华北平原小麦新型耕作施肥播种方式增产增效研究

徐萍, 杨宪杰, 冯佐龙, 孙彦玲, 杨震, 张西群, 邓学斌, 史家益, 张正斌

徐萍, 杨宪杰, 冯佐龙, 孙彦玲, 杨震, 张西群, 邓学斌, 史家益, 张正斌. 华北平原小麦新型耕作施肥播种方式增产增效研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 831−841. DOI: 10.12357/cjea.20210851
引用本文: 徐萍, 杨宪杰, 冯佐龙, 孙彦玲, 杨震, 张西群, 邓学斌, 史家益, 张正斌. 华北平原小麦新型耕作施肥播种方式增产增效研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 831−841. DOI: 10.12357/cjea.20210851
XU P, YANG X J, FENG Z L, SUN Y L, YANG Z, ZHANG X Q, DENG X B, SHI J Y, ZHANG Z B. Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 831−841. DOI: 10.12357/cjea.20210851
Citation: XU P, YANG X J, FENG Z L, SUN Y L, YANG Z, ZHANG X Q, DENG X B, SHI J Y, ZHANG Z B. Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 831−841. DOI: 10.12357/cjea.20210851

华北平原小麦新型耕作施肥播种方式增产增效研究

基金项目: 河北省重点研发计划项目(20326403D)资助
详细信息
    作者简介:

    徐萍, 主要研究方向为粮食丰产增效科技创新。E-mail: xuping@sjziam.ac.cn

    通讯作者:

    张正斌, 主要研究方向为黄淮海现代农业。E-mail: zzb@sjziam.ac.cn

  • 中图分类号: S513

Yield- and efficiency-increasing effect of new tillage-fertilization-sowing method on wheat in the North China Plain

Funds: The study was supported by the Key Research and Development Program of Hebei Province (20326403D).
More Information
  • 摘要: 华北平原是我国夏玉米-冬小麦主产区, 但长期大面积免耕播种玉米和旋耕播种小麦, 导致耕层普遍变浅, 增产增效幅度下降, 同时华北平原又是地下水严重超采区和现代节水农业发展重点区。为了打破犁底层、提高水分和养分等资源利用效率, 减少耕种作业次数、降低生产成本并增产增效, 本研究采用裂区试验设计, 主区为前茬设置免耕玉米播种和遁耕分层施肥玉米播种2个处理, 免耕玉米播种主区里设置人工施肥-旋耕-小麦条播(T1)、人工施肥-旋耕深松-小麦条播(T2) 2个副区; 玉米遁耕分层施肥处理主区后茬为人工施肥-旋耕-小麦条播(T3)、旋耕深松分层施肥小麦宽幅匀播(T4) 2个副区处理, 在分蘖期、拔节期、开花期、灌浆期和成熟期, 对小麦生长发育、干物质积累和产量构成性状进行了调查和差异比较; 最后对小麦水分利用效率和偏氮肥生产力、玉米-小麦周年总产及产出/投入比进行了分析。结果表明, T4处理模式明显能够降低0~40 cm耕层土壤容重, 增加深层土壤含水率, 同时优化了耕层养分分布, 增加了小麦株高、分蘖、地上部干物质重量、0~40 cm耕层的根干重, 进而提高了单位面积穗数和穗粒数, 实现节水高产; 籽粒产量表现为T4 (8333.75 kg∙hm−2)>T3 (8222.63 kg∙hm−2)>T2 (7778.17 kg∙hm−2)>T1 (7000.35 kg∙hm−2); T4、T3、T2处理分别比T1处理显著增产19.05%、17.46%和11.1%; 提高了水分利用效率和偏氮肥生产力; T4处理累计全年粮食总产达19 469.7 kg∙hm−2, 超过了吨粮田(15 000 kg∙hm−2), 产出/投入比达3.76, 是华北平原玉米-小麦周年节水绿色提质增产增效的耕作模式。本文揭示了不同耕作施肥播种条件下, 小麦产量形成的生长发育特征和增产要素及玉米-小麦周年增产增效特征。建议加快在华北平原示范推广“小麦旋耕深松分层施肥宽幅匀播技术”。

     

