Environmental regulation and green transformation of agriculture in China: help or resistance?
-
摘要:
严格且恰当的环境规制是推动农业绿色转型的重要保障。本文基于2005—2022年省级面板数据, 从绿色全要素生产率视角出发, 实证检验环境规制对农业绿色转型的影响, 并重点分析该影响的异质性及其背后的作用机制。研究发现: 1)环境规制对农业绿色转型具有显著的正“U”型影响, 当前绝大多数省份的环境规制强度都未越过促进农业绿色转型的“U”型拐点。2)环境规制主要通过提高绿色技术效率实现整体农业绿色全要素生产率的增长, 并且相较于绿色全要素生产率, 绿色技术效率可以更早突破“U”型拐点。3)机制检验发现, 环境规制可以通过激发农业实质性绿色技术创新的非线性机制和降低农业生产中劳动力要素错配的线性机制, 推动农业绿色转型。4)异质性分析表明, 环境规制对农业绿色转型的非线性影响仅在中西部地区和农业绿色发展水平高的省份显著, 对于东部地区和农业绿色发展水平低的省份均无显著影响。本文建议, 在合理范围内适度加大农业环境规制强度, 尽快完善绿色技术创新导向的环境规制政策, 同时根据不同地区农业面源污染程度和农业绿色发展实际, 因地制宜地制定差异化的环境规制强度。
Abstract:Strict and appropriate environmental regulations are a crucial guarantee for promoting the green transformation of agriculture. In recent years, the Chinese government has stepped up the construction of agricultural environmental regulations in response to increasing agricultural non-point source pollution; however, it remains uncertain whether these regulations can fully realize their intended effects. Using provincial panel data from 2005 to 2022, this paper uses green total factor productivity (TFP) as a measure to assess the degree of agricultural green transition. It empirically examines the impact of environmental regulations on agricultural green transition from the perspective of regulatory intensity, while also exploring the heterogeneity of this impact and its underlying mechanisms. The results show that: 1) Environmental regulation exerts a significant positive “U”-shaped effect on agricultural green transformation; specifically, as the intensity of environmental regulations increases from weak to strong, there is a nonlinear effect on agricultural green TFP — initially inhibiting growth before eventually promoting it. This conclusion holds true after addressing endogeneity concerns and conducting various robustness checks. 2) Calculations indicate that the intensity of environmental regulations in most provinces has not yet crossed the “U” inflection point necessary to promote agricultural green transition, suggesting that policy constraints remain relatively lenient. 3) Environmental regulation enhances overall green TFP growth primarily through improvements in green technical efficiency, and green technical efficiency can surpass the “U” inflection point earlier than green TFP. 4) The mechanism test indicates that environmental regulation promotes agricultural green transformation via both a nonlinear mechanism of stimulating agricultural substantive green technology innovation and a linear mechanism of reducing the misallocation of labor factors within agriculture. 5) The heterogeneity analysis indicates that environmental regulation has a significant positive “U”-shaped impact on agricultural green transformation exclusively in the central and western regions, while its impact is insignificant in the eastern regions. In provinces characterized by medium and high levels of agricultural green development, environmental regulation demonstrates a significant positive “U”-shaped influence on their agricultural green transformation, while the effect is insignificant in provinces with low levels of agricultural green development. The research conclusions of this paper imply the following policy implications. Firstly, it is essential to moderately increase the intensity of agricultural environmental regulations within reasonable limits. This approach aims to force producers to enhance their awareness of green agriculture, actively participate in green production, and reach the turning point of the ‘U’-shaped curve swiftly. Secondly, improve the environmental regulation policy oriented to green technology innovation, so as to encourage and support entities engaged in technological innovation to actively develop green agricultural production technologies, and guide farmers to accept and apply green production technologies, thereby forming a closed cycle of for green technology innovation in agriculture as soon as possible. Finally, the intensity of environmental regulations should be adjusted according to the degree of agricultural non-point source pollution and the actual situation of green agricultural development in different regions. For regions with more severe agricultural non-point source pollution and lower levels of green agricultural development, the intensity of environmental regulations should be increased appropriately. For regions with higher levels of green agricultural development and relatively lighter agricultural non-point source pollution, under the premise of maintaining sufficient regulatory strength to ensure good environmental quality, the intensity of environmental regulations can be appropriately reduced so as not to hinder the agricultural green transition due to excessively high levels of environmental regulation.
