重庆三峡库区农业碳排放脱钩效应及驱动因素

周恒阳, 张军以, 彭国川

周恒阳, 张军以, 彭国川. 重庆三峡库区农业碳排放脱钩效应及驱动因素[J]. 中国生态农业学报 (中英文), 2025, 33(2): 1−11. DOI: 10.12357/cjea.20240442
引用本文: 周恒阳, 张军以, 彭国川. 重庆三峡库区农业碳排放脱钩效应及驱动因素[J]. 中国生态农业学报 (中英文), 2025, 33(2): 1−11. DOI: 10.12357/cjea.20240442
ZHOU H Y, ZHANG J Y, PENG G C. Decoupling effects and drivers of agricultural carbon emissions in the Three Gorges Reservoir Area of Chongqing[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 1−11. DOI: 10.12357/cjea.20240442
Citation: ZHOU H Y, ZHANG J Y, PENG G C. Decoupling effects and drivers of agricultural carbon emissions in the Three Gorges Reservoir Area of Chongqing[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 1−11. DOI: 10.12357/cjea.20240442

重庆三峡库区农业碳排放脱钩效应及驱动因素

基金项目: 国家社会科学基金一般项目(23BJY156), 重庆市教委人文社科重点项目(22SKGH090)和重庆市哲学社会科学创新工程研究重点项目(2024CXZD27)资助
详细信息
    作者简介:

    周恒阳, 主要研究方向为乡村可持续发展。E-mail: hengyanggeo@163.com

    通讯作者:

    张军以, 主要研究方向为农户生计转型发展。E-mail: hellojunyi@yeah.net

  • 中图分类号: X502

Decoupling effects and drivers of agricultural carbon emissions in the Three Gorges Reservoir Area of Chongqing

Funds: This study was supported by General Program of the National Social Science Foundation (23BJY156), Chongqing Municipal Education Commission Humanities and Social Sciences Key Projects (22SKGH090) and Chongqing Philosophy and Social Science Innovation Project Research Key Program (2024CXZD27)
More Information
  • 摘要:

    在“双碳”目标背景下, 探究重庆三峡库区农业碳排放特征及其驱动因素, 可为库区低碳农业发展提供科学依据。采用联合国政府间气候变化专门委员会(IPCC)的因子法测算2015—2022年重庆三峡库区农业碳排放量, 系统分析库区农业碳排放量和强度时空分异特征, 利用Tapio脱钩模型分析库区农业碳排放量与农业经济增长的脱钩关系, 并进一步运用LMDI (Logarithmic Mean Divisia Index)模型解析库区农业碳排放驱动因素。结果表明: 重庆三峡库区农业碳排放总量整体呈波动降低趋势, 农业碳排放总量从2015年的645.89万t降低至2022年的620.74万t, 库区农业碳排放主要来源为农田土壤碳排放和畜禽养殖碳排放。库区农业碳排放强度总体呈下降趋势, 各区县间碳排放强度差距逐渐缩小。2015—2022年库区农业经济与农业碳排放量脱钩关系整体上呈脱钩关系。随着农业生产的恢复与发展, 农业产值增长, 农业碳排放量增加。 脱钩关系以2019年为节点表现为由强脱钩向弱脱钩转变。农业生产效率、农业人口规模、农业产业结构对库区农业碳排放量的增长具有抑制作用, 而农业经济规模对农业碳排放量的增长则具有促进作用。基于以上结果, 本文提出减少禽畜养殖业碳排放量、控制农田土地利用碳排放量和发挥农业碳排放驱动因素抑制作用等相关建议, 以期为库区低碳农业发展提供理论依据。

    Abstract:

