Spatio-temporal variations in soil erosion and its influence factors in Taihang Mountain area based on RUSLE modeling
-
摘要: 土壤侵蚀特征及区域分异规律的研究对生态环境保护具有重要的意义, 为探明太行山区土壤侵蚀特征, 本论文应用归一化植被指数(NDVI)、数字高程模型(DEM)和土地利用等数据, 结合GIS和RS技术, 根据修正的通用土壤流失方程(RUSLE)模型, 计算了太行山区2000年、2005年、2010年和2015年4期的土壤侵蚀模数, 在此基础上分析了土壤侵蚀的时空变化特征, 并探究了土壤侵蚀模数与坡度、土地利用类型和NDVI的关系。结果表明: 1) 2000—2015年4期平均土壤侵蚀模数分别为4434.14 t∙km−2∙a−1、2984.65 t∙km−2∙a−1、1761.93 t∙km−2∙a−1和1833.81 t∙km−2∙a−1, 呈现明显的减小趋势, 16年间土壤侵蚀模数减少58.64%。2)太行山区土壤侵蚀强度降低1级的面积始终比增加1级的大, 至少74.77%的地区未表现出等级上的变化, 2005—2010年是侵蚀强度降低变化率最高的时间段。3)中低山区集中了2015年侵蚀总量(2.5×108 t)的86.54%, 此区域的侵蚀模数与海拔无明显的相关性, 而在亚高山区两者才呈现明显的正相关关系。4)土壤侵蚀总体上随坡度增加而增大, 坡度阈值为40º左右; 草地是太行山区土壤侵蚀模数最高的土地利用类别, 平均达3605.73 t∙km−2∙a−1; 土壤侵蚀模数随年平均NDVI的增加呈显著降低趋势, NDVI达0.66后侵蚀降低速度放缓。土壤侵蚀是生态环境质量评价的重要指标, 本研究可为太行山区水土流失治理和生态工程措施制定提供一定的科学依据。Abstract: The study of soil erosion characteristics and their spatial heterogeneity is of great significance for ecological environmental protection. Soil and water conservation is important in Taihang Mountain area. This study was conducted to explore these characteristics. Supported by the normalized difference vegetation index (NDVI), digital elevation model (DEM), and land use data combined with geographic information system (GIS) and remote sensing (RS) technologies, the soil erosion modulus in Taihang Mountain area was calculated from 2000 to 2015 based on the revised universal soil loss equation (RUSLE) model. The spatiotemporal variation in soil erosion in the study area was analyzed, and the relationship between soil erosion, slope gradient, land use type, and NDVI was explored. The results showed that: 1) The average soil erosion modulus were 4434.14 t∙km−2∙a−1, 2984.65 t∙km−2∙a−1, 1761.93 t∙km−2∙a−1 and 1833.81 t∙km−2∙a−1 in 2000, 2005, 2010 and 2015, respectively. The erosion modulus showed a notably decreasing trend from 2000 to 2015 with a decreasing rate of 58.64%. 2) The areas where erosion intensity decreased by one level were always larger than those where it increased by one level. However, erosion intensity did not change in more than 74.77% of the total area. The maximum reduction in the erosion intensity occurred in the period of 2005–2010. 3) From 2000 to 2005, the decline in erosion intensity level in Taihang Mountain area was mainly distributed in higher elevation regions near the border of the Shanxi and Hebei Provinces. The areas with decreasing soil erosion intensity from 2005 to 2010 were uniformly distributed in the study area and were mainly located in the south of Yangquan and Shijiazhuang from 2010 to 2015. 4) In 2015, 86.54% of the total soil erosion (2.5×108 t) was concentrated in the mid-mountain and hilly zones, where accounted for approximately 91.12% of the study area. There was no obvious correlation between the erosion modulus and altitude in this area, whereas it showed a positive relationship in the subalpine zone. 5) The erosion modulus had a positive correlation with slope gradient; the threshold value was 40º, and the erosion modulus reached a maximum value of 4693 t∙km−2∙a−1. With an increase in slope gradient, the possibility of soil erosion increased gradually with higher grades of erosion intensity. Cultivated land, forest land and grassland were the three main land use types in the study area, and their average soil erosion modulus were 501.72 t∙km−2∙a−1, 2475.46 t∙km−2∙a−1 and 3505.73 t∙km−2∙a−1, respectively. The average slope gradient of the cultivated land was 4.90º, which resulted in the minimum soil erosion modulus. Grassland was the land use type with the largest erosion modulus. The soil erosion modulus decreased significantly with an increase in annual NDVI, and the rate gradually slowed down when NDVI reached 0.66. Soil erosion is a significant index for eco-environmental quality appraisal. This study provides a scientific basis for soil erosion control and ecological engineering measures in Taihang Mountain area.
