环境规制视角下农业基础设施对粮食生态全要素生产率的影响

李自强, 叶伟娇, 梅冬, 郑茨文

李自强, 叶伟娇, 梅冬, 郑茨文. 环境规制视角下农业基础设施对粮食生态全要素生产率的影响[J]. 中国生态农业学报 (中英文), 2022, 30(11): 1862−1876. DOI: 10.12357/cjea.20220214
引用本文: 李自强, 叶伟娇, 梅冬, 郑茨文. 环境规制视角下农业基础设施对粮食生态全要素生产率的影响[J]. 中国生态农业学报 (中英文), 2022, 30(11): 1862−1876. DOI: 10.12357/cjea.20220214
LI Z Q, YE W J, MEI D, ZHENG C W. Impacts of agricultural infrastructure on ecology total factor productivity of grain from the perspective of environmental regulation[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1862−1876. DOI: 10.12357/cjea.20220214
Citation: LI Z Q, YE W J, MEI D, ZHENG C W. Impacts of agricultural infrastructure on ecology total factor productivity of grain from the perspective of environmental regulation[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1862−1876. DOI: 10.12357/cjea.20220214

环境规制视角下农业基础设施对粮食生态全要素生产率的影响

基金项目: 教育部哲学社会科学重大攻关项目(20JZD015)、“十四五”国家重点研发计划项目(2021YFD1600505)资助
详细信息
    作者简介:

    李自强, 主要研究方向为资源与环境经济学。E-mail: liziqiang@webmail.hzau.edu.cn

    通讯作者:

    叶伟娇, 主要研究方向为粮食安全、资源环境经济与政策研究。E-mail: yeweijiao@163.com

  • 中图分类号: F326.11

Impacts of agricultural infrastructure on ecology total factor productivity of grain from the perspective of environmental regulation

Funds: This study was supported by the Key Project of Philosophy and Social Sciences Research, Ministry of Education of China (20JZD015), and the National Key Research and Development Program (2021YFD1600505).
More Information
  • 摘要: 保护生态环境前提下实现粮食增产是保障我国粮食安全可持续发展的重要前提。为探寻提升我国粮食生态全要素生产率的有效策略, 本研究在考虑粮食种植生态价值基础上, 运用Global-Malmquist-Luenberger (GML)指数测算出粮食生态全要素生产率, 以农业基础设施为切入点实证探究粮食生态全要素生产率的提升路径。结果表明: 1)农业基础设施各维度都能有效提高粮食生态全要素生产率, 但存在时间上的滞后性; 其中, 农业水利设施对其的影响呈“倒U型”关系。2)与全样本回归结果不同的是, 分南北样本回归结果显示南方地区农业水利设施及其滞后项对粮食生态全要素生产率不具有显著影响, 且农业电力设施及滞后项对其具有抑制作用; 分产区样本回归结果显示粮食主产区农业交通设施及其滞后项不能显著影响粮食生态全要素生产率, 同时, 非粮食主产区农业电力设施及滞后项对其也不具有显著影响。3)从调节作用检验结果看, 环境规制在农田水利设施对粮食生态全要素生产率的影响中具有正向调节作用。进一步研究发现, 分组调节回归结果中相对于粮食生态全要素生产率较高的区域, 在粮食生态全要素生产率较低区域内, 环境规制能够发挥更强的正向调节作用。据此, 建议政府应超前规划布局农业基础设施建设投资体系, 制定并宣传科学、合理、弹性的环境法规制度。

     

    Abstract: Increasing grain production while protecting the environment is an important prerequisite for ensuring sustainable development and food security of China. To explore effective strategies to improve the ecology total factor productivity of grain (ETFP) in China, this study used the Global-Malmquist-Luenberger (GML) index to measure the ETFP based on the ecological value of grain production. Based on the theory of public goods, we empirically explored the path to improve ETFP with agricultural infrastructure as the point of penetration. We found: (1) The ecological value of grain production per hectare in 30 provinces (cities, autonomous regions) of China increased from 1993 to 2019. The average ETFP during 1993–2019 generally showed a fluctuating upward trend. Among them, the ETFP of the Middle and Lower Reaches of the Yangtze River and the Northeast China were higher than the national average in most years. (2) Agricultural water conservancy facilities, agricultural electric power facilities, and agricultural transportation facilities can effectively improve ETFP, but there was a lag in time. Among these factors, the impact of agricultural water conservancy facilities on ETFP showed an “inverted U” shape. This finding suggests that there is an optimum value for the provision of agricultural field water conservancy facilities in the process of ecological food production. (3) In contrast to the full-sample regression results, the regression results of samples of northern and southern regions showed that the agricultural water conservancy facilities and their lag terms had no significant impact on ETFP, and the agricultural electric power facilities and their lag terms had a reducing effect on ETFP in southern region. The results of the sample regression showed that agricultural electric facilities and their lag items in main grain-producing areas had no significant impact on ETFP, while agricultural electric power facilities and their lag items in non-main grain-producing areas had no significant impact on ETFP. (4) The results of the moderating effect test indicated that environmental regulation had a positive moderating effect on ETFP. Further study found that, in the grouping regulation regression results, environmental regulation could play a stronger positive regulatory role in the region with a lower ETFP than in the region with a higher ETFP. Therefore, on the basis of this research, we recommend that the government should plan and invest in agricultural infrastructure construction in advance and formulate and publicize scientific, reasonable, and flexible environmental laws and regulations. This study innovatively incorporates the ecological value of grain production into the measurement of ETFP. While broadening the research boundary of agricultural infrastructure construction planning, it provides a basis for improving the ETFP in China.