-
表 1 变量定义与描述统计
Table 1 Variable definition and descriptive statistics
变量类型
Variable type变量名称
Variable name变量定义
Variable definition均值
Mean标准差
Standard deviation被解释变量
Explained variable农业绿色转型
Agricultural green transformation利用DDF-GML指数测算出农业GTFP, 并将其转换为以2005年为基期的累计增长率, 取对数
The agricultural GTFP calculated using the DDF-GML index, and converted into a cumulative grow rate with a base period of 2005, then take the logarithm0.054 0.119 核心解释变量
Core explanatory variable环境规制
Environmental regulation农业面源污染物相对排放水平的倒数
The reciprocal of the relative emission level of agricultural non-point source pollutant1.783 0.883 控制变量
Control variable自然灾害率
Natural disaster rate农作物受灾面积/总播种面积
Affected crop area / total sown area0.182 0.144 耕地灌溉率
Cropland irrigation rate耕地灌溉面积/农作物总播种面积
Irrigated farmland area / total sown area0.438 0.189 种植业产值比重
Proportion of planting industry output value种植业产值/农林牧渔业总产值
Output value of planting industry / gross output value of agriculture, forestry, animal husbandry, and fishery0.521 0.086 粮食种植面积比重
Proportion of grain sown area粮食作物播种面积/农作物总播种面积
Grain sown area / total crop sown area0.653 0.135 农村人力资本
Rural human capital农村人口平均受教育年限
Average education duration of rural residents (a)7.642 0.831 工业化率
Industrialization rate工业增加值/地区生产总值
Industrial added value / regional GDP0.383 0.129 财政支农力度
Fiscal support for agriculture农林水支出/地方一般公共预算支出
Expenditure for agriculture, forestry, and water conservancy / general public expenditure0.106 0.037 农业对外开放
Agricultural opening up农产品进出口总额/农林牧渔业总产值
Total value of agricultural imports and exports / gross output value of agriculture, forestry, animal husbandry, and fishery0.331 1.029 地权稳定性
Tenure security是否被列入整省推进土地确权试点: 是=1, 否=0
Whether it has been included in the province-wide land titling pilot program: Yes=1, and No=00.396 0.490 机制变量
Mechanism variable农业绿色技术创新
Agricultural green technology innovation每万人农业绿色专利申请量
Agricultural green patents application number per 10 000 persons (piece·104 persons)0.034 0.039 每万人农业绿色发明专利申请量
Agricultural green invention patent application number per 10 000 persons (piece·104 persons)0.031 0.037 每万人农业绿色实用新型专利申请量
Agricultural green utility model application number per 10 000 persons (piece·104 persons)0.003 0.004 农业生产要素错配
Misallocation of agricultural factors劳动力要素错配指数
Misallocation index of labor factor1.690 3.487 资本要素错配指数
Misallocation index of capital factor2.103 3.855 土地要素错配指数
Misallocation index of land factor9.306 39.421 表 2 基准回归结果
Table 2 Benchmark regression results
解释变量
Explanatory variable模型1
Model 1 (GTFP)模型2
Model 2 (GTFP)模型3
Model 3 (GTFP)模型4
Model 4 (GTPC)模型5
Model 5 (GTEC)模型6
Model 6 (GSEC)环境规制
Environmental regulation−0.092***
(0.015)−0.067***
(0.010)−0.069***
(0.010)−0.019
(0.034)−0.068**
(0.028)0.017
(0.022)环境规制平方
Square of environmental regulation0.013***
(0.002)0.009***
(0.002)0.009***
(0.002)−0.002
(0.008)0.014**
(0.007)−0.003
(0.006)控制变量
Control variableNo Yes Yes Yes Yes Yes 省份固定效应
Provincial fixed effectsYes Yes Yes Yes Yes Yes 年份固定效应
Year fixed effectsNo No Yes Yes Yes Yes R2 0.232 0.553 0.257 0.035 0.077 0.055 N 558 558 558 558 558 558 拐点值 Value of inflection point 3.539 3.722 3.833 — 2.429 — GTFP: 绿色全要素生产率; GTPC: 绿色技术进步变化; GTEC: 绿色技术效率变化; GSEC: 绿色规模效率变化; **: P<5%; ***: P<1%。GTFP: green total factor productivity; GTPC: green technological progress change; GTEC: green technical efficiency change; GSEC: green scale efficiency change; **: P<5%; ***: P<1%. 表 3 内生性与稳健性检验结果