-
Keywords:
- Taihang Mountain area /
- Soil erosion /
- Erosion modulus /
- NDVI /
- Slope /
- Land use
-
表 1 本研究所用数据及来源
Table 1 Dataset and resources used in the study
数据类型
Data type内容
Content分辨率/比例尺
Resolution ratio/
plotting scale数据来源
Data sources地形数据
Topographic dataDEM 30 m https://www.resdc.cn/ 降雨
Precipitation2000—2015年研究区月度降雨数据
Monthly precipitation data from 2000 to 2015100 m 研究区88个市、县气象站点
Eighty-eight meteorological stations in the study area土壤
Soil砂砾、粉粒、黏粒及有机质百分含量数据
Percentages of sand, silt, clay and organic matter1∶1 000 000 世界土壤数据库
Harmonized World Soil Database植被
Vegetation2000—2015年研究区月度NDVI数据
Monthly NDVI data from 2000 to 2015500 m http://www.gscloud.cn 土地利用
Land use耕地、林地、草地、建设用地、水体
及未利用地6类
Cultivated land, forest land, grassland, construction land, water and others1∶100 000 国家重点基础研究计划项目: 典型山地水土要素时空耦合特征、效应及其调控
National Basic Research Program of China: Coupled temporal-spatial characteristics, effects and regulation-control countermeasures of water and soil elements in typical mountainous areas表 2 不同坡度范围的耕地的水土保持措施因子 (P)值[30]
Table 2 Values of soil and water conservation factors (P) of cultivated land in different slope conditions
坡度 Slope (°) <5 5~10 10~15 15~20 20~25 >25 P 0.1 0.221 0.305 0.575 0.705 0.8 表 3 2000—2015年太行山区土壤侵蚀强度转移矩阵
Table 3 Transfer matrix of soil erosion intensity in Taihang Mountain area from 2000 to 2015
2005 2000 微度 Slight 轻度 Mild 中度 Moderate 强烈 Intense 极强烈 Extremely intense 剧烈 Violent km2 微度 Slight 78 567.36 2428.96 7.36 0.80 0.00 0.00 轻度 Mild 775.68 12 915.68 3645.28 674.4 88.16 0.16 中度 Moderate 5.12 1423.84 5896.32 3376.32 1850.08 126.24 强烈 Intense 3.36 20.80 1287.52 2996.48 3556.64 1116.16 极强烈 Extremely intense 2.24 1.12 62.08 1047.2 3903.36 4412.00 剧烈 Violent 0.80 0.00 0.48 6.40 565.92 5892.32 2010 2005 微度 Slight 轻度 Mild 中度 Moderate 强烈 Intense 极强烈 Extremely intense 剧烈 Violent 微度 Slight 80 766.24 6472.64 361.92 29.92 6.56 3.36 轻度 Mild 238.08 11 456.16 8698.56 2138.24 464.64 19.04 中度 Moderate 0.16 166.56 3476.00 5075.68 2790.88 241.92 强烈 Intense 0.00 3.52 138.56 1617.28 3747.84 899.04 极强烈 Extremely intense 0.00 0.48 2.72 118.56 2335.04 2779.52 剧烈 Violent 0.00 0.00 0.16 1.28 83.04 2523.04 2015 2010 微度 Slight 轻度 Mild 中度 Moderate 强烈 Intense 极强烈 Extremely intense 剧烈 Violent 微度 Slight 86 071.20 7015.52 191.04 28.32 22.24 11.68 轻度 Mild 1453.92 12 069.92 4969.12 1144.48 183.52 8.16 中度 Moderate 70.08 3005.28 3252.16 1750.24 1079.20 90.88 强烈 Intense 20.48 718.08 2094.40 1445.44 915.84 284.96 极强烈 Extremely intense 14.56 190.72 1107.20 1601.76 1750.24 541.12 剧烈 Violent 10.40 15.20 137.28 436.00 1285.28 1670.72 表 4 太行山区主要土地利用类型特征