     

  • 图  1   1993—2019年不同区域粮食种植生态价值变化特征

    Figure  1.   Characteristics of changes in ecological values of grain production in different regions from 1993 to 2019

    图  2   1993—2019年不同区域粮食生态全要素生产率(ETFP)累计增长情况

    Figure  2.   Cumulative growth of grain ecological total factor productivity (ETFP) in different regions from 1993 to 2019

    表  1   粮食生态全要素生产率测量指标

    Table  1   Measurement indicators of ecological total factor productivity of grain

    指标类别
    Indicator category
    指标
    Indicator
    计算方法
    Calculation method
    单位
    Unit
    期望产出
    Expected output
    粮食种植生态价值
    Ecological value of food cultivation
    通过生态系统服务价值评价法测算所得
    Measured by ecosysytem services value method
    无 No
    粮食产量
    Food production
    统计数据
    Statistics
    ×104 t
    非期望产出
    Undesired output
    面源污染
    Non-point source pollution
    农业面源污染×A
    Agricultural non-point source pollution×A
    ×104 t
    碳排放量
    Carbon emissions
    农业碳排放量×A
    Agricultural carbon emissions×A
    ×104 t
    投入要素
    Input element
    土地投入
    Land input
    粮食播种面积
    Grain sown area
    ×103 hm2
    劳动力投入
    Labor input
    第一产业从业人员×B
    Number of employees in primary industry×B
    ×104 persons
    化肥投入
    Fertilizer input
    化肥施用量×A
    Amount of chemical fertilizer applied×A
    ×104 t
    农药投入
    Pesticide input
    农药使用量×A
    Amount of pesticides used×A
    ×104 t
    机械投入
    Machinery input
    农业机械总动力×A
    Total power of agricultural machinery×A
    ×104 kW
    塑料薄膜投入
    Plastic film input
    农用塑料薄膜使用量×A
    Amount of agricultural plastic film used×A
    ×104 t
    水资源投入
    Water input
    农业用水量×A
    Amount of water used in agriculture×A
    ×108 m3
      A=粮食播种面积/农作物播种总面积; B=A×(农业产值/农林牧渔总产值)。A=grain sown area/total crop sown area; B=A×(agricultural output value/total output value of agriculture, forestry, animal husbandry and fishery)
    下载: 导出CSV

    表  2   粮食生态全要素生产率相关变量及计算方法

    Table  2   Variables and calculation methods of ecological total factor productivity of grain

    变量类别
    Variable category
    变量
    Variable
    符号
    Symbol
    计算方法
    Calculation method
    单位
    Unit
    被解释变量
    Explained variable
    粮食生态全要素生产率
    Ecology total factor productivity of grain
    ETFP通过Global-Malmquist-Luenberger指数测算所得
    Measured by the Global-Malmquist-Luenberger index
    无 No
    核心解释变量
    Core explanatory variables
    农业基础设施
    Agricultural infrastructure
    Infr
    农业水利设施
    Agricultural water conservancy facilities
    Irri有效灌溉面积/农作物播种面积
    Effective irrigated area/crop sown area
    无 No
    农业电力设施
    Agricultural electric power facilities
    Elec电力消费量×C
    Electricity consumption×C
    ×107 kW∙h
    农业交通设施
    Agricultural transportation facilities
    Road公路里程×耕地面积/省域国土面积
    Road mileage×arable land area/provincial land area
    ×104 km
    调节变量
    Moderator
    环境规制
    Environmental regulation
    Envi环境污染治理投资总额×C
    Total investment in environmental pollution control×C
    ×108 ¥
    控制变量
    Control variable
    户均耕地规模
    Average size of arable land per household
    Cult耕地面积/乡村户数
    Arable land area/number of rural households
    hm2∙household
    除涝面积
    Flood control area
    Logg统计数据
    Statistics
    ×106 hm2
    产业结构水平
    Industrial structure level
    Stru(第二产业增加值+第三产业增加值)/GDP总值
    (Value added of secondary sector+value added of tertiary sector)/gross GDP
    无 No
    农村固定资产投资
    Rural fixed asset investment
    Inve农村农户固定资产投资/乡村人口数
    Rural farm household fixed asset investment/number of rural population
    ×103 ¥∙person−1
    受灾率
    Disaster rate
    Disa农作物受灾面积/农作物总播种面积×100
    Crop affected area/total crop sown area×100
    %
    粮价波动
    Food price fluctuation
    Pric粮食商品零售价格指数
    Food commodity retail price index
    无 No
    技术密度
    Technology density
    Tech技术市场成交额×C/乡村从业人员数
    Technology market turnover×C/number of rural employees
    ×102 ¥∙person−1
      C=A×(农业总产值/GDP总值), A的计算方法见表1注。C=A×(total agricultural output value/GDP value). Caculation method of A is illustrated in the note of table 1.
    下载: 导出CSV

