品种混作的生态学机制和筛选指导原则

侯赛赛, 王蕾, 许华森, 王红, 王鑫鑫

侯赛赛, 王蕾, 许华森, 王红, 王鑫鑫. 品种混作的生态学机制和筛选指导原则[J]. 中国生态农业学报 (中英文), 2023, 31(1): 1−10. DOI: 10.12357/cjea.20220508
引用本文: 侯赛赛, 王蕾, 许华森, 王红, 王鑫鑫. 品种混作的生态学机制和筛选指导原则[J]. 中国生态农业学报 (中英文), 2023, 31(1): 1−10. DOI: 10.12357/cjea.20220508
HOU S S, WANG L, XU H S, WANG H, WANG X X. Ecological mechanisms and guiding principles of mixed cropping of crop varieties[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 1−10. DOI: 10.12357/cjea.20220508
Citation: HOU S S, WANG L, XU H S, WANG H, WANG X X. Ecological mechanisms and guiding principles of mixed cropping of crop varieties[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 1−10. DOI: 10.12357/cjea.20220508

品种混作的生态学机制和筛选指导原则

基金项目: 华北作物改良与调控国家重点实验室自主课题(NCCIR2021ZZ-18)和国家重点研发计划项目(2021YFD1901001, 2021YFD1901004)资助
详细信息
    作者简介:

    侯赛赛, 主要研究方向为资源利用与植物保护。E-mail: hss11022021@163.com

    通讯作者:

    王鑫鑫, 主要研究方向为资源利用与植物保护、农业生态环境。E-mail: sywxx@hebau.edu.cn

  • 中图分类号: S5-33

Ecological mechanisms and guiding principles of mixed cropping of crop varieties

Funds: This study was supported by Independent Project of State Key Laboratory of Crop Improvement and Regulation in North China (NCCIR2021ZZ-18), and the National Key R&D Program of China (2021YFD1901001, 2021YFD1901004).
More Information
  • 摘要: 随着社会经济发展和人口的不断增加, 我国农业种植结构逐渐单一化, 农业系统的生物多样性急剧降低, 农业发展面临着确保粮食安全和可持续发展的挑战。本文回顾了生态学和农业研究中品种混作的生态学机制(互补效应、选择效应、抗病原菌机制、菌根共生机制和植物-土壤反馈效应), 分析了品种混作存在的潜在风险, 混作效果受品种、环境和管理方式等多方面的影响。对自然和农业系统中品种混作的研究表明, 品种混作提高了物种和物种内的遗传多样性, 多样性的提高通常有益于生态系统的功能, 在提高作物生产力和减少病虫害方面具有重要意义。本文总结了混作品种的筛选原则以及功能性状评价依据, 提出混作品种的筛选应基于功能性状、目标导向和实际的生产需求, 并以产量、产量稳定性和抗胁迫能力等指标对混作性能进行综合性评价。

     

    Abstract: With the development of social economy and the continuous increase in population, the agricultural planting structure in China has gradually simplified, and the biodiversity of the agricultural system has drastically reduced. Agricultural development faces the challenges of ensuring food security and sustainable development. In this article, we reviewed the ecological mechanism of mixed cropping of varieties of crops in ecology and agronomy researches from perspectives of complementary effect, selection effect, resistance to pathogens, mycorrhizal symbiosis, and plant-soil feedback effect; and described the potential risks, which are affected by variety, environment, and management aspects. Studies on mixed cropping of crops varieties in natural and agricultural systems have shown that biological and genetic diversity is usually beneficial to ecosystem function. Mixed cropping of varieties improves biodiversity, which is of great significance for improving crop productivity and reducing pests and diseases. We summarized the screening principles and basis of functional trait evaluation of mixed cropping of crops varieties. The selection of varieties should be based on functional traits and goal-oriented and actual production needs, and the performance of varieties should be comprehensively evaluated by yield, yield stability, and stress resistance.

