Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater
-
摘要: 固液分离是畜禽废水处理的关键技术, 不仅可以将固体物质分离出来进一步肥料化利用, 还可减少废水中污染物浓度从而降低后续处理负荷。本文主要针对传统的固液分离设备效果差和效率低的问题, 以离心微滤机为研究对象, 通过系统监测, 科学评价猪场废水总固体浓度(1%、2%、3%、4%和5%)和离心微滤机筛网孔径(15 µm、25 µm和50 µm)对去除率的影响。结果表明, 随着总固体浓度的增高和筛网孔径的减小, 水质指标的去除率有增加趋势。随筛网孔径的增大离心微滤机单位时间内的处理量也随之增加, 50 µm时处理量为14~19 m3∙h−1, 15 µm与25 µm时处理量为2~7 m3∙h−1。综合考虑, 总固体浓度为5%和筛网孔径为50 µm为最佳处理组, 水质指标中总固体浓度、化学需氧量和总磷的去除率分别为57%、29%和43%。该离心微滤机与其他固液分离设备相比, 具有分离效果好和能耗低的优点, 因此在处理猪场废水时具有较好的应用前景。Abstract: Large amounts of livestock waste are discharged owing to the rapid development of the livestock industry, and they cause serious environmental pollution if not effectively treated. Livestock waste has high pollutant concentrations and complex compositions; hence, it requires effective pretreatment to avoid high post-treatment difficulties and low treatment effects. Solid-liquid separation has been reported to be a key technology for livestock waste treatment. This technology could produce a solid fraction that can be used as a high-nutrient fertilizer and reduce pollutants in the waste, lowering the loads for subsequent treatments. However, the effect and efficiency of the traditional solid-liquid separation process for treating livestock waste are relatively low and need to be improved. In this study, a new centrifugal microfiltration separator, used for the reduction of pollutants in livestock waste, was systematically evaluated under different conditions. This study monitored the correlation between total solid (TS) concentrations in pig farm wastewater and other related water quality parameters. The effects of different TS concentrations and mesh sizes on the rate and treatment costs of the separator were also studied. The TS was set to 1%, 2%, 3%, 4%, and 5%, and the mesh sizes were set to 15, 25, and 50 µm. The results showed that TS concentrations were negatively correlated with pH and electrical conductivity (EC), and positively correlated with chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4 +-N) and total phosphorus (TP) in the wastewater. The correlation between TS and pH, COD, and TP was higher, with correlation coefficients (R2) of 0.57, 0.53, and 0.66, respectively. TS had no obvious correlation with turbidity, EC, TN, or NH4 +-N with R2 of 0.33, 0.02, 0.10 and 0.03, respectively. The separator effectively removed TS from pig farm wastewater with a removal rate of 17%−68%. The removal rate of turbidity, COD, TN, TP and NH4 +-N were 3%–39%, 17%–59%, 4%–43%, 18%–54%, and 2%–17%, respectively. The removal rate of pollutants from pig farm wastewater increased with an increase in TS and a decrease in mesh size. The removal rate increased with increasing mesh size. The mesh size of 15 µm had the highest removal rates of 68% for TS, 40% for turbidity, 59% for COD, 42% for TN, and 54% for TP. There was a significant difference in treatment capacity between all mesh sizes (P<0.01). The treatment capacity of 50 µm mesh size was 14‒19 m3∙h−1 and that of 15 and 25 µm mesh size was 2‒7 m3∙h−1. The operational costs of centrifugal microfiltration machine using the screen sizes of 15, 25, and 50 µm in a pig farm having stock of 10 000 pigs as an example were estimated to be 2.44, 2.06, and 1.08 ¥∙m−3, respectively. The optimal mesh size and TS for treating pig farm wastewater were 50 µm and 5%, respectively, when considering removal rate and treatment capacity. Compared with traditional solid-liquid separators, the new separator has good application prospects because of its high separation effect and low energy consumption.