    表  3   农业基础设施与粮食生态全要素生产率回归结果

    Table  3   Regression results between grain ecological total factor productivity and agricultural infrastructure

    变量
    Variable
    因变量: 粮食生态全要素生产率 Dependent variable: grain ecological total factor productivity
    模型1
    Model 1
    模型2
    Model 2
    模型3
    Model 3
    模型4
    Model 4
    模型5
    Model 5
    模型6
    Model 6
    模型7
    Model 7
    模型8
    Model 8
    模型9
    Model 9
    模型10
    Model 10
    Irri1.574***
    (4.20)
    3.308***
    (3.18)
    1.855***
    (4.95)
    3.879***
    (3.75)
    Sq_Irri−1.514*
    (−1.78)
    −1.746**
    (−2.08)
    Elec1.166**
    (2.12)
    3.255**
    (2.10)
    1.116**
    (2.03)
    2.946*
    (1.93)
    Sq_Elec−4.869
    (−1.44)
    −3.839
    (−1.15)
    Road0.059***
    (3.42)
    0.112**
    (2.42)
    0.064***
    (3.71)
    0.127***
    (2.74)
    Sq_Road−0.004
    (−1.24)
    −0.005
    (−1.39)
    Lag_Irri1.952***
    (4.86)
    Lag_Elec0.850 (1.53)
    Lag_Road0.077***
    (4.43)
    Cult1.324***
    (8.37)
    1.369***
    (8.80)
    1.324***
    (8.49)
    1.310***
    (8.31)
    1.262***
    (7.91)
    1.223***
    (7.85)
    1.149***
    (7.03)
    1.253***
    (8.22)
    1.083***
    (6.79)
    1.263***
    (8.26)
    Logg0.208
    (1.57)
    0.219
    (1.59)
    0.183
    (1.34)
    0.157
    (1.17)
    0.129
    (0.96)
    0.045
    (0.33)
    0.036
    (0.27)
    −0.016
    (−0.11)
    −0.093
    (−0.68)
    −0.050
    (−0.36)
    Stru−0.716***
    (−3.58)
    −0.660***
    (−3.34)
    −0.664***
    (−3.36)
    −0.800***
    (−3.93)
    −0.859***
    (−4.14)
    −0.755***
    (−3.79)
    −0.770***
    (−3.86)
    −0.775***
    (−3.89)
    −0.860***
    (−4.24)
    −0.657***
    (−3.37)
    Inve−0.340***
    (−5.39)
    −0.377***
    (−5.99)
    −0.383***
    (−6.09)
    −0.352***
    (−5.57)
    −0.355***
    (−5.62)
    −0.349***
    (−5.55)
    −0.342***
    (−5.42)
    −0.404***
    (−6.46)
    −0.407***
    (−6.50)
    −0.405***
    (−6.43)
    Disa−0.251
    (−1.44)
    −0.264
    (−1.54)
    −0.277
    (−1.62)
    −0.245
    (−1.41)
    −0.243
    (−1.40)
    −0.214
    (−1.23)
    −0.204
    (−1.18)
    −0.219
    (−1.29)
    −0.217
    (−1.28)
    −0.167
    (−0.98)
    Pric0.164
    (0.31)
    0.0692
    (0.13)
    0.002
    (0.00)
    0.159
    (0.30)
    0.175
    (0.33)
    0.169
    (0.32)
    0.187
    (0.36)
    0.053
    (0.10)
    0.006
    (0.01)
    0.052
    (0.09)
    Tech0.030*
    (1.74)
    0.028
    (1.63)
    0.032*
    (1.88)
    0.035**
    (2.00)
    0.041**
    (2.30)
    0.035**
    (2.03)
    0.034**
    (1.99)
    0.037**
    (2.16)
    0.047***
    (2.67)
    0.038**
    (2.25)
    TimeYesYesYesYesYesYesYesYesYesYes
    IndYesYesYesYesYesYesYesYesYesYes
    Wald test561.77***596.62***602.48***569.97***573.50***583.85***586.75***636.17***652.65***616.01***
    Cons0.581
    (0.75)
    0.088
    (0.12)
    −0.150
    (−0.20)
    0.647
    (0.86)
    0.640
    (0.86)
    0.722
    (0.97)
    0.722
    (0.97)
    0.223
    (0.30)
    −0.058
    (−0.08)
    0.057
    (0.06)
    N810810810810810810810810810780
      Sq_Irri、Sq_Elec、Sq_Road分别表示Irri、Elec、Road的平方项; Lag_Irri、Lag_Elec、Lag_Road分别表示Irri、Elec、Road的一阶滞后项; Time表示时间效应; Ind表示个体效应; 其他变量说明见表2。***、**、*分别代表在P<0.01、P<0.05、P<0.1水平显著; 括号内的数为t值。Sq_Irri, Sq_Elec, and Sq_Road denote the squared terms of Irri, Elec, and Road, respectively; Lag_Irri, Lag_Elec, and Lag_Road denote the first-order lagged terms of Irri, Elec, and Road, respectively; Time denotes time effect; Ind denotes individual effect. The explaination of other variables are shown in the table 2. ***, ** and * denote significance at P<0.01, P<0.05, and P<0.1 levels, respectively. The numbers in parentheses are t-values.
    下载: 导出CSV