     

  • 图  1   作物品种混作稳产增产的生态学机制

    Figure  1.   Ecological mechanism of mixed cropping of crop varieties

    图  2   混作品种筛选的指导原则和功能性状评价依据

    Figure  2.   Guide principles for screening varieties and basis for functional traits evaluation of mixed cropping of crop varieties

  • [1] 翁卫华, 陈烈光, 孙加焱, 等. 混作的作物保护机理及应用综述[J]. 农学学报, 2017, 7(2): 15−19 doi: 10.11923/j.issn.2095-4050.cjas16080022

    WENG W H, CHEN L G, SUN J Y, et al. Mechanism and application of mixed cropping in crop protection: a review[J]. Journal of Agriculture, 2017, 7(2): 15−19 doi: 10.11923/j.issn.2095-4050.cjas16080022

    [2]

    MARIOTTE P. Do subordinate species punch above their weight? Evidence from above- and below-ground[J]. The New Phytologist, 2014, 203(1): 16−21 doi: 10.1111/nph.12789

    [3]

    BONNIN I, BONNEUIL C, GOFFAUX R, et al. Explaining the decrease in the genetic diversity of wheat in France over the 20th Century[J]. Agriculture, Ecosystems & Environment, 2014, 195: 183−192

    [4]

    ØSTERGÅRD H, FINCKH M R, FONTAINE L, et al. Time for a shift in crop production: Embracing complexity through diversity at all levels[J]. Journal of the Science of Food and Agriculture, 2009, 89(9): 1439−1445 doi: 10.1002/jsfa.3615

    [5]

    LOEUILLE N, BAROT S, GEORGELIN E, et al. Eco-evolutionary dynamics of agricultural networks: implications for sustainable management[J]. Advances in Ecological Research, 2013, 49(49): 339−435

    [6]

    TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science, 2010, 327(5967): 818−822 doi: 10.1126/science.1183700

    [7]

    CHATEIL C, GOLDRINGER I, TARALLO L, et al. Crop genetic diversity benefits farmland biodiversity in cultivated fields[J]. Agriculture, Ecosystems & Environment, 2013, 171: 25−32

    [8]

    PARKER J D, SALMINEN J P, AGRAWAL A A. Herbivory enhances positive effects of plant genotypic diversity[J]. Ecology Letters, 2010, 13(5): 553−563 doi: 10.1111/j.1461-0248.2010.01452.x

    [9]

    KOTOWSKA A M, CAHILL J F, KEDDIE B A. Plant genetic diversity yields increased plant productivity and herbivore performance[J]. Journal of Ecology, 2010, 98(1): 237−245 doi: 10.1111/j.1365-2745.2009.01606.x

    [10]

    COOK-PATTON S C, MCART S H, PARACHNOWITSCH A L, et al. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function[J]. Ecology, 2011, 92(4): 915−923 doi: 10.1890/10-0999.1

    [11]

    HUGHES A R, STACHOWICZ J J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(24): 8998−9002 doi: 10.1073/pnas.0402642101

    [12]

    HOWDEN S M, SOUSSANA J F, TUBIELLO F N, et al. Adapting agriculture to climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19691−19696 doi: 10.1073/pnas.0701890104

    [13] 王宇坤, 丁新峰, 王小平, 等. 内蒙古典型草原建群种羊草基因型多样性抑制群落物种多样性的生态功能[J]. 生态学报, 2019, 39(5): 1507−1516

    WANG Y K, DING X F, WANG X P, et al. Genotypic diversity of a dominant species Leymus chinensis inhibited ecological function of species diversity in the Inner Mongolia steppe[J]. Acta Ecologica Sinica, 2019, 39(5): 1507−1516

    [14]

    ALTIERI M A. The ecological role of biodiversity in agroecosystems[J]. Agriculture, Ecosystems & Environment, 1999, 74(1/2/3): 19−31

    [15]

    GABA S, LESCOURRET F, BOUDSOCQ S, et al. Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design[J]. Agronomy for Sustainable Development, 2015, 35(2): 607−623 doi: 10.1007/s13593-014-0272-z

    [16]

    CRUTSINGER G M, COLLINS M D, FORDYCE J A, et al. Plant genotypic diversity predicts community structure and governs an ecosystem process[J]. Science, 2006, 313(5789): 966−968 doi: 10.1126/science.1128326

    [17] 李满有, 马忠仁, 王斌, 等. 宁夏引黄灌区2个苜蓿品种不同行比混播模式研究[J]. 草地学报, 2021, 29(4): 798−804

    LI M Y, MA Z R, WANG B, et al. Study on the mixed planting mode of two alfalfa varieties in different row ratios in the Yellow River irrigation area in Ningxia[J]. Acta Agrestia Sinica, 2021, 29(4): 798−804

    [18]

    GUNTON R M. Integrating associational resistance into arable weed management[J]. Agriculture, Ecosystems & Environment, 2011, 142(3/4): 129−136