    Under the background of carbon peak and carbon neutrality goals, exploring the characteristics of agricultural carbon emission and its driving factors in Chongqing Three Gorges Reservoir Area can provide scientific basis for the development of low-carbon agriculture in the reservoir area. Using the United Nations Intergovernmental Panel on Climate Change (IPCC) carbon emission factor measurement method, The agricultural carbon emissions in Chongqing Three Gorges Reservoir Area during 2015-2022 were calculated, the temporal and spatial differences of agricultural carbon emissions and agricultural carbon emission intensity in Chongqing Three Gorges Reservoir Area were systematically analyzed, and the decoupling relationship between agricultural carbon emissions and agricultural economic growth in Chongqing Three Gorges Reservoir Area was analyzed using the Tapio decoupling model. Furthermore, the Logarithmic Mean Divisia Index (LMDI) model is applied to analyze the driving factors of agricultural carbon emission in the Three Gorges reservoir area of Chongqing. The results show that: The total agricultural carbon emission in Chongqing Three Gorges Reservoir Area showed an overall trend of fluctuation reduction, and the total agricultural carbon emission decreased from 6.4589 million tons in 2015 to 6.2074 million tons in 2022. The main source of agricultural carbon emission in Chongqing Three Gorges Reservoir Area was carbon emission caused by soil utilization in the process of crop planting. Carbon emissions from enteric fermentation and manure management processes in livestock and poultry farming. The agricultural carbon emission intensity in the Three Gorges Reservoir area of Chongqing showed a decreasing trend, and the gap of carbon emission intensity among the districts and counties in the Three Gorges Reservoir area of Chongqing gradually narrowed. The decoupling relationship between agricultural economic growth and agricultural carbon emissions in the Three Gorges Reservoir area of Chongqing from 2015 to 2022 shows a decoupling relationship on the whole. With the recovery and development of agricultural production, the total value of agricultural production has increased, and agricultural carbon emissions have rebounded. The decoupling relationship between agricultural economic growth and agricultural carbon emissions changes from strong decoupling relationship to weak decoupling relationship with 2019 as the node performance. Factors such as agricultural production efficiency, agricultural population scale and agricultural industrial structure inhibit the growth of agricultural carbon emissions in the Three Gorges Reservoir area of Chongqing, while agricultural economic scale factors promote the growth of agricultural carbon emissions. Based on the above results, this paper puts forward relevant suggestions such as focusing on reducing carbon emissions from livestock and poultry farming, controlling carbon emissions from farmland soil utilization, and exerting the inhibition effect of agricultural production efficiency, agricultural population size and agricultural industrial structure on agricultural carbon emissions in Chongqing Three Gorges Reservoir Area, hoping to provide theoretical basis for the development of low-carbon agriculture in Chongqing Three Gorges Reservoir Area.

  • 图  1   研究区概况图

    Figure  1.   Overview of the study area

    图  2   2015—2022年重庆三峡库区农业碳排放组成及单位农业产值碳排放强度变化

    Figure  2.   Changes of the composition and intensity of carbon emissions from agricultural production system in the Three Gorges Reservoir of Chongqing from 2015 to 2022

    图  3   重庆三峡库区县域农业碳排放量空间分布格局

    Figure  3.   Spatial distribution patterns of agricultural carbon emissions at county level in the Three Gorges Reservoir in Chongqing

    图  4   重庆三峡库区县域农业碳排放强度空间分布格局

    Figure  4.   Spatial distribution patterns of agricultural carbon emission intensity at county level in the Three Gorges Reservoir in Chongqing

    表  1   种植业碳排放系数及数据来源

    Table  1   Carbon emission factor and data source for crop system

    农业物资投入 Agricultural material input 农田土壤利用 Farmland utilization
    碳源
    Carbon source
    对应指标
    Corresponding indicator
    碳排放系数
    Carbon emission factor
    数据来源
    Data sources
    碳源
    Carbon source
    碳排放系数
    Carbon emission factor
    数据来源
    Data sources
    化肥
    Chemical fertilizer
    化肥施用量
    Fertilizer application rate
    0.8956
    kg(C)∙kg−1
    美国橡树岭国家实验室[2]
    Oak Ridge National Laboratory, USA
    中季稻
    Mid-season Rice
    257.3
    kg(CH4)∙hm−2
    [6]
    农药
    Pesticides
    农药使用量
    Pesticide use amount
    4.93416
    kg(C)∙kg−1
    0.24
    kg(N2O)∙hm−2
    农膜
    Agricultural plastic film
    农用塑料薄膜使用量
    Agricultural plastic film use amount
    5.186
    kg(C)∙kg−1
    政府间气候变化专门委员会[12]
    Intergovernmental Panel on Climate Change
    冬小麦
    Winter
    wheat
    1.75
    kg(N2O)∙hm−2
    [6]
    农机
    Agricultural machinery
    农作物播种面积
    Sown area of crops
    16.47
    kg(C)∙hm−2
    [25] 大豆
    Soybean
    0.77
    kg(N2O)∙hm−2
    [26]
    农业机械总动力
    Gross power of agricultural machinery
    0.18
    kg(C)∙kW−1
    玉米
    Maize
    2.532
    kg(N2O)∙hm−2
    [6]
    灌溉
    Irrigation
    有效灌溉面积
    Actual irrigated area of crops
    20.476
    kg(C)∙hm−2
    湖北农村发展研究中心[4] Hubei Rural Development Research Center 蔬菜
    Vegetables
    4.944
    kg(N2O)∙hm−2
    [6]
    翻耕
    Ploughing
    农作物播种面积
    Sown area of crops
    3.126
    kg(C)∙hm−2
    [4]
    农业机械使用碳排放: 农作物播种面积×对应碳排放系数+农业机械总动力×对应碳排放系数。Carbon emissions from agricultural machinery: sown area of crops × corresponding carbon emission factor + gross power of agricultural machinery × corresponding carbon emission factor.
    下载: 导出CSV