    表  4   南方和北方地区农业基础设施与粮食生态全要素生产率回归结果

    Table  4   Regression results of grain ecological total factor productivity and agricultural infrastructure in north and south regions

    变量 Variable因变量: 粮食生态全要素生产率 Dependent variable: grain ecological total factor productivity
    北方地区 North region南方地区 South region
    模型11
    Model 11
    模型12
    Model 12
    模型13
    Model 13
    模型14
    Model 14
    模型15
    Model 15
    模型16
    Model 16
    Irri3.118*** (6.77)−0.016 (−0.02)
    Elec1.872*** (3.24)−3.150** (−2.49)
    Road0.054** (2.16)0.071*** (2.76)
    Lag_Irri3.481*** (6.74)−0.145 (−0.20)
    Lag_Elec1.394** (2.36)−2.491* (−1.91)
    Lag_Road0.071*** (2.79)0.074*** (2.88)
    Cult1.719*** (10.10)1.603*** (10.00)1.585*** (9.66)0.183 (0.51)−0.050 (−0.13)0.019 (0.05)
    Logg1.306*** (3.56)0.700** (2.42)0.612** (2.26)−0.333** (−1.98)−0.350* (−1.91)−0.365** (−1.97)
    Stru−0.665*** (−3.27)−0.804*** (−4.11)−0.602*** (−3.13)−0.263 (−0.36)−0.518 (−0.65)−0.694 (−0.85)
    Inve−0.263*** (−2.94)−0.324*** (−3.86)−0.337*** (−3.93)−0.431*** (−4.97)−0.430*** (−4.72)−0.419*** (−4.57)
    Disa−0.073 (−0.30)−0.018 (−0.08)0.029 (0.13)−0.423 (−1.57)−0.358 (−1.34)−0.292 (−1.08)
    Pric−0.228 (−0.26)−0.225 (−0.27)0.259 (0.30)0.888 (1.20)0.90 (1.23)0.183 (0.22)
    Tech0.032 (1.63)0.025 (1.35)0.0329* (1.72)0.050 (1.53)0.023 (0.67)0.013 (0.37)
    TimeYesYesYesYesYesYes
    IndYesYesYesYesYesYes
    Wald test458.40***593.36***560.16***230.94***248.28***230.22***
    Cons−0.645 (−0.53)−1.290 (−1.14)−2.245* (−1.66)0.293 (0.24)0.616 (0.49)1.676 (1.15)
    N405405390405405390
      Lag_Irri、Lag_Elec、Lag_Road分别表示Irri、Elec、Road的一阶滞后项; Time表示时间效应; Ind表示个体效应; 其他变量说明见表2。***、**、*分别代表在 P<1%、P<5%、P<10%水平显著; 括号内的数为t值。Lag_Irri, Lag_Elec, and Lag_Road denote the first-order lagged terms of Irri, Elec, and Road, respectively; Time denotes time effect; Ind denotes individual effect. The explaination of other variables are shown in the table 2. ***, **, and * denote significance at P<1%, P<5%, and P<10% levels, respectively. The numbers in parentheses are t-values.
    下载: 导出CSV

    表  5   粮食主产区和非粮食主产区农业基础设施与粮食生态全要素生产率回归结果

    Table  5   Regression results of grain ecological total factor productivity and agricultural infrastructure in different grain production areas

    变量
    Variable
    因变量: 粮食生态全要素生产率 Dependent variable: ecological total factor productivity of grain
    粮食主产区 Main grain-producing areas 非粮食主产区 Non-main grain-producing areas
    模型17
    Model 17
    模型18
    Model 18
    模型19
    Model 19
    模型20
    Model 20
    模型21
    Model 21
    模型22
    Model 22
    Irri7.724*** (9.47)0.859** (2.20)
    Elec4.531*** (5.14)−0.787 (−1.22)
    Road−0.009 (−0.44)0.236*** (4.90)
    Lag_Irri8.250*** (9.68)0.651 (1.55)
    Lag_Elec3.004*** (3.29)−0.445 (−0.69)
    Lag_Road0.012 (0.56)0.251*** (5.41)
    Cult2.310*** (10.49)1.636*** (9.24)1.743*** (9.47)−0.176 (−0.82)−0.717*** (−3.00)−0.660*** (−2.86)
    Logg0.139 (0.83)−0.393*** (−2.71)−0.371** (−2.50)0.834 (1.05)−0.028 (−0.03)−0.474 (−0.54)
    Stru−0.770*** (−4.01)−1.083*** (−5.95)−0.591*** (−3.48)−0.621 (−0.86)−1.032 (−1.45)−1.082 (−1.51)
    Inve−0.113 (−0.94)−0.185* (−1.75)−0.241** (−2.22)−0.431*** (−6.10)−0.395*** (−5.60)−0.378*** (−5.38)
    Disa0.215 (0.81)0.0499 (0.22)0.180 (0.76)−0.383* (−1.72)−0.302 (−1.40)−0.183 (−0.85)
    Pric−0.759 (−0.98)−1.493** (−2.21)−0.566 (−0.69)0.922 (1.33)0.935 (1.39)0.620 (0.84)
    Tech0.113*** (3.31)0.115*** (3.47)0.0973*** (2.83)−0.011 (−0.55)−0.012 (−0.61)−0.014 (−0.71)
    TimeYesYesYesYesYesYes
    IndYesYesYesYesYesYes
    Wald test605.03***949.67***885.81***179.98***220.91***212.21***
    Cons0.859 (0.76)0.414 (0.43)−1.391 (−1.06)0.424 (0.39)0.746 (0.69)1.161 (0.93)
    N351351338459459442
      Lag_Irri、Lag_Elec、Lag_Road分别表示Irri、Elec、Road的一阶滞后项; Time表示时间效应; Ind表示个体效应; 其他变量说明见表2。***、**、*分别代表在 P<0.01、P<0.05、P<0.1水平显著; 括号内的数为t值。Lag_Irri, Lag_Elec, and Lag_Road denote the first-order lagged terms of Irri, Elec, and Road, respectively; Time denotes time effect; Ind denotes individual effect. The explaination of other variables are shown in the table 2. ***, **, and * denote significance at P<0.01, P<0.05, and P<0.1 levels, respectively. The numbers in parentheses are t-values.
    下载: 导出CSV