    [19]

    ZHU Y, CHEN H, FAN J, et al. Genetic diversity and disease control in rice[J]. Nature, 2000, 406(6797): 718−722 doi: 10.1038/35021046

    [20]

    VOLKOVA G, GLADKOVA E, MIROSHNICHENKO O. Effectiveness of growing wheat-variety blends in reducing damage caused by stem-rust (Puccinia graminis pers. f. sp. tritici Erikss. et Henn., the Causal Agent)[J]. Russian Agricultural Sciences, 2021, 47(5): 490−494 doi: 10.3103/S1068367421050177

    [21] 马建华, 赵紫华, 张蓉. 品种混播对苜蓿产量及主要害虫种群密度的调控[J]. 草业科学, 2017, 34(12): 2521−2527 doi: 10.11829/j.issn.1001-0629.2017-0018

    MA J H, ZHAO Z H, ZHANG R. Sowing a mixture of alfalfa modulates the population density of alfalfa pests[J]. Pratacultural Science, 2017, 34(12): 2521−2527 doi: 10.11829/j.issn.1001-0629.2017-0018

    [22]

    REISS E R, DRINKWATER L E. Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield[J]. Ecological Applications, 2018, 28(1): 62−77 doi: 10.1002/eap.1629

    [23] 李满有, 李东宁, 王斌, 等. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61−75 doi: 10.11686/cyxb2021109

    LI M Y, LI D N, WANG B, et al. The effect of mixed sowing and sowing rate of different alfalfa varieties on the yield and quality of forage[J]. Acta Prataculturae Sinica, 2022, 31(5): 61−75 doi: 10.11686/cyxb2021109

    [24] 胡旦旦, 李荣发, 刘鹏, 等. 密植条件下玉米品种混播提高籽粒灌浆性能和产量[J]. 中国农业科学, 2021, 54(9): 1856−1868 doi: 10.3864/j.issn.0578-1752.2021.09.004

    HU D D, LI R F, LIU P, et al. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities[J]. Scientia Agricultura Sinica, 2021, 54(9): 1856−1868 doi: 10.3864/j.issn.0578-1752.2021.09.004

    [25]

    MARIOTTE P, MEHRABI Z, BEZEMER T M, et al. Plant-soil feedback: bridging natural and agricultural sciences[J]. Trends in Ecology & Evolution, 2018, 33(2): 129−142

    [26] 李越, 曹瑾, 汪春明, 等. 蚕豆间作栽培对连作马铃薯根际土壤微生物的影响[J]. 农业科学研究, 2017, 38(2): 8−13 doi: 10.3969/j.issn.1673-0747.2017.02.002

    LI Y, CAO J, WANG C M, et al. Effects of potato/Faba bean intercropping on the potato rhizosphere soil microbial community[J]. Journal of Agricultural Sciences, 2017, 38(2): 8−13 doi: 10.3969/j.issn.1673-0747.2017.02.002

    [27] 何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021−1035 doi: 10.17521/cjpe.2019.0122

    HE Y Y, GUO S L, WANG Z. Research progress of trade-off relationships of plant functional traits[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1021−1035 doi: 10.17521/cjpe.2019.0122

    [28]

    SHOSTAK S. Darwinian agriculture: how understanding evolution can improve agriculture[J]. The European Legacy, 2014, 19: 813−814 doi: 10.1080/10848770.2014.949980

    [29]

    RICHARDS R A. Selectable traits to increase crop photosynthesis and yield of grain crops[J]. Journal of Experimental Botany, 2000, 51(suppl_1): 447−458 doi: 10.1093/jexbot/51.suppl_1.447

    [30]

    WITCOMBE J R, HOLLINGTON P A, HOWARTH C J, et al. Breeding for abiotic stresses for sustainable agriculture[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2008, 363(1492): 703−716 doi: 10.1098/rstb.2007.2179

    [31]

    HETRICK B A D, WILSON G W T, COX T S. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors[J]. Canadian Journal of Botany, 1992, 70(10): 2032−2040 doi: 10.1139/b92-253

    [32]

    RANDALL H A, HANLEY T C, SCHENCK F R, et al. Genetic diversity of seagrass seeds influences seedling morphology and biomass.[J]. Ecology, 2016, 97(12): 3538−3546 doi: 10.1002/ecy.1587

    [33]