Table 3 Results of endogeneity and robustness test
解释变量
Explanatory variable模型1
Model 1模型2
Model 2模型3
Model 3模型4
Model 4模型5
Model 5模型6
Model 6环境规制
Environmental regulation−0.056***
(0.014)−0.113***
(0.019)−0.086***
(0.010)−0.134***
(0.024)−0.064***
(0.016)环境规制平方
Square of environmental regulation0.009**
(0.004)0.023***
(0.005)0.014***
(0.002)0.021***
(0.005)0.008**
(0.003)滞后一期环境规制
Environmental regulation lagged one period−0.060***
(0.011)滞后一期环境规制平方
Square of environmental regulation lagged one period0.010***
(0.003)控制变量
Control variableYes Yes Yes Yes Yes Yes 省份/年份固定效应
Provincial / year fixed effectsYes Yes Yes Yes Yes Yes Breusch-Pagan检验P值
Breusch-Pagan test P value0.000 Hansen J检验P值
Hansen J test P value0.464 R2 0.572 0.273 0.268 0.191 0.229 0.245 N 558 558 558 558 527 465 **: P<5%; ***: P<1%。 表 4 影响机制检验结果
Table 4 Results of impact mechanism test
解释变量
Explanatory variable农业绿色技术创新
Agricultural green technology innovation农业生产要素错配
Misallocation of agricultural factors模型1 (总量)
Model 1 (total)模型2 (实质性)
Model 2 (substantive)模型3 (策略性)
Model 3 (strategic)模型4 (资本)
Model 4 (capital)模型5 (土地)
Model 5 (land)模型6 (劳动力)
Model 6 (labor)环境规制
Environmental regulation−0.436**
(0.222)−0.417*
(0.233)−0.337
(0.386)−0.536
(2.621)1.120
(0.756)−1.540*
(0.802)环境规制平方
Square of environmental regulation0.063**
(0.031)0.063**
(0.031)0.044
(0.067)−0.157
(0.323)-0.016
(0.092)0.140
(0.086)控制变量
Control variableYes Yes Yes Yes Yes Yes 省份/年份固定效应
Provincial / year fixed effectsYes Yes Yes Yes Yes Yes R2 0.112 0.115 0.086 0.386 0.101 0.061 N 558 558 558 558 558 558 *: P<10%; **: P<5%。 表 5 分区域异质性检验结果
Table 5 Regional heterogeneity test results
解释变量 Explanatory variable 东部地区 Eastern region 中西部地区 Middle and western region 环境规制 Environmental regulation −0.167(0.147) −0.050***(0.007) 环境规制平方 Square of environmental regulation 0.213(0.258) 0.006***(0.002) 控制变量 Control variable Yes Yes 省份/年份固定效应 Provincial / year fixed effects Yes Yes R2 0.234 0.475 N 198 360 拐点值 Value of inflection point — 4.167 ***: P<1%。 表 6 不同绿色发展水平异质性检验结果
Table 6 Results of the heterogeneity test for different levels of green development
解释变量 Explanatory variable 分位点 Quantile 10% 25% 50% 75% 90% 环境规制
Environmental regulation−0.054
(0.045)−0.014
(0.017)−0.043***
(0.009)−0.088***
(0.012)−0.173***
(0.033)环境规制平方
Square of environmental regulation0.008
(0.007)−0.001
(0.003)0.005***
(0.002)0.013***
(0.003)0.029***
(0.007)控制变量
Control variableYes Yes Yes Yes Yes 省份/年份固定效应
Provincial / year fixed effectsYes Yes Yes Yes Yes R2 0.029 0.047 0.108 0.162 0.221 N 558 558 558 558 558 拐点值 Value of inflection point — — 4.303 3.385 2.983 ***: P<1%。 -
[1] CHEN K, LIU Y. The impact of environmental regulation on farmers’ income: An empirical examination based on different sources of income[J]. Environmental Science and Pollution Research International, 2023, 30(46): 103244−103258 doi: 10.1007/s11356-023-29708-x
[2] 赵大伟. 中国绿色农业发展的动力机制及制度变迁研究[J]. 农业经济问题, 2012, 33(11): 72−78,111 ZHAO D W. Research on the dynamic mechanism and institutional change of the development of green agriculture of China[J]. Issues in Agricultural Economy, 2012, 33(11): 72−78,111