    表  6   环境规制在农业基础设施影响粮食生态全要素生产率中的调节作用

    Table  6   Test results of the moderating effect of environmental regulation on the impact of agricultural infrastructure on grain ecological total factor productivity

    变量
    Variable
    因变量: 粮食生态全要素生产率 Dependent variable: grain ecological total factor productivity
    模型23
    Model 23
    模型24
    Model 24
    模型25
    Model 25
    模型26
    Model 26
    模型27
    Model 27
    模型28
    Model 28
    Irri0.339** (2.57)0.294** (2.17)
    Irri×Envi0.0193* (1.78)
    Elec−0.621*** (−2.64)−0.674* (−1.92)
    Elec×Envi0.003 (0.20)
    Road0.040*** (4.68)0.037*** (2.75)
    Road×Envi0.0001 (0.29)
    Envi0.007*** (3.91)−0.001 (−0.20)0.009*** (4.16)0.009*** (2.80)0.002 (1.21)0.002 (0.82)
    Cult0.0848* (1.88)0.149*** (3.27)0.050 (1.09)0.050 (1.09)0.165*** (3.19)0.259*** (4.16)
    Logg−0.065*** (−2.92)−0.083*** (−3.78)0.017 (0.53)0.018 (0.55)−0.098*** (−3.01)−0.073** (−2.21)
    Stru0.066 (0.22)0.495* (1.87)−0.153** (−2.42)−0.154** (−2.43)0.473* (1.67)0.745** (1.97)
    Inve−0.012 (−0.43)−0.024 (−0.76)−0.044* (−1.81)−0.043* (−1.80)−0.015 (−0.40)0.005 (0.10)
    Disa−0.129 (−1.31)−0.243*** (−2.71)−0.067 (−1.18)−0.067 (−1.17)−0.284*** (−2.96)−0.371*** (−3.22)
    Pric0.075 (0.82)0.104 (1.43)−0.265 (−1.44)−0.266 (−1.45)0.051 (0.70)−0.030 (−0.35)
    Tech0.034* (1.70)0.041*** (2.61)0.018** (2.57)0.018** (2.50)0.045* (1.93)0.060* (1.95)
    TimeYesYesYesYesYesYes
    IndYesYesYesYesYesYes
    Wald test134.76***136.30***130.98***130.83***135.61***134.70***
    Cons2.491 (0.07)2.506 (0.05)2.646 (0.05)2.623 (0.07)2.541 (0.08)2.570 (0.05)
    N810810810810810810
      Irri×Envi、Elec×Envi和Road×Envi分别表示环境规制与农田水利设施、环境规制与农田电力设施和环境规制与农业交通设施的交互项; Time表示时间效应; Ind表示个体效应; 其他变量说明见表2。***、**、*分别代表在 P<0.01、 P<0.05、 P<0.1的水平上显著; 括号内的数为t值。Irri×Envi, Elec×Envi, and Road×Envi denote the interaction between environment regulaiton and Irri, Elec, and Road, respectively; Time denotes time effect; Ind denotes individual effect. The explaination of other variables are shown in the table 2. ***, **, and * denote significance at P<0.01, P<0.05, and P<0.1 levels, respectively. The numbers in parentheses are t-values.
    下载: 导出CSV

    表  7   环境规制在农业基础设施影响粮食生态全要素生产率中的调节作用的分组检验结果

    Table  7   Group test results of the moderating effect of environmental regulation on the impact of agricultural infrastructure on grain ecological total factor productivity