    表  2   畜禽养殖业碳排放系数和数据来源

    Table  2   Carbon emission factor and data source for livestock system

    动物类型
    Animal type
    肠道发酵
    Enteric fermentation
    kg(CH4)∙head−1∙a−1
    粪便管理 Manure management system 数据来源
    Data source
    kg(CH4)∙head−1∙a−1 kg(N2O)∙head−1∙a−1
    牛 Cattle 47.8 1 1.39 [7]
    猪 Pig 1 3.5 0.53
    羊 Sheep & goat 5 0.16 0.33
    家禽 Poultry 0.02 0.02
    下载: 导出CSV

    表  3   脱钩状态判别

    Table  3   Decoupling state discrimination

    类别
    Type
    脱钩状态
    Decoupling state
    环境压力
    Environmental pressure
    (∆C/C)
    经济增长
    Economic growth
    (∆GDPA/GDPA)
    脱钩弹性
    Decoupling
    elasticity
    (e)
    含义
    Meaning[1]
    负脱钩
    Negative
    decoupling
    扩张负脱钩
    Expansion of negative decoupling
    >0 >0 e>1.2 经济增长, 环境压力大幅增长
    With economic growth, environmental pressure has increased
    强负脱钩
    Strong negative decoupling
    >0 <0 e<0 经济衰退, 环境压力增加
    With the economic recession, environmental pressures increase
    弱负脱钩
    Weak negative decoupling
    <0 <0 0<e<0.8 经济衰退, 环境压力缓慢衰退
    With the economic recession, environmental pressures slowly recede
    脱钩
    Decoupling
    弱脱钩
    Weak decoupling
    >0 >0 0<e<0.8 经济增长, 环境压力缓慢增长
    With economic growth, environmental pressure grows slowly
    强脱钩
    Strong decoupling
    <0 >0 e<0 经济增长, 环境压力减少
    With economic growth, environmental pressure decreases
    衰退脱钩
    Recessive decoupling
    <0 <0 e>1.2 经济衰退, 环境压力大幅衰退
    With the economic recession, environmental pressures receded dramatically
    连接
    Connection
    增长连接
    Expansion connection
    >0 >0 0.8<e<1.2 经济增长, 环境压力中速增加
    With economic growth, environmental pressure is increasing at a moderate speed
    衰退连接
    Recession connection
    <0 <0 0.8<e<1.2 经济衰退, 环境压力大幅减少
    With the economic recession, environmental pressures have greatly diminished
    下载: 导出CSV

    表  4   重庆三峡库区农业碳排放量与农业经济增长脱钩特征

    Table  4   Characteristics of the decoupling of agricultural carbon emissions and economic growth in the Three Gorges Reservoir area of Chongqing

