济空间溢出效应[J]. 资源科学, 2019, 41(10): 1871−1885

    CAI B B, ZHAO W, LI Z Y, et al. Spatial spillover effects of export-oriented economic development in the Yangtze River Economic Belt[J]. Resources Science, 2019, 41(10): 1871−1885

    [26] 李颖慧, 陈红, 游星. 农业社会化服务赋能农村高质量发展的理论机制与实证研究[J]. 农业现代化研究, 2024, 45(1): 79−91

    LI Y H, CHEN H, YOU X. Theoretical mechanism and empirical study on agricultural socialized services enabling high-quality rural development[J]. Research of Agricultural Modernization, 2024, 45(1): 79−91

    [27] 崔永福, 高策, 王俊凤, 等. 河北省县域农业碳排放空间演化及对策[J]. 中国农机化学报, 2023, 44(5): 241−248, 256

    CUI Y F, GAO C, WANG J F, et al. Spatial evolution and countermeasures of county agricultural carbon emission in Hebei Province[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 241−248, 256

    [28] 贺青, 张俊飚, 张虎. 农业机械化对农业碳排放的影响−来自粮食主产区的实证[J]. 统计与决策, 2023, 39(1): 88−92

    HE Q, ZHANG J B, ZHANG H. The impact of agricultural mechanization on agricultural carbon emissions—An empirical study from major grain-producing areas[J]. Statistics & Decision, 2023, 39(1): 88−92

    [29] 贺青, 张俊飚. 粮食主产区政策对农业碳排放的影响[J]. 华中农业大学学报(社会科学版), 2023(4): 47−55

    HE Q, ZHANG J B. Effects of policies in major grain-producing areas on agricultural carbon emissions[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2023(4): 47−55

图(1)  /  表(13)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  25
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-06-20
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-06-24

目录

    /

    返回文章
    返回