-
Keywords:
- Livestock wastewater /
- Total solid concentration /
- Mesh size /
- Water quality indexes /
- Removal rate
-
图 4 总固体浓度和筛网孔径下离心微滤机的猪场废水总固体(a)、浊度(b)、化学需氧量(c)、总氮(d)、总磷(e)和氨氮(f)的去除效果
Figure 4. Separation efficiencies of total solid (a), turbidity (b), chemical oxygen demand (c), total nitrogen (d), total phosphorus (e), and ammonia nitrogen (f) of centrifugal microfiltration with different sizes under different total solid concentration of pig farm wastewater
表 1 原始猪场废水的特性
Table 1 Properties of the raw pig farm wastewater
指标 Index 数值 Value 总固体浓度 Total solid concentration (%) 0.5~8.0 pH 5.73~7.31 电导率 Electrical conductivity (µS·cm−1) 4360~9307 浊度 Turbidity (NTU) 5595~39 720 化学需氧量 Chemical oxygen demand (mg·L−1) 6720~72 650 总氮 Total nitrogen (mg·L−1) 464~2460 总磷 Total phosphorus (mg·L−1) 442~4500 氨氮 Ammonia nitrogen (mg·L−1) 300~1248 表 2 猪粪固液分离主要试验仪器的设备参数
Table 2 Parameters of equipment used for the solid-liquid separation of pig farm wastewater
设备仪器
Equipment instrument参数
Parameter数值
Value搅拌泵 Mixing pump 功率 Power 3 kW 储水桶 Water storage bucket 体积 Volume 8 m3 滤网 Screen 孔径 Mesh size 1 cm 螺杆泵 Screw pump 功率 Power 4 kW 微滤机 Microfiltration machine 功率 Power 7.5 kW 表 3 离心微滤机进水和产水水质指标
Table 3 Water quality indexes of inlet and produced water of centrifugal microfiltration machine
指标
Index进水
Raw pig farm wastewater出水 Separated wastewater 15 µm筛网
15 µm mesh25 µm筛网
25 µm mesh50 µm筛网
50 µm mesh总固体浓度 Total solid (%) 0.5~8.0 0.3~1.7 0.6~2.2 0.6~2.8 pH 5.73~7.31 5.88~6.95 6.1~7.22 6.32~7.27 电导率 Electrical conductivity (µS∙cm−1) 4360~9307 6001~7746 5077~11 500 4339~10 870 浊度 Turbidity (NTU) 5595~39 720 8490~18 450 4695~26 750 4920~32 340 化学需氧量 Chemical oxygen demand (mg·L−1) 6720~72 650 9740~35 080 6720~45 480 12 350~46 360 总氮 Total nitrogen (mg·L−1) 464~2460 312~1950 640~2000 620~2440 总磷 Total phosphorus (mg·L−1) 442~4500 456~1602 208~3780 396~3220 氨氮 Ammonia nitrogen (mg·L−1) 300~1248 432~970 340~1167 276~1504 表 4 猪场废水总固体浓度和离心微滤机筛网孔径对于水质指标去除率影响的显著性分析(P值)
Table 4 Significance analysis of total solid concentration and mesh size on wastewater characters (removal rates of wastewater indexes) of pig farm wastewater after solid-liquid separation (P value)
变异来源
Variation source总固体浓度
Total solid浊度
Turbidity化学需氧量
Chemical oxygen demand总氮
Total nitrogen总磷
Total phosphorus氨氮
Ammonia nitrogen孔径 Mesh size (MA) <0.05 <0.05 <0.05 <0.05 0.26 0.11 总固体浓度 Total solid (TS) <0.05 <0.05 0.09 <0.05 <0.05 0.11 MA×TS 0.94 0.16 0.95 0.54 0.87 0.26
P<0.05水平上因素之间相关性显著; P>0.05水平上因素之间相关性不显著。 There was significant correlation between the factors at the level of P<0.05; there was no significant correlation between the factors at the level of P>0.05. 表 5 不同筛网孔径的离心微滤机处理猪场废水的经济性分析
Table 5 Economic analysis of solid-liquid separation of pig farm wastewater with centrifugal microfiltration with different size
项目 Project 筛网孔径 Mesh size (µm) 15 25 50 处理量 Processing amount (m3∙h−1) 5 5 15 离心微滤机的购置费 Cost of centrifugal microfiltration equipment (×104 ¥) 45 45 15 离心微滤机折旧费用 Depreciation cost of centrifugal microfiltration (¥∙m−3) 0.56 0.56 0.18 离心微滤机能耗 Electricity consumption of centrifugal microfiltration (¥∙m−3) 1.21 0.83 0.23 人工费 Cost of labor (¥∙m−3) 0.67 0.67 0.67 处理成本 Treatment cost (¥∙t−1) 2.44 2.06 1.08 表 6 不同固液分离技术的效果与能耗
Table 6 Different solid-liquid separation of separation effect and energy consumption
废水类型
Wastewater type水质指标
Water quality index固液分离类型Solid-liquid
separation type筛网孔径
Mesh aperture (mm)去除率Removal
rate (%)处理量Treatment
amount (m3·h−1)能耗Power
consumption参考文献
Reference猪场废水