Table 4 Characteristics of main land use types in Taihang Mountain area
土地利用类型
Land use types平均坡度
Average slope (º)NDVI 降雨侵蚀力
Rainfall erosivity [(MJ·mm)·(hm2·h·a)−1]耕地 Cultivated land 4.90 0.63 128.24 林地 Forest land 16.71 0.73 141.49 草地 Grass land 12.81 0.64 135.49 -
[1] 肖洋, 欧阳志云, 徐卫华, 等. 基于GIS重庆土壤侵蚀及土壤保持分析[J]. 生态学报, 2015, 35(21): 7130−7138 XIAO Y, OUYANG Z Y, XU W H, et al. GIS-based spatial analysis of soil erosion and soil conservation in Chongqing, China[J]. Acta Ecologica Sinica, 2015, 35(21): 7130−7138
[2] 张光辉. 对土壤侵蚀研究的几点思考[J]. 水土保持学报, 2020, 34(4): 21−30 ZHANG G H. Several ideas related to soil erosion research[J]. Journal of Soil and Water Conservation, 2020, 34(4): 21−30
[3] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望[J]. 自然杂志, 2008, 30(1): 12−16, 63 doi: 10.3969/j.issn.0253-9608.2008.01.003 ZHENG F L, WANG Z L, YANG Q K. The retrospection and prospect on soil erosion research in China[J]. Chinese Journal of Nature, 2008, 30(1): 12−16, 63 doi: 10.3969/j.issn.0253-9608.2008.01.003
[4] 李智广, 曹炜, 刘秉正, 等. 我国水土流失状况与发展趋势研究[J]. 中国水土保持科学, 2008, 6(1): 57−62 doi: 10.3969/j.issn.1672-3007.2008.01.009 LI Z G, CAO W, LIU B Z, et al. Current status and developing trend of soil erosion in China[J]. Science of Soil and Water Conservation, 2008, 6(1): 57−62 doi: 10.3969/j.issn.1672-3007.2008.01.009
[5] 蔡强国, 刘纪根. 关于我国土壤侵蚀模型研究进展[J]. 地理科学进展, 2003, 22(3): 142−150 CAI Q G, LIU J G. Evolution of soil erosion models in China[J]. Progress in Geography, 2003, 22(3): 142−150
[6] WISCHMEIER W H, SMITH D. Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains[M]. Washington: USDA, Agriculture Handbook No. 282, 1965
[7] LEE G S, LEE K H. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea[J]. Hydrology and Earth System Sciences Discussions, 2006, 3: 135−157
[8] MILLWARD A A, MERSEY J E. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed[J]. CATENA, 1999, 38(2): 109−129 doi: 10.1016/S0341-8162(99)00067-3
[9] 江忠善, 王志强, 刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究[J]. 土壤侵蚀与水土保持学报, 1996, 10(1): 1−9 JIANG Z S, WANG Z Q, LIU Z. Quantitative study on spatial variation of soil erosion in a small watershed in the loesa hilly region[J]. Journal of Soil and Water Conservation, 1996, 10(1): 1−9
[10] 郑粉莉, 刘峰, 杨勤科, 等. 土壤侵蚀预报模型研究进展[J]. 水土保持通报, 2001, 21(6): 16−18, 32 doi: 10.3969/j.issn.1000-288X.2001.06.006 ZHENG F L, LIU F, YANG Q K, et al. Review of research progress in soil erosion prediction model[J]. Bulletin of Soil and Water Conservation, 2001, 21(6): 16−18, 32 doi: 10.3969/j.issn.1000-288X.2001.06.006