    年份 Year C/C ∆GDP/GDP 脱钩弹性
    Decoupling elasticity
    脱钩状态
    Decoupling state
    2015 −0.0128 0.0534 −0.2396 强脱钩 Strong decoupling
    2016 −0.0171 0.0768 −0.2223 强脱钩 Strong decoupling
    2017 −0.0176 0.1124 −0.1564 强脱钩 Strong decoupling
    2018 −0.0401 0.0244 −1.6409 强脱钩 Strong decoupling
    2019 −0.0313 −0.0018 17.6886 衰退脱钩 Recessive decoupling
    2020 0.0033 0.1377 0.0240 弱脱钩 Weak decoupling
    2021 0.0451 0.1827 0.2467 弱脱钩 Weak decoupling
    2022 0.0152 0.0309 0.4915 弱脱钩 Weak decoupling
      ∆C/C: 农业碳排放量变化量/农业碳排放量; ∆GDP/GDP: 农业产值变化量/农业产值。∆C/C: changes in agricultural carbon emissions / agricultural carbon emissions ; ∆GDP/GDP: changes in agricultural output value / agricultural output value .
    下载: 导出CSV

    表  5   重庆三峡库区农业碳排放驱动因素分解结果

    Table  5   Decomposition results of driving factors of carbon emission from agriculture in the Three Gorges Reservoir Area of Chongqing

    年份
    Year
    生产效率
    Production efficiency
    产业结构
    Industrial structure
    经济规模
    Economic scale
    人口规模
    Population size
    总效应
    Total effect
    2015−61.2701−2.795359.6263−3.8208−8.2600
    2016−88.6756−1.993584.8473−5.0281−10.8499
    2017−15.7065−8.484424.2535−11.0402−10.9777
    2018−30.8302−9.858231.7039−15.0665−24.0510
    2019−101.36263.599185.7640−6.1827−18.1821
    2020−98.74646.0945100.3263−5.74181.9326
    20210.6364−17.232752.7598−8.602427.5611
    2022−18.64660.128333.0645−5.12679.4195
    累计贡献度
    Cumulative contribution
    −414.6016−30.5422472.3456−60.6092−33.4074
    下载: 导出CSV
  • [1] 范振浩, 邢巍巍, 卜元卿, 等. 江苏省种植业碳排放的测算及达峰分析[J]. 水土保持学报, 2023, 37(5): 78−85

    FAN Z H, XING W W, BU Y Q, et al. Calculation and peak analysis of carbon emissions from agricultural planting in Jiangsu Province[J]. Journal of Soil and Water Conservation, 2023, 37(5): 78−85

    [2] 崔永福, 高策, 王俊凤, 等. 河北省县域农业碳排放空间演化及对策[J]. 中国农机化学报, 2023, 44(5): 241−248,256

    CUI Y F, GAO C, WANG J F, et al. Spatial evolution and countermeasures of county agricultural carbon emission in Hebei Province[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 241−248,256

    [3] 张永强, 沈彦俊, 刘昌明, 等. 华北平原典型农田水、热与CO2通量的测定[J]. 地理学报, 2002, 57(3): 333−342 doi: 10.3321/j.issn:0375-5444.2002.03.010

    ZHANG Y Q, SHEN Y J, LIU C M, et al. Measurement and analysis of water, heat and CO2 flux from a farmland in the North China Plain[J]. Acta Geographica Sinica, 2002, 57(3): 333−342 doi: 10.3321/j.issn:0375-5444.2002.03.010

    [4] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013

    [5] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127

    TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104−127

    [6] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    [7] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247−252 doi: 10.3969/j.issn.1002-6819.2010.10.042

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 247−252 doi: 10.3969/j.issn.1002-6819.2010.10.042

    [8]

    LIU M C, YANG L. Spatial pattern of China’s agricultural carbon emission performance[J]. Ecological Indicators, 2021, 133: 108345 doi: 10.1016/j.ecolind.2021.108345

    [9]

    YANG F. Impact of agricultural modernization on agricultural carbon emissions in China: A study based on the spatial spillover effect[J]. Environmental Science and Pollution Research, 2023, 30(39): 91300−91314 doi: 10.1007/s11356-023-28350-x

    [10]

    HE H H, DING R J. Spatiotemporal heterogeneity effect of technological progress and agricultural centrality on agricultural carbon emissions in China[J]. Frontiers in Environmental Science, 2023, 10: 1078357 doi: 10.3389/fenvs.2022.1078357

    [11] 尧波, 郑艳明, 胡丹, 等. 江西省县域农业碳排放的时空动态及影响因素分析[J]. 长江流域资源与环境, 2014, 23(3): 311−318 doi: 10.11870/cjlyzyyhj201403001