[3] 于法稳. 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018(5): 19−34 YU F W. An analysis of the reasons, core and countermeasures of agricultural green development in the new era[J]. Chinese Rural Economy, 2018(5): 19−34
[4] 金书秦, 牛坤玉, 韩冬梅. 农业绿色发展路径及其“十四五”取向[J]. 改革, 2020(2): 30−39 JIN S Q, NIU K Y, HAN D M. The path of agricultural green development and its orientation in the 14th five-year plan period[J]. Reform, 2020(2): 30−39
[5] 魏琦, 张斌, 金书秦. 中国农业绿色发展指数构建及区域比较研究[J]. 农业经济问题, 2018, 39(11): 11−20 WEI Q, ZHANG B, JIN S Q. A study on construction and regional comparison of agricultural green development index in China[J]. Issues in Agricultural Economy, 2018, 39(11): 11−20
[6] 何可, 李凡略, 张俊飚, 等. 长江经济带农业绿色发展水平及区域差异分析[J]. 华中农业大学学报, 2021, 40(3): 43−51 HE K, LI F L, ZHANG J B, et al. Green development levels and regional differences of agriculture in the Yangtze River Economic Belt[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 43−51
[7] 刘亦文, 欧阳莹, 蔡宏宇. 中国农业绿色全要素生产率测度及时空演化特征研究[J]. 数量经济技术经济研究, 2021, 38(5): 39−56 LIU Y W, OUYANG Y, CAI H Y. Evaluation of China’s agricultural green TFP and its spatiotemporal evolution characteristics[J]. The Journal of Quantitative & Technical Economics, 2021, 38(5): 39−56
[8] 宋燕平, 范祥祺, 耿鹏鹏. 规模经营与农业绿色发展−基于农业绿色全要素生产率的观察[J]. 华中农业大学学报(社会科学版), 2024(4): 57−70 SONG Y P, FAN X Q, GENG P P. Scale operation and green development of agriculture — Observations on agricultural green total factor productivity[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2024(4): 57−70
[9] 杨莲娜, 张心雨. 农产品贸易促进了中国农业绿色发展吗? −基于农业绿色全要素生产率视角[J]. 财贸研究, 2024, 35(2): 31−41 YANG L N, ZHANG X Y. Does agricultural product trade promote green agricultural development in China? From the perspective of agricultural green total factor productivity[J]. Finance and Trade Research, 2024, 35(2): 31−41
[10] 周月书, 尹梓鉴. 农业保险是否促进了中国农业绿色发展?[J]. 华中农业大学学报(社会科学版), 2024(1): 49−61 ZHOU Y S, YIN Z J. Does agricultural insurance promote the green development of agriculture in China?[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2024(1): 49−61
[11] 程永生, 张德元. 农业社会化服务绿色发展效应的理论框架与研究展望[J]. 中国生态农业学报(中英文), 2024, 32(3): 546−558 doi: 10.12357/cjea.20230434 CHENG Y S, ZHANG D Y. Theoretical framework and research prospects on the green development effect of agricultural socialization services[J]. Chinese Journal of Eco-Agriculture, 2024, 32(3): 546−558 doi: 10.12357/cjea.20230434
[12] VONA F, MARIN G, CONSOLI D, et al. Environmental regulation and green skills: An empirical exploration[J]. Journal of the Association of Environmental and Resource Economists, 2018, 5(4): 713−753 doi: 10.1086/698859
[13] 李芬妮, 张俊飚, 何可. 非正式制度、环境规制对农户绿色生产行为的影响−基于湖北1105份农户调查数据[J]. 资源科学, 2019, 41(7): 1227−1239 LI F N, ZHANG J B, HE K. Impact of informal institutions and environmental regulations on farmers’ green production behavior: Based on survey data of 1105 households in Hubei Province[J]. Resources Science, 2019, 41(7): 1227−1239
[14] 梁流涛, 冯淑怡, 曲福田. 农业面源污染形成机制: 理论与实证[J]. 中国人口·资源与环境, 2010, 20(4): 74−80 doi: 10.3969/j.issn.1002-2104.2010.04.013 LIANG L T, FENG S Y, QU F T. Forming mechanism of agricultural non-point source pollution: a theoretical and empirical study[J]. China Population, Resources and Environment, 2010, 20(4): 74−80 doi: 10.3969/j.issn.1002-2104.2010.04.013