[11] 刘宝元, 史培军. WEPP水蚀预报流域模型[J]. 水土保持通报, 1998, 18(5): 6−12 doi: 10.3969/j.issn.1000-288X.1998.05.002 LIU B Y, SHI P J. Water erosion prodiction project (WEPP) model for watershed scale[J]. Bulletin of Soil and Water Conservation, 1998, 18(5): 6−12 doi: 10.3969/j.issn.1000-288X.1998.05.002
[12] MORGAN R P C, QUINTON J N, SMITH R E, et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 1998, 23(6): 527−544 doi: 10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
[13] DE ROO A P J, WESSELING C G, RITSEMA C J. LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. i: theory, input and output[J]. Hydrological Processes, 1996, 10(8): 1107−1117 doi: 10.1002/(SICI)1099-1085(199608)10:8<1107::AID-HYP415>3.0.CO;2-4
[14] 蔡强国, 陆兆熊, 王贵平. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J]. 地理学报, 1996, 51(2): 108−116 doi: 10.3321/j.issn:0375-5444.1996.02.003 CAI Q G, LU Z X, WANG G P. Process-based soil erosion and sediment yieid model in a small basin in the hilly loess region[J]. Acta Geographica Sinica, 1996, 51(2): 108−116 doi: 10.3321/j.issn:0375-5444.1996.02.003
[15] 段建南, 李保国, 石元春, 等. 应用于土壤变化的坡面侵蚀过程模拟[J]. 土壤侵蚀与水土保持学报, 1998, 12(1): 47−53 DUAN J N, LI B G, SHI Y C, et al. Simulation on slope erosion process for soil change[J]. Journal of Soil and Water Conservation, 1998, 12(1): 47−53
[16] 王娇, 程维明, 祁生林, 等. 基于USLE和GIS的水土流失敏感性空间分析−以河北太行山区为例[J]. 地理研究, 2014, 33(4): 614−624 doi: 10.11821/dlyj201404002 WANG J, CHENG W M, QI S L, et al. Sensitive evaluation and spatial analysis of soil and water loss based on USLE and GIS: taking Taihang Mountain area of Hebei Province as an example[J]. Geographical Research, 2014, 33(4): 614−624 doi: 10.11821/dlyj201404002
[17] 何莎莎, 朱文博, 崔耀平, 等. 基于InVEST模型的太行山淇河流域土壤侵蚀特征研究[J]. 长江流域资源与环境, 2019, 28(2): 426−439 HE S S, ZHU W B, CUI Y P, et al. Study on soil erosion characteristics of Qihe watershed in Taihang Mountains based on the InVEST model[J]. Resources and Environment in the Yangtze Basin, 2019, 28(2): 426−439
[18] 高会, 刘金铜, 朱建佳, 等. 基于可持续发展的太行山区生态系统服务垂直分类管理[J]. 自然杂志, 2018, 40(1): 47−54 doi: 10.3969/j.issn.0253-9608.2018.01.007 GAO H, LIU J T, ZHU J J, et al. Ecosystem services management based on vertical variation for sustainable development of Taihang Mountain areas[J]. Chinese Journal of Nature, 2018, 40(1): 47−54 doi: 10.3969/j.issn.0253-9608.2018.01.007
[19] 王万忠, 焦菊英. 中国的土壤侵蚀因子定量评价研究[J]. 水土保持通报, 1996, 16(5): 1−20 WANG W Z, JIAO J Y. Qutantitative evaluation on factors influencing soil erosion in China[J]. Bulletin of Soil and Water Conservation, 1996, 16(5): 1−20
[20] 马志尊. 应用卫星影象估算通用土壤流失方程各因子值方法的探讨[J]. 中国水土保持, 1989(3): 24−27 MA Z Z. A method for determining factors of USLE by using satellite photos[J]. Soil and Water Conservation in China, 1989(3): 24−27