    YAO B, ZHENG Y M, HU D, et al. Spatial and temporal variations of county based agricultural carbon emissions and associated effect factors in Jiangxi Province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(3): 311−318 doi: 10.11870/cjlyzyyhj201403001

    [12] 钱凤魁, 王祥国, 顾汉龙, 等. 东北三省农业碳排放时空分异特征及其关键驱动因素[J]. 中国生态农业学报(中英文), 2024, 32(1): 30−40 doi: 10.12357/cjea.20230225

    QIAN F K, WANG X G, GU H L, et al. Spatial-temporal differentiation characteristics and key driving factors of agricultural carbon emissions in the three northeastern provinces of China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 30−40 doi: 10.12357/cjea.20230225

    [13] 徐小雨, 董会忠, 庞敏. 东北三省农业碳排放效率时空演化特征及驱动因素分析[J]. 中国环境管理, 2023, 15(2): 86−97

    XU X Y, DONG H Z, PANG M. Analysis on the spatio-temporal evolution characteristics and driving factors of agricultural carbon emission efficiency in three northeastern provinces of China[J]. Chinese Journal of Environmental Management, 2023, 15(2): 86−97

    [14] 郭旋, 张良茂, 胡荣桂, 等. 华中地区种植业生产碳排放驱动因素分析[J]. 长江流域资源与环境, 2016, 25(5): 695−701 doi: 10.11870/cjlyzyyhj201605001

    GUO X, ZHANG L M, HU R G, et al. Influencing factor decomposition of planting carbon emission in central China[J]. Resources and Environment in the Yangtze Basin, 2016, 25(5): 695−701 doi: 10.11870/cjlyzyyhj201605001

    [15] 夏四友, 赵媛, 许昕, 等. 1997—2016年中国农业碳排放率的时空动态与驱动因素[J]. 生态学报, 2019, 39(21): 7854−7865

    XIA S Y, ZHAO Y, XU X, et al. Spatiotemporal dynamics and driving factor analysis of agricultural carbon emissions rate in China from 1997 to 2016[J]. Acta Ecologica Sinica, 2019, 39(21): 7854−7865

    [16] 田云, 蔡艳蓉. 长江经济带农业碳排放EKC检验及其驱动因素分析[J]. 长江流域资源与环境, 2023, 32(11): 2403−2417

    TIAN Y, CAI Y R. EKC-based test for agricultural carbon emissions in Yangtze River Economic Belt and analysis of driving factors[J]. Resources and Environment in the Yangtze Basin, 2023, 32(11): 2403−2417

    [17] 刘顺翊, 李松青. 湖南省农业碳排放脱钩弹性及驱动因素−基于Tapio脱钩模型与LMDI分析[J]. 四川农业大学学报, 2023, 41(5): 952−960

    LIU S Y, LI S Q. Decoupling elasticity and drivers of agricultural carbon emissions in Hunan province−Based on Tapio decoupling model and LMDI analysis[J]. Journal of Sichuan Agricultural University, 2023, 41(5): 952−960

    [18] 田云, 林子娟. 中国省域农业碳排放效率与经济增长的耦合协调[J]. 中国人口·资源与环境, 2022, 32(4): 13−22 doi: 10.12062/cpre.20220107

    TIAN Y, LIN Z J. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China[J]. China Population, Resources and Environment, 2022, 32(4): 13−22 doi: 10.12062/cpre.20220107

    [19] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62

    HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56−62

    [20] 孟庆雷, 殷宇翔, 王煜昊. 我国农业碳排放的时空演化、脱钩效应及绩效评估[J]. 中国农业科学, 2023, 56(20): 4049−4066 doi: 10.3864/j.issn.0578-1752.2023.20.010

    MENG Q L, YIN Y X, WANG Y H. Spatial-temporal evolution, decoupling effect and performance evaluation of China’s agricultural carbon emissions[J]. Scientia Agricultura Sinica, 2023, 56(20): 4049−4066 doi: 10.3864/j.issn.0578-1752.2023.20.010

    [21] 肖晰文, 刘春红, 刘再森, 等. 三峡库区(湖北段)农业碳排放特征、驱动因素与趋势预测[J]. 中国农业资源与区划, 2023, 44(9): 212−222