[15] 马国群, 谭砚文. 环境规制对农业绿色全要素生产率的影响研究−基于面板门槛模型的分析[J]. 农业技术经济, 2021(5): 77−92 MA G Q, TAN Y W. Impact of environmental regulation on agricultural green total factor productivity — Analysis based on the panel threshold model[J]. Journal of Agrotechnical Economics, 2021(5): 77−92
[16] PENG X. Environmental regulation and agricultural green productivity growth in China: A retest based on ‘Porter Hypothesis’[J]. Environmental Technology, 2024, 45(16): 3174−3188 doi: 10.1080/09593330.2023.2212337
[17] 展进涛, 徐钰娇, 葛继红. 考虑碳排放成本的中国农业绿色生产率变化[J]. 资源科学, 2019, 41(5): 884−896 ZHAN J T, XU Y J, GE J H. Change in agricultural green productivity in China considering the cost of carbon emissions[J]. Resources Science, 2019, 41(5): 884−896
[18] 黄伟华, 祁春节, 方国柱, 等. 农业环境规制促进了小麦绿色全要素生产率的提升吗?[J]. 长江流域资源与环境, 2021, 30(2): 459−471 HUANG W H, QI C J, FANG G Z, et al. Does the agricultural environment regulation promote the improvement of wheaten GTFP?[J]. Resources and Environment in the Yangtze Basin, 2021, 30(2): 459−471
[19] XIONG H, ZHAN J T, XU Y J, et al. Challenges or drivers? Threshold effects of environmental regulation on China’s agricultural green productivity[J]. Journal of Cleaner Production, 2023, 429: 139503 doi: 10.1016/j.jclepro.2023.139503
[20] 郭海红, 李树超. 环境规制、空间效应与农业绿色发展[J]. 研究与发展管理, 2022, 34(2): 54−67 GUO H H, LI S C. Environmental regulation, spacial effect and agricultural green development[J]. R& D Management, 2022, 34(2): 54−67
[21] ZHU H B, YANG L H, XU C X, et al. Exploring the nonlinear association between agri-environmental regulation and green growth: The mediating effect of agricultural production methods[J]. Journal of Cleaner Production, 2024, 444: 141138 doi: 10.1016/j.jclepro.2024.141138
[22] PORTER M E, VAN DER LINDE C. Toward a new conception of the environment-competitiveness relationship[J]. Journal of Economic Perspectives, 1995, 9(4): 97−118 doi: 10.1257/jep.9.4.97
[23] 李翠霞, 许佳彬. 中国农业绿色转型的理论阐释与实践路径[J]. 中州学刊, 2022(9): 40−48 doi: 10.3969/j.issn.1003-0751.2022.09.007 LI C X, XU J B. Theoretical interpretation and practical path of China’s agricultural green transformation[J]. Academic Journal of Zhongzhou, 2022(9): 40−48 doi: 10.3969/j.issn.1003-0751.2022.09.007
[24] JAFFE A B, NEWELL R G, STAVINS R N. A tale of two market failures: Technology and environmental policy[J]. Ecological Economics, 2005, 54(2/3): 164−174
[25] ZHANG X H, HU L X, YU X H. Farmland leasing, misallocation reduction, and agricultural total factor productivity: Insights from rice production in China[J]. Food Policy, 2023, 119: 102518 doi: 10.1016/j.foodpol.2023.102518
[26] HU J F, ZHANG X F, WANG T T. Spatial spillover effects of resource misallocation on the green total factor productivity in Chinese agriculture[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15718 doi: 10.3390/ijerph192315718
[27] 王菲, 孙淑惠, 刘天军. 数字经济发展推进了农业生产方式变革吗−来自黄河流域地级市的证据[J]. 中国农村经济, 2023(9): 122−143 WANG F, SUN S H, LIU T J. Has the development of digital economy promoted changes in agricultural production methods? Evidence from prefectures in the Yellow River Basin[J]. Chinese Rural Economy, 2023(9): 122−143