    变量
    Variable
    因变量: 粮食生态全要素生产率(ETFP) Dependent variable: grain ecological total factor productivity (ETFP)
    低ETFP组 Low ETFP group高ETFP组 High ETFP group
    模型29
    Model 29
    模型30
    Model 30
    模型31
    Model 31
    模型32
    Model 32
    模型33
    Model 33
    模型34
    Model 34
    Irri0.481*** (3.87)0.449*** (3.50)1.055*** (3.22)0.842* (1.90)
    Envi0.006*** (3.41)−0.004 (−0.89)0.012* (1.86)−0.003 (−0.12)
    Irri×Envi0.024** (2.43)0.044 (0.66)
    Cult0.086* (1.92)0.087* (1.75)0.105** (2.04)−0.028 (−0.48)−0.053 (−1.17)−0.050 (−1.11)
    Logg0.054* (1.93)0.042 (1.23)0.026 (0.75)−0.090** (−2.46)−0.157*** (−4.55)−0.157*** (−4.62)
    Stru−0.212 (−1.17)−0.341* (−1.70)−0.263 (−1.29)−0.236** (−2.24)−0.418*** (−3.15)−0.432*** (−3.15)
    Inve−0.026 (−1.17)−0.047** (−2.12)−0.053** (−2.38)0.066 (0.48)−0.003 (−0.02)−0.008 (−0.06)
    Disa0.067 (1.13)0.081 (1.40)0.081 (1.42)−0.476*** (−3.45)−0.483*** (−3.75)−0.487*** (−3.79)
    Pric−0.228 (−1.15)−0.246 (−1.28)−0.250 (−1.33)−0.738** (−2.07)−0.774** (−2.16)−0.780** (−2.17)
    Tech0.018*** (2.62)0.015**
    (2.15)
    0.015**
    (2.28)
    0.040
    (0.53)
    0.043
    (0.63)
    0.043 (0.64)
    TimeYesYesYesYesYesYes
    IndYesYesYesYesYesYes
    Wald test96.99***112.42***117.34***65.35***68.88***68.77***
    Cons2.295 (0.05)2.192 (0.05)2.095 (0.07)3.392 (0.06)3.311 (0.04)3.406 (0.04)
    N405405405405405405
      Irri×Envi表示环境规制与农田水利设施的交互项; Time表示时间效应; Ind表示个体效应; 其他变量说明见表2。***、**、*分别代表 P<0.01、P<0.05、P<0.1水平显著; 括号内的数为t值。Irri×Envi denotes the interaction between environment regulation and Irri; Time denotes time effect; Ind denotes individual effect. The explaination of other variables are shown in the table 2. ***, ** and * denote significance at P<0.01, P<0.05, and P<0.1 levels, respectively. The numbers in parentheses are t-values.
    下载: 导出CSV
  • [1] 罗斯炫, 何可, 张俊飚. 增产加剧污染?−基于粮食主产区政策的经验研究[J]. 中国农村经济, 2020(1): 108−131

    LUO S X, HE K, ZHANG J B. The more grain production, the more fertilizers pollution? empirical evidence from major grain-producing areas in China[J]. Chinese Rural Economy, 2020(1): 108−131

    [2] 何可, 宋洪远. 资源环境约束下的中国粮食安全: 内涵、挑战与政策取向[J]. 南京农业大学学报(社会科学版), 2021, 21(3): 45−57

    HE K, SONG H Y. China’s food security under the constraints of resources and environment: connotation, challenges and policy orientation[J]. Journal of Nanjing Agricultural University (Social Sciences Edition), 2021, 21(3): 45−57

    [3] 熊鹰, 何鹏. 绿色防控技术采纳行为的影响因素和生产绩效研究−基于四川省水稻种植户调查数据的实证分析[J]. 中国生态农业学报(中英文), 2020, 28(1): 136−146

    XIONG Y, HE P. Impact factors and production performance of adoption of green control technology: an empirical analysis based on the survey data of rice farmers in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 136−146

    [4] 辛宝贵, 高菲菲. 生态文明试点有助于生态全要素生产率提升吗?[J]. 中国人口·资源与环境, 2021, 31(5): 152−162

    XIN B G, GAO F F. Is the ecological civilization pilot reform conducive to the improvement of ecological total factor productivity?[J]. China Population, Resources and Environment, 2021, 31(5): 152−162

    [5] 周应恒, 杨宗之. 生态价值视角下中国省域粮食绿色全要素生产率时空特征分析[J]. 中国生态农业学报(中英文), 2021, 29(10): 1786−1799

    ZHOU Y H, YANG Z Z. Temporal and spatial characteristics of China’s provincial green total factor productivity of grains from the ecological value perspective[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1786−1799

    [6] 钱宸, 李凡, 李先德, 等. 基于农户经济和环境“双优”目标的粮食主产区化肥施用优化模拟分析−以邯郸地区小麦生产为例[J]. 自然资源学报, 2021, 36(6): 1481−1493 doi: 10.31497/zrzyxb.20210610

    QIAN C, LI F, LI X D, et al. Analysis of fertilizer-use optimization under the joint framework of economic rationality and environmental sustainability: evidence from wheat farmers in Handan, Hebei Province[J]. Journal of Natural Resources, 2021, 36(6): 1481−1493 doi: 10.31497/zrzyxb.20210610