Pig farm wastewaterCOD: 10 086~19 051 mg∙L−1 振动筛
Vibrating screen0.93, 1.20, 1.51 9.26~23.2 40~80 1.5 kW [24] TN: 2350~1367 mg∙L−1 13.9~31.4 NH+4-N: 528~250 mg∙L−1 0.3~1.2 TP: 197~107 mg∙L−1 10.4~18.7 猪场废水
Pig farm wastewaterCOD: 12 000~18 000 mg∙L−1 滤网
Filter screenNA 25~30 NA NA [26] 牛场废水
Cattle farm wastewaterTS: 13% 螺旋挤压机
Screw extractor0.3, 0.5, 0.7 41.5~60.9 15~20 NA [25] VS: 83.1% 7.3~11.6 NH+4-N: 790 mg∙L−1 猪场废水
Pig farm wastewaterTS, TP, TN: 5.6 mg∙L−1 螺旋挤压机
Screw extractor0.5, 0.75, 1, 3 TS 19.2~49.4TP 12.8~49.4
TN 4.4~19.2NA NA [27] 猪场废水
Pig farm wastewaterTS: 2.0%~8% 沉降离心机
Sedimentation centrifugeNA TS 43~61
SS 734~10 15 kW [23] 猪场废水
Pig farm wastewaterTS: 0.5%~8.0% 离心微滤机
Centrifugal microfiltration0.015, 0.025, 0.05 57 14~19 7.5 kW 本研究
This studyCOD: 6720~72 650 mg∙L−1 29 TP: 442~4500 mg∙L−1 43 COD: 化学需氧量; TN: 总氮; NH4+-N: 氨氮; TP: 总磷; TS: 总固体含量; VS: 挥发型固体; NA: 无相关参数。COD: chemical oxygen demand; TN: total nitrogen; NH4+-N: ammonia nitrogen; TP: total phosphorus; TS: total solids; VS: volatile solid; NA: not available -
[1] 罗娟, 赵立欣, 姚宗路, 等. 规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J]. 农业工程学报, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022 LUO J, ZHAO L X, YAO Z L, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022
[2] ZHENG C H, LIU Y, BLUEMLING B, et al. Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach[J]. Agricultural Systems, 2013, 122: 60−72 doi: 10.1016/j.agsy.2013.08.005
[3] KUNZ A, STEINMETZ R L R, RAMME M A, et al. Effect of storage time on swine manure solid separation efficiency by screening[J]. Bioresource Technology, 2009, 100(5): 1815−1818 doi: 10.1016/j.biortech.2008.09.022
[4] 邹细霞, 陈海旭, 李丽娟, 等. 喀斯特石漠化地区畜牧养殖场粪便固液分离一体化圈舍研究[J]. 中国沼气, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008 ZOU X X, CHEN H X, LI L J, et al. Manure solid-liquid separation integrated animal house for livestock farms in Karst rocky desertification areas[J]. China Biogas, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008
[5] 陈长卿, 林雪, 郑涛, 等. 规模化养殖场畜禽粪便固液分离技术与装备[J]. 农业工程, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005 CHEN C Q, LIN X, ZHENG T, et al. Solid-liquid separation technology and equipment of livestock manure for large-scale farms[J]. Agricultural Engineering, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005
[6] 杨柏松, 关正军. 畜禽粪便固液分离研究[J]. 农机化研究, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065 YANG B S, GUAN Z J. Study on the solid-liquid separation[J]. Journal of Agricultural Mechanization Research, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065
[7] FORD M, FLEMIN R. Mechanical Solid-Liquid Separation of Livestock Manure Literature Review[R]. Ridgetown, Ontario: Ridgetwon College, University of Guelph, 2002
[8] 江滔, 温志国, 马旭光, 等. 畜禽粪便固液分离技术特点及效率评估[J]. 农业工程学报, 2016, 32(S2): 218−225 JIANG T, WEN Z G, MA X G, et al. Characteristics and efficiency evaluation of livestock slurry separation technologies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 218−225
[9] RIAÑO B, GARCÍA-GONZÁLEZ M C. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction[J]. Journal of Environmental Management, 2014, 132: 87−93
[10] 关正军, 李文哲, 杨柏松, 等. 牛粪螺旋压榨固液分离工艺参数优化[J]. 农业工程学报, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047 GUAN Z J, LI W Z, YANG B S, et al. Optimization on parameters of solid-liquid separation process of dairy manure by screw press[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047