    XIAO X W, LIU C H, LIU Z S, et al. Characteristics, driving factors and trend prediction of agriculture carbon emission in the Three Gorges Reservoir Area (Hubei section)[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(9): 212−222

    [22] 纪志佳, 张军以, 汪健平, 等. 乡村人口-土地-产业-财力系统耦合协调发展格局与机制研究−以重庆三峡库区典型县域为例[J]. 重庆师范大学学报(自然科学版), 2023, 40(3): 48−60

    JI Z J, ZHANG J Y, WANG J P, et al. Study on the pattern and mechanism of the coupling and coordinated development of rural population-land-industry-finance system: Taking typical counties in the Three Gorges Reservoir Area of Chongqing as an example[J]. Journal of Chongqing Normal University (Natural Science), 2023, 40(3): 48−60

    [23] 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097−2105

    TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097−2105

    [24] 张军以, 苏维词. 三峡库区农业发展现状及农田CH4和N2O排放与减排对策[J]. 土壤通报, 2012, 43(2): 501−505

    ZHANG J Y, SU W C. Present situation of agricultural development and emissions of CH4 and N2O from cultivated land and the correlated control measures in the Three Gorges Reservoir Area[J]. Chinese Journal of Soil Science, 2012, 43(2): 501−505

    [25] 赵荣钦, 刘英, 丁明磊, 等. 河南省农田生态系统碳源/汇研究[J]. 河南农业科学, 2010, 39(7): 40−44 doi: 10.3969/j.issn.1004-3268.2010.07.011

    ZHAO R Q, LIU Y, DING M L, et al. Research on carbon source and sink of farmland ecosystem in Henan Province[J]. Journal of Henan Agricultural Sciences, 2010, 39(7): 40−44 doi: 10.3969/j.issn.1004-3268.2010.07.011

    [26] 熊正琴, 邢光熹, 鹤田治雄, 等. 种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J]. 中国农业科学, 2002, 35(9): 1104−1108

    XIONG Z Q, XING G X, HE T Z X, et al. The effects of summer legume crop cultivation on nitrous oxide emissions from upland farmland[J]. Scientia Agricultura Sinica, 2002, 35(9): 1104−1108

    [27]

    OKORIE D I, LIN B Q. Emissions in agricultural-based developing economies: A case of Nigeria[J]. Journal of Cleaner Production, 2022, 337: 130570 doi: 10.1016/j.jclepro.2022.130570

    [28] 徐玥, 王辉, 韩秋凤, 等. 我国耕地碳排放时空特征与影响因素[J]. 江苏农业科学, 2022, 50(16): 218−226

    XU Y, WANG H, HAN Q F, et al. Temporal and spatial characteristics and influencing factors of carbon emission from cultivated land in China[J]. Jiangsu Agricultural Sciences, 2022, 50(16): 218−226

    [29] 刘丽娜, 王春妤, 袁子薇, 等. 区域农业碳排放LMDI分解和脱钩效应分析[J]. 统计与决策, 2019, 35(23): 95−99

    LIU L N, WANG C Y, YUAN Z W, et al. Analysis of LMDI decomposition and decoupling effect of regional agricultural carbon emissions[J]. Statistics & Decision, 2019, 35(23): 95−99

    [30] 魏后凯, 芦千文. 新冠肺炎疫情对“三农” 的影响及对策研究[J]. 经济纵横, 2020(5): 36−45

    WEI H K, LU Q W. Impact of COVID-19 on “Agriculture, countryside and farmers” and countermeasures[J]. Economic Review Journal, 2020(5): 36−45

    [31] 杨光明, 罗垚, 张帆, 等. 三峡库区生态环境三方协同治理演化博弈及系统仿真研究[J]. 重庆理工大学学报(社会科学版), 2021, 35(12): 154−166

    YANG G M, LUO Y, ZHANG F, et al. Research on evolutionary game and system simulation of tripartite collaborative governance of ecological environment in Three Gorges Reservoir Area[J]. Journal of Chongqing University of Technology (Social Science), 2021, 35(12): 154−166

图(4)  /  表(5)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  40
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-18
  • 修回日期:  2024-08-29
  • 录用日期:  2024-08-31
  • 网络出版日期:  2024-09-01

目录

    /

    返回文章
    返回