    [7] 蔡保忠, 曾福生. 中国农业基础设施投资的粮食增产效应分析−基于省级面板数据的实证分析[J]. 农业技术经济, 2017(7): 31−40

    CAI B Z, ZENG F S. Analysis of grain yield increase effect of agricultural infrastructure investment in China: an empirical analysis based on provincial panel data[J]. Journal of Agrotechnical Economics, 2017(7): 31−40

    [8] 田红宇, 祝志勇. 农村劳动力转移、经营规模与粮食生产环境技术效率[J]. 华南农业大学学报(社会科学版), 2018, 17(5): 69−81

    TIAN H Y, ZHU Z Y. Rural labor migration, scale of operation and environmental technical efficiency of grain production[J]. Journal of South China Agricultural University (Social Science Edition), 2018, 17(5): 69−81

    [9] 展进涛, 徐钰娇. 环境规制、农业绿色生产率与粮食安全[J]. 中国人口·资源与环境, 2019, 29(3): 167−176

    ZHAN J T, XU Y J. Environmental regulation, agricultural green TFP and grain security[J]. China Population, Resources and Environment, 2019, 29(3): 167−176

    [10]

    TONE K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1): 32−41 doi: 10.1016/S0377-2217(01)00324-1

    [11]

    RAMANATHAN R, BLACK A, NATH P, et al. Impact of environmental regulations on innovation and performance in the UK industrial sector[J]. Management Decision, 2010, 48(10): 1493−1513 doi: 10.1108/00251741011090298

    [12]

    LI L, TSUNEKAWA A, TSUBO M, et al. Assessing total factor productivity and efficiency change for farms participating in Grain for Green program in China: a case study from Ansai, Loess Plateau[J]. Journal of Food Agriculture & Environment, 2010, 8: 1185−1192

    [13] 邓灿辉, 马巧云, 魏莉丽. 基于碳排放的河南省粮食绿色全要素生产率分析及对策建议[J]. 中国农业资源与区划, 2019, 40(9): 12−19

    DENG C H, MA Q Y, WEI L L. Analysis and countermeasures for green total factor productivity in Henan Province based on carbon emission[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(9): 12−19

    [14]

    CHEN Y F, WU Z G, ZHU T H, et al. Agricultural policy, climate factors and grain output: evidence from household survey data in rural China[J]. Journal of Integrative Agriculture, 2013, 12(1): 169−183 doi: 10.1016/S2095-3119(13)60217-8

    [15] 杨万平, 张振亚. 黄河流域与长江经济带生态全要素生产率对比研究[J]. 管理学刊, 2020, 33(5): 26−37 doi: 10.3969/j.issn.1674-6511.2020.05.003

    YANG W P, ZHANG Z Y. A comparative study of the ecological total factor productivities in Yellow River Basin and Yangtze River economic belt[J]. Journal of Management, 2020, 33(5): 26−37 doi: 10.3969/j.issn.1674-6511.2020.05.003

    [16] 赵明亮, 刘芳毅, 王欢, 等. FDI、环境规制与黄河流域城市绿色全要素生产率[J]. 经济地理, 2020, 40(4): 38−47

    ZHAO M L, LIU F Y, WANG H, et al. Foreign direct investment, environmental regulation and urban green total factor productivity of the Yellow River Basin[J]. Economic Geography, 2020, 40(4): 38−47

    [17] 关海玲, 武祯妮. 地方环境规制与绿色全要素生产率提升−是技术进步还是技术效率变动?[J]. 经济问题, 2020(2): 118−129

    GUAN H L, WU Z N. Local environmental regulation and green total factor productivity: is technological progress or technical efficiency change?[J]. On Economic Problems, 2020(2): 118−129

    [18] 马国群, 谭砚文. 环境规制对农业绿色全要素生产率的影响研究−基于面板门槛模型的分析[J]. 农业技术经济, 2021(5): 77−92

    MA G Q, TAN Y W. Impact of environmental regulation on agricultural green total factor productivity — analysis based on the panel threshold model[J]. Journal of Agrotechnical Economics, 2021(5): 77−92

    [19] 黄伟华, 祁春节, 方国柱, 等. 农业环境规制促进了小麦绿色全要素生产率的提升吗?[J]. 长江流域资源与环境, 2021, 30(2): 459−471

    HUANG W H, QI C J, FANG G Z, et al. Does the agricultural environment regulation promote the improvement of wheaten GTFP?[J]. Resources and Environment in the Yangtze Basin, 2021, 30(2): 459−471

    [20] 傅京燕, 胡瑾, 曹翔. 不同来源FDI、环境规制与绿色全要素生产率[J]. 国际贸易问题, 2018(7): 134−148

    FU J Y, HU J, CAO X. Different sources of FDI, environmental regulation and green total factor productivity[J]. Journal of International Trade, 2018(7): 134−148

    [21] 肖远飞, 吴允. 财政分权、环境规制与绿色全要素生产率−基于动态空间杜宾模型的实证分析[J]. 华东经济管理, 2019, 33(11): 15−23

    XIAO Y F, WU Y. Fiscal decentralization, environmental regulation and green total factor productivity — an empirical analysis based on dynamic spatial Durbin model[J]. East China Economic Management, 2019, 33(11): 15−23