    CRAWFORD K M, WHITNEY K D. Population genetic diversity influences colonization success[J]. Molecular Ecology, 2010, 19(6): 1253−1263 doi: 10.1111/j.1365-294X.2010.04550.x

    [34] 赵亚丽, 康杰, 刘天学, 等. 不同基因型玉米间混作优势带型配置[J]. 生态学报, 2013, 33(12): 3855−3864 doi: 10.5846/stxb201211131593

    ZHAO Y L, KANG J, LIU T X, et al. Optimum stripe arrangement for inter-cropping and mixed-cropping of different maize (Zea mays L.) genotypes[J]. Acta Ecologica Sinica, 2013, 33(12): 3855−3864 doi: 10.5846/stxb201211131593

    [35]

    LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 413(6855): 548

    [36]

    FOX J W. Interpreting the “selection effect” of biodiversity on ecosystem function[J]. Ecology Letters, 2005, 8: 846−856 doi: 10.1111/j.1461-0248.2005.00795.x

    [37]

    LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412(6842): 72−76 doi: 10.1038/35083573

    [38] 杨雪, 申俊芳, 赵念席, 等. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359−368 doi: 10.17521/cjpe.2015.0257

    YANG X, SHEN J F, ZHAO N X, et al. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis[J]. Chinese Journal of Plant Ecology, 2017, 41(3): 359−368 doi: 10.17521/cjpe.2015.0257

    [39] 孙建财, 杨沙, 武玉坤, 等. 高寒混播草地优势草种生态位与种间竞争力分析[J]. 草地学报, 2022, 30(5): 1273−1279

    SUN J C, YANG S, WU Y K, et al. Niche and interspecific competitiveness of dominant herbage cultivar in alpine mixture artificial grassland[J]. Acta Agrestia Sinica, 2022, 30(5): 1273−1279

    [40] 王云奇. 限水灌溉下冬小麦品种间、混作产量形成和水分利用研究[D]. 北京: 中国农业大学, 2017

    WANG Y Q. Study on yield formation and water use in winter wheat cultivar intercropping and mixture cropping under limited irrigation[D]. Beijing: China Agricultural University, 2017

    [41] 彭政岚, 钟云峰, 车成美, 等. 不同比例水稻品种混播对稻米品质的影响[J]. 四川农业科技, 2022(1): 13−15, 19 doi: 10.3969/j.issn.1004-1028.2022.01.005

    PENG Z L, ZHONG Y F, CHE C M, et al. Effects of mixed sowing with different proportions of rice varieties on rice quality[J]. Sichuan Agricultural Science and Technology, 2022(1): 13−15, 19 doi: 10.3969/j.issn.1004-1028.2022.01.005

    [42] 平西栓, 邢冉冉, 刘天学. 不同玉米品种间作的互补抗逆增产效应[J]. 甘肃农业大学学报, 2020, 55(2): 62−67

    PING X S, XING R R, LIU T X. Complementary effect of anti-adversity and yield in different maize (Zea mays L.) genotypes intercropping system[J]. Journal of Gansu Agricultural University, 2020, 55(2): 62−67

    [43] 李铭丰. 不同株型大豆品种混合种植增产机理初探[J]. 大豆科技, 2011(4): 23−27 doi: 10.3969/j.issn.1674-3547.2011.04.006

    LI M F. Studies on increasing yield of different plant types soybean in mixed planting[J]. Soybean Science & Technology, 2011(4): 23−27 doi: 10.3969/j.issn.1674-3547.2011.04.006

    [44] 朱敏, 史振声, 李凤海, 等. 不同基因型玉米混作研究初报[J]. 中国种业, 2010(8): 63−65 doi: 10.3969/j.issn.1671-895X.2010.08.025

    ZHU M, SHI Z S, LI F H, et al. Preliminary report on mixed cropping of maize with different genotypes[J]. China Seed Industry, 2010(8): 63−65 doi: 10.3969/j.issn.1671-895X.2010.08.025

    [45] 程乐根, 李安德, 胡峰云, 等. 水稻异品种混播栽培技术初探[J]. 湖南农业科学, 2008(3): 29−30, 33 doi: 10.3969/j.issn.1006-060X.2008.03.011

    CHENG L G, LI A D, HU F Y, et al. Preliminary study on hybrid cultivation technology of rice varieties[J]. Hunan Agricultural Sciences, 2008(3): 29−30, 33 doi: 10.3969/j.issn.1006-060X.2008.03.011