    Abstract: The North China Plain is the main production area of summer corn-winter wheat in China; however, the long-term large area management of no-tillage sowing corn and rotating tillage sowing wheat leads to shallow tillage layers and poor yield and efficiency. The North China Plain is also an area with serious groundwater overexploitation and a key area for the development of modern water-saving agriculture. To break the hardpan, improve water and nutrients use efficiencies, reduce the frequency of farming operations and production costs, we conducted an experiment on a comprehensive technology of tillage-fertilization-seeding of corn and wheat. A split-plot design was used in this study. In the main plot, two treatments were set up: 1) no-tillage seeding of corn in the front stubble and 2) deep tillage-delamination fertilization and sowing of corn. In the main plot of no-tillage corn seeding, two sub-zones were set up: artificial fertilization-rotary tillage and drill sowing of wheat (T1) and artificial fertilization-rotary tillage-deep loosening and drill sowing of wheat (T2). In the main plot of the treatment with deep tillage-delamination fertilization and sowing of corn, two sub-zones were set up: artificial fertilization-rotary tillage-strip seeding of wheat (T3) and rotary tillage-deep loosening-delamination fertilization-wide uniform seeding of wheat (T4). At the tillering, jointing, flowering, and maturing stages, wheat growth, dry matter accumulation, and yield traits were investigated and compared, and the water use efficiency and partial factor nitrogen productivity of wheat, annual total yield of corn and wheat, and output/input ratio were analyzed. The results showed that the T4 treatment significantly reduced soil bulk density in the 0–40 cm layer, increased soil moisture content in the deep layer, optimized nutrient distribution in soil layer, and increased plant height, tillers number, dry matter weight of shoot and root in the 0−40 cm layer, thus increasing spike number per unit area and grain number per spike, leading to water saving and high yield. The grain yield was in the order of T4 (8333.75 kg∙hm−2) > T3 (8222.63 kg∙hm−2) > T2 (7778.17 kg∙hm−2) > T1 (7000.35 kg∙hm−2); T4, T3 and T2 treatments significantly increased production by 19.05%, 17.46% and 11.1% compared with T1 treatment, respectively. Water use efficiency and partial factor nitrogen productivity were improved. In T4 treatment, the total annual grain yield reached 19 469.7 kg∙hm−2, which was higher than the tonnage of a grain field (15000 kg∙hm−2), and the output/input ratio reached 3.76. Thus, T4 was a water-saving, green, quality improving, yield increasing, and efficiency enhancing tillage model for maize and wheat in the North China Plain. Accelerating the demonstration and popularization of the technique of “deep tillage-delamination fertilization and sowing of corn, and rotary tillage-deep loosening-delamination fertilization and wide uniform seeding of wheat” in the North China Plain is thus suggested.

     

  • 图  1   研究区小麦生育期降雨量(2020—2021年)

    Figure  1.   Precipitation during wheat growth season of 2020−2021 in the study area

    图  2   不同耕作处理土壤容重(A)和土壤含水率(B)差异比较

    Figure  2.   Comparison of soil bulk density (A) and soil water content (B) under different tillage treatments

    图  3   不同耕作处理在不同土层中全氮(A)、碱解氮(B)、速效磷(C)和速效钾(D)含量差异比较

    Figure  3.   Contents of total nitrogen (A), alkali-hydrolysis nitrogen (B), available phosphorus (C) and available potassium (D) under different tillage treatments

    图  4   不同耕作处理下小麦不同生育期株高(A)、分蘖数(B)、地上部干物质量(C)和根干重(D)的差异

    Figure  4.   Plant height (A), tillage number (B), shoot dry weight (C) and root dry weight (D) of wheat at different growth stages under different tillage treatments

    图  5   不同耕作处理下小麦株高(A)、穗数(B)、每穗小穗数(C)、穗粒数(D)、千粒重(E)、生物学产量(F)、产量(G)和收获指数(H)的差异

    Figure  5.   Plant height (A), spike number (B), spikelets per spike (C), grain number per spike (D), 1000-grain weight (E), biomass weight (F), yield (G) and harvest index (H) of wheat under different tillage treatments

    图  6   不同耕作处理下小麦水分利用效率(WUE, A)、氮肥偏生产力(PFPN, B)、玉米+小麦总产量(C)和产投比(D)的差异

    Figure  6.   Water use efficiency (WUE, A), partial factor productivity of nitrogen (PFPN, B), maize+wheat yield (C) and rate of output and input (D) of wheat under different tillage treatments

  • [1]

    ZHANG X F, ZHU A N, XIN X L, et al. Tillage and residue management for long-term wheat-maize cropping in the North China Plain: Ⅰ. Crop yield and integrated soil fertility index[J]. Field Crops Research, 2018, 221: 157−165 doi: 10.1016/j.fcr.2018.02.025

    [2] 吴芬, 徐萍, 郭海谦, 等. 冬小麦产量差和资源利用效率差及调控途径研究进展[J]. 中国生态农业学报(中英文), 2020, 28(10): 1551−1567

    WU F, XU P, GUO H Q, et al. Research advance in the yield gap and resource use efficiency difference of winter wheat and regulatory approach[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1551−1567

    [3]