    [22] 黄庆华, 胡江峰, 陈习定. 环境规制与绿色全要素生产率: 两难还是双赢?[J]. 中国人口·资源与环境, 2018, 28(11): 140−149

    HUANG Q H, HU J F, CHEN X D. Environmental regulation and green total factor productivity: dilemma or win-win?[J]. China Population, Resources and Environment, 2018, 28(11): 140−149

    [23] 朱晶, 晋乐. 农业基础设施、粮食生产成本与国际竞争力−基于全要素生产率的实证检验[J]. 农业技术经济, 2017(10): 14−24

    ZHU J, JIN Y. Agricultural infrastructure, food production costs and international competitiveness — an empirical test based on total factor productivity[J]. Journal of Agrotechnical Economics, 2017(10): 14−24

    [24] 蔡保忠, 曾福生. 农业基础设施的粮食增产效应评估−基于农业基础设施的类型比较视角[J]. 农村经济, 2018(12): 24−30

    CAI B Z, ZENG F S. Evaluation on effect of grain yield increase for agricultural infrastructure[J]. Rural Economy, 2018(12): 24−30

    [25] 邓晓兰, 鄢伟波. 农村基础设施对农业全要素生产率的影响研究[J]. 财贸研究, 2018, 29(4): 36−45

    DENG X L, YAN W B. Spillover effects of rural infrastructure on agricultural total factor productivity in China[J]. Finance and Trade Research, 2018, 29(4): 36−45

    [26] 李谷成, 尹朝静, 吴清华. 农村基础设施建设与农业全要素生产率[J]. 中南财经政法大学学报, 2015(1): 141−147 doi: 10.3969/j.issn.1003-5230.2015.01.018

    LI G C, YIN C J, WU Q H. Rural infrastructure development and total factor productivity in agriculture[J]. Journal of Zhongnan University of Economics and Law, 2015(1): 141−147 doi: 10.3969/j.issn.1003-5230.2015.01.018

    [27] 卓乐, 曾福生. 农村基础设施对粮食全要素生产率的影响[J]. 农业技术经济, 2018(11): 92−101

    ZHUO Y, ZENG F S. Research on the impact of rural infrastructure on total factor productivity of grain[J]. Journal of Agrotechnical Economics, 2018(11): 92−101

    [28]

    COSTANZA R, D’ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Ecological Economics, 1998, 25(1): 3−15 doi: 10.1016/S0921-8009(98)00020-2

    [29] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243−1254 doi: 10.11849/zrzyxb.2015.08.001

    XIE G D, ZHANG C X, ZHANG L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243−1254 doi: 10.11849/zrzyxb.2015.08.001

    [30] 赵小汎. 土地利用生态服务价值指标体系评估结果比较研究[J]. 长江流域资源与环境, 2016, 25(1): 98−105 doi: 10.11870/cjlyzyyhj201601012

    ZHAO X F. Comparison on evaluation result and index system of ecosystem service values based on land use[J]. Resources and Environment in the Yangtze Basin, 2016, 25(1): 98−105 doi: 10.11870/cjlyzyyhj201601012

    [31]

    OH D H. A global Malmquist-Luenberger productivity index[J]. Journal of Productivity Analysis, 2010, 34(3): 183−197 doi: 10.1007/s11123-010-0178-y

    [32] 赖斯芸, 杜鹏飞, 陈吉宁. 基于单元分析的非点源污染调查评估方法[J]. 清华大学学报(自然科学版), 2004, 44(9): 1184−1187 doi: 10.3321/j.issn:1000-0054.2004.09.009

    LAI S Y, DU P F, CHEN J N. Evaluation of non-point source pollution based on unit analysis[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(9): 1184−1187 doi: 10.3321/j.issn:1000-0054.2004.09.009

    [33] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013

    [34] 钟茂初, 李梦洁, 杜威剑. 环境规制能否倒逼产业结构调整−基于中国省际面板数据的实证检验[J]. 中国人口·资源与环境, 2015, 25(8): 107−115 doi: 10.3969/j.issn.1002-2104.2015.08.014

    ZHONG M C, LI M J, DU W J. Can environmental regulation force industrial structure adjustment: an empirical analysis based on provincial panel data[J]. China Population, Resources and Environment, 2015, 25(8): 107−115 doi: 10.3969/j.issn.1002-2104.2015.08.014

    [35] 赵丽平, 王雅鹏, 何可. 我国粮食生产的环境技术效率测度[J]. 华南农业大学学报(社会科学版), 2016, 15(3): 28−37

    ZHAO L P, WANG Y P, HE K. Measurement and analysis of environmental technology efficiency based on grain production[J]. Journal of South China Agricultural University (Social Science Edition), 2016, 15(3): 28−37

    [36] 徐海成, 徐思, 张蓓齐. 交通基础设施对绿色全要素生产率的影响研究−基于门槛效应的视角[J]. 生态经济, 2020, 36(1): 69−73, 85

    XU H C, XU S, ZHANG B Q. Research on the influence of transportation infrastructure on green total factor productivity based on the threshold effect[J]. Ecological Economy, 2020, 36(1): 69−73, 85

图(2)  /  表(7)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  258
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 录用日期:  2022-06-21
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-11-09

目录

    /

    返回文章
    返回