    [46] 李潮海, 苏新宏, 孙敦立. 不同基因型玉米间作复合群体生态生理效应[J]. 生态学报, 2002, 22(12): 2096−2103 doi: 10.3321/j.issn:1000-0933.2002.12.012

    LI C H, SU X H, SUN D L. Ecophysiological characterization of different maize (Zea mays L.) genotypes under mono- or inter-cropping conditions[J]. Acta Ecologica Sinica, 2002, 22(12): 2096−2103 doi: 10.3321/j.issn:1000-0933.2002.12.012

    [47]

    MARQUARD E, WEIGELT A, ROSCHER C, et al. Positive biodiversity-productivity relationship due to increased plant density[J]. Journal of Ecology, 2009, 97(4): 696−704 doi: 10.1111/j.1365-2745.2009.01521.x

    [48] 任文, 张志新, 蔺昶兴, 等. 混播比例对高寒草地红豆草-垂穗披碱草混播群落生物量分配与竞争的影响[J]. 草业科学, 2020, 37(10): 2035−2048 doi: 10.11829/j.issn.1001-0629.2019-0620

    REN W, ZHANG Z X, LIN C X, et al. Effects of mixed seeding ratio on biomass allocation and competition of Onobrychis viciifolia and Elymus nutans under cold conditions in the Tianzhu alpine region[J]. Pratacultural Science, 2020, 37(10): 2035−2048 doi: 10.11829/j.issn.1001-0629.2019-0620

    [49] 蒋曦龙, 王澜, 乔月彤, 等. 混播对黄淮海8个主推小麦品种产量、农艺性状和籽粒锌浓度的影响[J]. 山东农业科学, 2021, 53(4): 34−40

    JIANG X L, WANG L, QIAO Y T, et al. Effects of mixed culture on yield, agronomic characters and grain zinc content of eight winter wheat cultivars mainly popularized in the Huanghe-Huaihe-Haihe region[J]. Shandong Agricultural Sciences, 2021, 53(4): 34−40

    [50] 初炳瑶, 陈法军, 马占鸿. 农业生物多样性控制作物病虫害的方法与原理[J]. 应用昆虫学报, 2020, 57(1): 28−40 doi: 10.7679/j.issn.2095-1353.2020.004

    CHU B Y, CHEN F J, MA Z H. Principles of using agricultural biodiversity to control pests and crop diseases[J]. Chinese Journal of Applied Entomology, 2020, 57(1): 28−40 doi: 10.7679/j.issn.2095-1353.2020.004

    [51]

    RISCH S J, ANDOW D, ALTIERI M A. Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions[J]. Environmental Entomology, 1983, 12(3): 625−629 doi: 10.1093/ee/12.3.625

    [52]

    BURGHARDT K T. Nutrient supply alters goldenrod’s induced response to herbivory[J]. Functional Ecology, 2016, 30(11): 1769−1778 doi: 10.1111/1365-2435.12681

    [53]

    REGOES R R, NOWAK M A, BONHOEFFER S. Evolution of virulence in a heterogeneous host population[J]. Evolution, 2000, 54(1): 64−71 doi: 10.1111/j.0014-3820.2000.tb00008.x

    [54] 胡新, 许艳丽, 李春杰. 利用作物多样性控制病害研究进展[J]. 农业系统科学与综合研究, 2011, 27(1): 118−122

    HU X, XU Y L, LI C J. Research progress of using crop diversity on control plant disease[J]. System Sciences and Comprehensive Studies in Agriculture, 2011, 27(1): 118−122

    [55]

    MOMMER L, COTTON T E A, RAAIJMAKERS J M, et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity[J]. New Phytologist, 2018, 218(2): 542−553 doi: 10.1111/nph.15036

    [56] 王光州, 贾吉玉, 张俊伶. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展[J]. 生态学报, 2021, 41(23): 9130−9143

    WANG G Z, JIA J Y, ZHANG J L. Plant soil feedback theory and its applications and prospects in natural and agricultural ecosystems[J]. Acta Ecologica Sinica, 2021, 41(23): 9130−9143

    [57] 傅秀林, 吴长明, 金京花. 水稻不同抗癌类型品种(系)混植组合体的选配研究──Ⅱ. 混植组合体的选配[J]. 吉林农业科学, 1996, 21(4): 1−5