[21] 王秋霞. 花岗岩区崩壁土体水力侵蚀特征研究[D]. 武汉: 华中农业大学, 2018 WANG Q X. Characteristics of hydraulic erosion in each soil layers of collapsing wall in granite collapse region[D]. Wuhan: Huazhong Agricultural University, 2018
[22] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7−13 doi: 10.3321/j.issn:0564-3929.2007.01.002 ZHANG K L, PENG W Y, YANG H L. Soil erodibility and its estimation for agricultural soil in China[J]. Acta Pedologica Sinica, 2007, 44(1): 7−13 doi: 10.3321/j.issn:0564-3929.2007.01.002
[23] 王炳哲, 毕如田, 陈利根, 等. 基于USLE模型的滹沱河上游黄土区土壤侵蚀空间特征研究[J]. 中国农学通报, 2020, 36(7): 76−82 doi: 10.11924/j.issn.1000-6850.casb20190900654 WANG B Z, BI R T, CHEN L G, et al. Soil erosion in loess area of the upstream of the Hutuo River: spatial characteristics based on USLE model[J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 76−82 doi: 10.11924/j.issn.1000-6850.casb20190900654
[24] 刘新华. 区域水土流失地形因子分析与提取研究[D]. 杨凌: 西北农林科技大学, 2001 LIU X H. Analysis and extraction of topographic factor in regional soil and water loss[D]. Yangling: Northwest A & F University, 2001
[25] MCCOOL D K, BROWN L C, FOSTER G R, et al. Revised slope steepness factor for the universal soil loss equation[J]. Transactions of the ASAE, 1987, 30(5): 1387−1396 doi: 10.13031/2013.30576
[26] LIU B Y, NEARING M A, SHI P J, et al. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal, 2000, 64(5): 1759−1763 doi: 10.2136/sssaj2000.6451759x
[27] DE ASIS A M, OMASA K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 309−324 doi: 10.1016/j.isprsjprs.2007.05.013
[28] KNIJFF J M, JONES R J A, MONTANARELLA L. Soil erosion risk assessment in Europe[R]. EUR 19044 EN. Luxembourg: Office for Official Publications of the European Communities, 2000: 34
[29] 杨波, 王玉杰, 陈亚安. 石川河流域土壤侵蚀时空变化研究[J]. 地理空间信息, 2019, 17(5): 19−22, 4 doi: 10.3969/j.issn.1672-4623.2019.05.005 YANG B, WANG Y J, CHEN Y A. Research on spatio-temporal changes of soil erosion in Shichuan River watershed[J]. Geospatial Information, 2019, 17(5): 19−22, 4 doi: 10.3969/j.issn.1672-4623.2019.05.005
[30] 王超. 基于RS/GIS的渭河流域土壤侵蚀评价研究[D]. 西安: 西北大学, 2010 WANG C. RS and GIS based soil erosion assessment in Weihe Basin[D]. Xi’an: Northwest University, 2010
[31] 怡凯, 王诗阳, 王雪, 等. 基于RUSLE模型的土壤侵蚀时空分异特征分析−以辽宁省朝阳市为例[J]. 地理科学, 2015, 35(3): 365−372 YI K, WANG S Y, WANG X, et al. The characteristics of spatial-temporal differentiation of soil erosion based on RUSLE model: a case study of Chaoyang City, Liaoning Province[J]. Scientia Geographica Sinica, 2015, 35(3): 365−372