[11] 王明, 孔威, 晏水平, 等. 猪场废水厌氧发酵前固液分离对总固体及污染物的去除效果[J]. 农业工程学报, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031 WANG M, KONG W, YAN S P, et al. Effect of solid-liquid separation on removal of total solid and pollutants from pig manure wastewater before anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031
[12] PETERS K, HJORTH M, JENSEN L S, et al. Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry[J]. Journal of Environmental Quality, 2011, 40(1): 224−232 doi: 10.2134/jeq2010.0217
[13] MØLLER H B, SOMMER S G, AHRING B K. Separation efficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2): 189−196 doi: 10.1016/S0960-8524(02)00047-0
[14] 吴军伟. 畜禽粪便固液分离技术研究[D]. 南京: 南京农业大学, 2009 WU J W. The research on solid and liquid separation of animal manure[D]. Nanjing: Nanjing Agricultural University, 2009
[15] HJORTH M, CHRISTENSEN K V, CHRISTENSEN M L, et al. Solid-liquid separation of animal slurry in theory and practice. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 153−180 doi: 10.1051/agro/2009010
[16] 占源航. 纸带过滤与中空纤维超滤膜结合工艺预处理猪场沼液应用研究[D]. 北京: 中国农业科学院, 2019 ZHAN Y H. The combination of paper filtration and hollow fiber ultrafiltration for the pretreatment of the digestate from swine manure[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
[17] ZHU J, NDEGWA P M, ZHANG Z J. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs[J]. Bioresource Technology, 2004, 92(3): 243−250 doi: 10.1016/j.biortech.2003.09.010
[18] LI J G, AKDENIZ N, KIM H H M, et al. Quantification of sustainable animal manure utilization strategies in Hangzhou, China[J]. Agricultural Systems, 2021, 191: 103150 doi: 10.1016/j.agsy.2021.103150
[19] SINGH A, BICUDO J R. Dairy manure nutrient analysis using quick tests[J]. Environmental Technology, 2005, 26(5): 471−478 doi: 10.1080/09593332608618541
[20] SURESH A, CHOI H L, OH D I, et al. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC — electrical conductivity[J]. Bioresource Technology, 2009, 100(20): 4683−4689 doi: 10.1016/j.biortech.2009.05.006
[21] AZAM H M, ALAM S T, HASAN M, et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems[J]. Environmental Science and Pollution Research International, 2019, 26(20): 20183−20207 doi: 10.1007/s11356-019-04732-y
[22] SOMMER S G, ZHANG G Q, BANNINK A, et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores[J]. Advances in Agronomy, 2006, 89: 261−335
[23] SNEATH R W, SHAW M, WILLIAMS A G. Centrifugation for separating piggery slurry 1. The performance of a decanting centrifuge[J]. Journal of Agricultural Engineering Research, 1988, 39(3): 181−190 doi: 10.1016/0021-8634(88)90095-9
[24] 杨迪, 邓良伟, 郑丹, 等. 猪场废水固液分离及其影响因素研究[J]. 中国沼气, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004 YANG D, DENG L W, ZHENG D, et al. Solid-liquid separation of swine wastewater and its influencing factors[J]. China Biogas, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004
[25] 王明, 赵胜雪, 李旭荣, 等. 螺旋挤压机筛网孔径对牛粪固液分离效果的影响[J]. 太阳能学报, 2018, 39(4): 1032−1037 WANG M, ZHAO S X, LI X R, et al. Effect of mesh size of screw extruder on solid-liquid separation of cattle manure[J]. Acta Energiae Solaris Sinica, 2018, 39(4): 1032−1037
[26] 杨朝晖, 曾光明, 高锋, 等. 固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J]. 湖南大学学报: 自然科学版, 2002, 29(6): 95−99 YANG Z H, ZENG G M, GAO F, et al. Study on piggery wastewater treatment by screening-UASB-SBR processes[J]. Journal of Hunan University: Natural Science, 2002, 29(6): 95−99
[27] MØLLER H B, LUND I, SOMMER S G. Solid-liquid separation of livestock slurry: efficiency and cost[J]. Bioresource Technology, 2000, 74(3): 223−229 doi: 10.1016/S0960-8524(00)00016-X