    ZHAI L C, XU P, ZHANG Z B, et al. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China[J]. Soil and Tillage Research, 2017, 170: 167−174 doi: 10.1016/j.still.2017.03.013

    [4]

    ZHAI L C, XU P, ZHANG Z B, et al. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate[J]. Agronomy Journal, 2019, 111(2): 666−676 doi: 10.2134/agronj2018.05.0347

    [5]

    MU X Y, ZHAO Y L, LIU K, et al. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain[J]. European Journal Agronomy, 2016, 78: 32−43 doi: 10.1016/j.eja.2016.04.010

    [6] 张正斌, 刘孟雨, 钟冠昌, 等. 应重视节水生物技术研究[J]. 中国科学院院刊, 2001, 16(4): 292−294 doi: 10.3969/j.issn.1000-3045.2001.04.015

    ZHANG Z B, LIU M Y, ZHONG G C, et al. Attention should be paid to the research of water-saving biotechnology[J]. Bulletin of the Chinese Academy of Sciences, 2001, 16(4): 292−294 doi: 10.3969/j.issn.1000-3045.2001.04.015

    [7] 张正斌, 徐萍. 建议加快小麦-玉米抗旱节水优质高产一体化简化技术体系研究与推行[J]. 科学新闻, 2008, 10(8): 38−39

    ZHANG Z B, XU P. Suggesting to accelerate the research and implementation of the integrated simplified technology system of drought resistance, water saving, high quality and high yield of wheat-maize[J]. Science News, 2008, 10(8): 38−39

    [8] 郑侃, 何进, 李洪文, 等. 中国北方地区深松对小麦玉米产量影响的meta分析[J]. 农业工程学报, 2015, 31(22): 7−15 doi: 10.11975/j.issn.1002-6819.2015.22.002

    ZHENG K, HE J, LI H W, et al. Meta-analysis on maize and wheat yield under subsoiling in northern China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 7−15 doi: 10.11975/j.issn.1002-6819.2015.22.002

    [9] 王景德, 崔德杰, 李帅, 等. 小麦-玉米连作模式下深松时间对砂姜黑土理化性状的影响[J]. 山东农业科学, 2019, 51(10): 86−90

    WANG J D, CUI D J, LI S, et al. Effect of subsoiling time on physical and chemical properties of lime concretion black soil under wheat-corn continuous cropping mode[J]. Shandong Agricultural Sciences, 2019, 51(10): 86−90

    [10] 孙彦玲, 冯佐龙, 韩继东, 等. 小麦深松旋耕施肥等深匀播机试验与分析[J]. 河北农机, 2016(12): 9−10

    SUN Y L, FENG Z L, HAN J D, et al. Test and analysis of machine with rotary tillage and deep loosening and fertilization and wide seedling machine for wheat[J]. Hebei Farm Machinery, 2016(12): 9−10

    [11] 郭丽果, 尹宝重, 郑佩佩, 等. 播前耕作方式对河北平原区节水冬小麦光合特性和籽粒产量的影响[J]. 江苏农业科学, 2017, 45(1): 69−72

    GUO L G, YIN B C, ZHENG P P, et al. Effects of pre-sowing tillage mode on photosynthetic characteristics and grain yield of water-saving winter wheat in Hebei Plain[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 69−72

    [12] 徐萍, 杨宪杰, 邓学斌, 等. 遁耕分层施肥对黄淮海平原夏玉米产量形成的调控效应研究[J]. 中国生态农业学报(中英文), 2022, 30(3): 389−398 doi: 10.12357/cjea.20210128

    XU P, YANG X J, DENG X B, et al. Regulating effect of deep tillage and delamination fertilization on the yield formation of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 389−398 doi: 10.12357/cjea.20210128

    [13]

    WU F, ZHAI L C, XU P, et al. Effects of tillage modes on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China[J]. Journal of Integrative Agriculture, 2021, 20(2): 593−605 doi: 10.1016/S2095-3119(20)63405-0

    [14] 张国合, 张博, 王海标, 等. 河南省夏玉米主产区土壤理化性状研究[J]. 中国农学通报, 2016, 32(20): 92−96 doi: 10.11924/j.issn.1000-6850.casb16040083

    ZHANG G H, ZHANG B, WANG H B, et al. Soil physical and chemical properties in main maize area of Henan Province[J]. Chinese Agricultural Science Bulletin, 2016, 32(20): 92−96 doi: 10.11924/j.issn.1000-6850.casb16040083

    [15] 程思贤, 刘卫玲, 靳英杰, 等. 深松深度对砂姜黑土耕层特性、作物产量和水分利用效率的影响[J]. 中国生态农业学报, 2018, 26(9): 1355−1365