[32] 李天宏, 郑丽娜. 基于RUSLE模型的延河流域2001—2010年土壤侵蚀动态变化[J]. 自然资源学报, 2012, 27(7): 1164−1175 LI T H, ZHENG L N. Soil erosion changes in the Yanhe Watershed from 2001 to 2010 based on RUSLE model[J]. Journal of Natural Resources, 2012, 27(7): 1164−1175
[33] 中华人民共和国水利部. 土壤侵蚀分类分级标准: SL 190—2007[S]. 北京: 中国水利水电出版社, 2008 Ministry of Water Resources. Standards for classification and gradation of soil erosion: SL 190—2007[S]. Beijing: China WaterPower Press, 2008
[34] 王玉宽. 黄土丘陵沟壑区坡面径流侵蚀试验研究[J]. 中国水土保持, 1993(7): 26−28, 65 WANG Y K. Experimental study of soil erosion by overland runoff in the rolling gullied loess region[J]. Soil and Water Conservation in China, 1993(7): 26−28, 65
[35] 陈晓安, 蔡强国, 张利超, 等. 黄土丘陵沟壑区坡面土壤侵蚀的临界坡度[J]. 山地学报, 2010, 28(4): 415−421 doi: 10.3969/j.issn.1008-2786.2010.04.004 CHEN X A, CAI Q G, ZHANG L C, et al. Research on critical slope of soil erosion in a hilly loess region on the Loess Plateau[J]. Journal of Mountain Science, 2010, 28(4): 415−421 doi: 10.3969/j.issn.1008-2786.2010.04.004
[36] 李凤英, 何小武, 周春火. 坡度影响土壤侵蚀研究进展[J]. 水土保持研究, 2008, 15(6): 229−231 LI F Y, HE X W, ZHOU C H. Advances in researches on slope gradient factor in soil erosion[J]. Research of Soil and Water Conservation, 2008, 15(6): 229−231
[37] 许宁, 张广录, 刘紫玉. 基于地形梯度的河北省太行山区土地利用时空变异研究[J]. 中国生态农业学报, 2013, 21(10): 1284−1292 doi: 10.3724/SP.J.1011.2013.01284 XU N, ZHANG G L, LIU Z Y. Spatial-temporal variability of land use with terrain gradient in Taihang Mountain, Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1284−1292 doi: 10.3724/SP.J.1011.2013.01284
[38] 何莎莎, 叶露培, 朱文博, 等. 太行山淇河流域2000—2015年土壤侵蚀和水源供给变化研究[J]. 地理研究, 2018, 37(9): 1775−1788 HE S S, YE L P, ZHU W B, et al. Soil erosion and water supply change in Qihe watershed of Taihang Mountains from 2000 to 2015[J]. Geographical Research, 2018, 37(9): 1775−1788
[39] 朱建佳, 彭晓伟, 刘耀亮, 等. 基于InVEST模型的太行山区土壤侵蚀与土壤保持[J]. 河北科技师范学院学报, 2021, 35(4): 58−66 ZHU J J, PENG X W, LIU Y L, et al. Soil erosion and conservation in Taihang Mountain areas based on InVEST mode[J]. Journal of Hebei Normal University of Science & Technology, 2021, 35(4): 58−66
[40] 何莎莎. 基于InVEST模型的太行山淇河流域水土流失研究[D]. 郑州: 河南大学, 2018 HE S S. Study on soil and water loss characteristics of the Qihe River Basin in the Tianhang Mountain based on InVEST model[D]. Zhengzhou: Henan University, 2018
[41] 李子君, 于兴修. 冀北土石山区坡面尺度径流特征及其影响因素[J]. 农业工程学报, 2012, 28(17): 109−116 doi: 10.3969/j.issn.1002-6819.2012.17.016 LI Z J, YU X X. Characteristics of surface runoff and its influencing factors on slope scale in rocky mountain area of northern Hebei Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 109−116 doi: 10.3969/j.issn.1002-6819.2012.17.016