[28] 江艇. 因果推断经验研究中的中介效应与调节效应[J]. 中国工业经济, 2022(5): 100−120 doi: 10.3969/j.issn.1006-480X.2022.05.007 JIANG T. Mediating effects and moderating effects in causal inference[J]. China Industrial Economics, 2022(5): 100−120 doi: 10.3969/j.issn.1006-480X.2022.05.007
[29] 史常亮. 数字经济赋能农业全要素生产率增长: 效应与机制[J]. 华南农业大学学报(社会科学版), 2024, 23(3): 94−109 SHI C L. Digital economy empowers agricultural total factor productivity growth: Effects and mechanisms[J]. Journal of South China Agricultural University (Social Science Edition), 2024, 23(3): 94−109
[30] 张金鑫, 王红玲. 环境规制、农业技术创新与农业碳排放[J]. 湖北大学学报(哲学社会科学版), 2020, 47(4): 147−156 ZHANG J X, WANG H L. Analysis on environmental planning, agricultural technological innovation and agricultural carbon emission[J]. Journal of Hubei University (Philosophy and Social Science), 2020, 47(4): 147−156
[31] 胡雪萍, 乐冬. 环境规制促进了农业全要素生产率提升吗?[J]. 江汉论坛, 2022(11): 42−51 doi: 10.3969/j.issn.1003-854X.2022.11.006 HU X P, LE D. Does environmental regulation improve agricultural total factor productivity?[J]. Jianghan Tribune, 2022(11): 42−51 doi: 10.3969/j.issn.1003-854X.2022.11.006
[32] 陶群山, 胡浩. 环境规制和农业科技进步的关系分析−基于波特假说的研究[J]. 中国人口·资源与环境, 2011, 21(12): 52−57 doi: 10.3969/j.issn.1002-2104.2011.12.009 TAO Q S, HU H. Analysis on the relationship of environmental regulation and agricultural technological progress: Based on the study of porter’s hypothesis[J]. China Population, Resources and Environment, 2011, 21(12): 52−57 doi: 10.3969/j.issn.1002-2104.2011.12.009
[33] SUN Y C. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity[J]. Frontiers in Environmental Science, 2022, 10: 955954 doi: 10.3389/fenvs.2022.955954
[34] 朱平芳, 张征宇, 姜国麟. FDI与环境规制: 基于地方分权视角的实证研究[J]. 经济研究, 2011, 46(6): 133−145 ZHU P F, ZHANG Z Y, JIANG G L. Empirical study of the relationship between FDI and environmental regulation: An intergovernmental competition perspective[J]. Economic Research Journal, 2011, 46(6): 133−145
[35] 朱向东, 贺灿飞, 李茜, 等. 地方政府竞争、环境规制与中国城市空气污染[J]. 中国人口·资源与环境, 2018, 28(6): 103−110. ZHU X D, HE C F, LI Q, et al. Influence of local government competition and environmental regulations on Chinese urban air quality[J]. China Population, Resources and Environment, 2018, 28(6): 103−110.
[36] 陈永伟, 胡伟民. 价格扭曲、要素错配和效率损失: 理论和应用[J]. 经济学(季刊), 2011, 11(4): 1401−1422 CHEN Y W, HU W M. Distortions, misallocation and losses: Theory and application[J]. China Economic Quarterly, 2011, 11(4): 1401−1422
[37] LEWBEL A. Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models[J]. Journal of Business & Economic Statistics, 2012, 30(1): 67−80
[38] 史常亮, 朱俊峰, 揭昌亮. 中国农业全要素生产率增长地区差异及收敛性分析−基于固定效应SFA模型和面板单位根方法[J]. 经济问题探索, 2016(4): 134−141 SHI C L, ZHU J F, JIE C L. Regional differences and convergence analysis of agricultural TFP in China: On fixed–effect panel SFA and panel unit root[J]. Inquiry into Economic Issues, 2016(4): 134−141
[39] 吴贤荣, 张俊飚, 田云, 等. 基于公平与效率双重视角的中国农业碳减排潜力分析[J]. 自然资源学报, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010 WU X R, ZHANG J B, TIAN Y, et al. Analysis on China’s agricultural carbon abatement capacity from the perspective of both equity and efficiency[J]. Journal of Natural Resources, 2015, 30(7): 1172−1182 doi: 10.11849/zrzyxb.2015.07.010
[40] LIND J T, MEHLUM H. With or without U? The appropriate test for a U-shaped relationship[J]. Oxford Bulletin of Economics and Statistics, 2010, 72(1): 109−118 doi: 10.1111/j.1468-0084.2009.00569.x