    CHENG S X, LIU W L, JIN Y J, et al. Effects of subsoiling depth on topsoil properties, crop yield and water use efficiency in Lime Concretion Black soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1355−1365

    [16]

    MOUSSA-MACHRAOUI S B, ERROUISSI F, BEN-HAMMOUDA M, et al. Comparative effects of conventional and no-tillage management on some soil properties under Mediterranean semi-arid conditions in northwestern Tunisia[J]. Soil and Tillage Research, 2010, 106: 247−253 doi: 10.1016/j.still.2009.10.009

    [17]

    SANG X G, WANG D, LIN X. Effects of tillage practices on water consumption characteristics and grain yield of winter wheat under different soil moisture conditions[J]. Soil and Tillage Research, 2016, 163: 185−194 doi: 10.1016/j.still.2016.06.003

    [18]

    HOU X Q, LI R, JIA Z K, et al. Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China[J]. Field Crops Research, 2012, 129: 7−13 doi: 10.1016/j.fcr.2011.12.021

    [19]

    TERAVEST D, CARPENTER-BOGGS L, THIERFELDER C, et al. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malaw[J]. Agricuture Ecosystems and Environment, 2015, 212: 285−296 doi: 10.1016/j.agee.2015.07.011

    [20] 张胜爱, 马吉利, 崔爱珍, 等. 不同耕作方式对冬小麦产量及水分利用状况的影响[J]. 中国农学通报, 2006, 22(1): 110−113 doi: 10.3969/j.issn.1000-6850.2006.01.029

    ZHANG S A, MA J L, CUI A Z, et al. Effect of different tillage techniques on yield and water utilization in winter wheat[J]. Chinese Agricultural Science Bulletin, 2006, 22(1): 110−113 doi: 10.3969/j.issn.1000-6850.2006.01.029

    [21] 王丹, 李升东, 冯波, 等. 不同耕作方式对小麦光合性能和产量形成的影响[J]. 山东农业科学, 2019, 51(10): 35−39

    WANG D, LI S D, FENG B, et al. Effects of different tillage methods on photosynthetic performance and yield formation of wheat[J]. Shandong Agricultural Sciences, 2019, 51(10): 35−39

    [22]

    HE J, LI H W, WANG X Y, et al. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in Northern China[J]. Soil and Tillage Research, 2007, 94(2): 493−502 doi: 10.1016/j.still.2006.10.005

    [23] 王锡久, 孙茂真, 许卫霞, 等. 深松分层施肥技术对冬小麦产量及其构成因子的影响[J]. 山东农业科学, 2015, 47(3): 76−79

    WANG X J, SUN M Z, XU W X, et al. Effects of subsoiling and layered fertilization technology on winter wheat yield and its components[J]. Shandong Agricultural Sciences, 2015, 47(3): 76−79

    [24]

    HE J N, SHI Y, ZHAO J Y, et al. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling[J]. The Crop Journal, 2020, 8(2): 327−340 doi: 10.1016/j.cj.2019.08.007

    [25]

    LATIFMANESH H, DENG A X, NAWAZ M M, et al. Integrative impacts of rotational tillage on wheat yield and dry matter accumulation under corn-wheat cropping system[J]. Soil and Tillage Research, 2018, 184: 100−108 doi: 10.1016/j.still.2018.07.008

    [26]

    SHI Y, YU Z W, MAN J G, et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain[J]. Soil and Tillage Research, 2016, 160: 73−81 doi: 10.1016/j.still.2016.02.009

    [27]

    CHU P F, ZHANG Y L, YU Z W, et al. Winter wheat grain yield, water use, biomass accumulation and remobilisation under tillage in the North China Plain[J]. Field Crops Research, 2016, 193: 43−53 doi: 10.1016/j.fcr.2016.03.005

    [28]

    ZHAI L C, WANG Z B, SONG S J, et al. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity[J]. Agricultural Water Management, 2021, 245: 106600 doi: 10.1016/j.agwat.2020.106600

    [29]

    SENAPATI N, SEMENOV M A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe[J]. Global Food Security, 2020, 24: 100340 doi: 10.1016/j.gfs.2019.100340

    [30] 张正斌. 节水吨粮田: 华北水资源和粮食安全的必由之路[N]. 科学时报, 2009-04-16

    ZHANG Z B. Water-saving tone grain fields: The only way to water resources and food security in North China[N]. Science Times, 2009-04-16

图(6)
计量
  • 文章访问数:  938
  • HTML全文浏览量:  191
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-19
  • 录用日期:  2021-11-19
  • 网络出版日期:  2022-01-19
  • 刊出日期:  2022-05-17

目录

    /

    返回文章
    返回