    FU X L, WU C M, JIN J H. Breeding study of the mixing rice-blast-resistant variety in rice ── Ⅱ. breeding result of the mixing rice-blast-resistant variety[J]. Jilin Agricultural Sciences, 1996, 21(4): 1−5

    [58] 王光州. 土壤微生物调节植物种间互作和多样性—生产力关系的机制[D]. 北京: 中国农业大学, 2018

    WANG G Z. Mechanisms of soil microbiome in mediating interspecific interactions and plant diversity-productivity relationship[D]. Beijing: China Agricultural University, 2018

    [59] 房辉, 周江鸿, 王云月, 等. 优化水稻群体种植模式与稻瘟病控制研究[J]. 中国农业科学, 2007, 40(5): 916−924

    FANG H, ZHOU J H, WANG Y Y, et al. Optimizing cultivation patterns for rice blast control[J]. Scientia Agricultura Sinica, 2007, 40(5): 916−924

    [60] 李鸿雁, 刘乾, 李叶, 等. 小麦不同品种间作和混作对麦蚜发生量的影响[J]. 中国农学通报, 2020, 36(30): 135−142

    LI H Y, LIU Q, LI Y, et al. Intercropping and mixed cropping of wheat varieties: effects on wheat aphid occurrence[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 135−142

    [61]

    SCHNITZER S A, KLIRONOMOS J N, HILLERISLAMBERS J, et al. Soil microbes drive the classic plant diversity-productivity pattern[J]. Ecology, 2011, 92(2): 296−303 doi: 10.1890/10-0773.1

    [62]

    MARON J L, MARLER M, KLIRONOMOS J N, et al. Soil fungal pathogens and the relationship between plant diversity and productivity[J]. Ecology Letters, 2011, 14(1): 36−41 doi: 10.1111/j.1461-0248.2010.01547.x

    [63]

    WANG G Z, SCHULTZ P, TIPTON A, et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species[J]. Ecology Letters, 2019, 22(8): 1221−1232 doi: 10.1111/ele.13273

    [64]

    WOLFE M S. The current status and prospects of multiline cultivars and variety mixtures for disease resistance[J]. Annual Review of Phytopathology, 1985, 23: 251−273 doi: 10.1146/annurev.py.23.090185.001343

    [65]

    TOOKER J F, FRANK S D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields[J]. Journal of Applied Ecology, 2012, 49(5): 974−985 doi: 10.1111/j.1365-2664.2012.02173.x

    [66] 刘鸿飞. AMF在撂荒植被演替过程中的生态效应及其对种间关系的影响机制[D]. 杨凌: 西北农林科技大学, 2019

    LIU H F. Ecological effects of AMF in the process of abandoned vegetation succession and its influence on interspecific relationships[D]. Yangling: Northwest A & F University, 2019

    [67]

    CORDIER C, GIANINAZZI S, GIANINAZZI-PEARSON V. Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato[J]. Plant and Soil, 1996, 185(2): 223−232 doi: 10.1007/BF02257527

    [68]

    DAWO M I, WILKINSON J M, PILBEAM D J. Interactions between plants in intercropped maize and common bean[J]. Journal of the Science of Food and Agriculture, 2009, 89(1): 41−48 doi: 10.1002/jsfa.3408

    [69]

    LI Y F, RAN W, ZHANG R P, et al. Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system[J]. Plant and Soil, 2009, 315(1/2): 285−296

    [70]

    WANG X X, WERF W, YU Y, et al. Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: Yield gains and possible fertilizer savings in relation to phosphorus application[J]. Plant and Soil, 2020, 450(1/2): 613−624

    [71] 龙显莉. 氮施肥条件下丛枝菌根真菌对植物种间相互作用影响的研究[D]. 兰州: 兰州大学, 2017

    LONG X L. Arbuscular myccorrhizal fungi alters the plant interspecific interaction under the application of nitrogen[D]. Lanzhou: Lanzhou University, 2017

    [72]

    RASHIDI S, YOUSEFI A R, POURYOUSEF M, et al. Effect of arbuscular mycorrhizal fungi on the accumulation of secondary metabolites in roots and reproductive organs of Solanum nigrum,Digitaria sanguinalis and Ipomoea purpurea[J]. Chemical and Biological Technologies in Agriculture, 2022, 9: 23 doi: 10.1186/s40538-022-00288-1

    [73]

    WANG X X, HOFFLAND E, FENG G, et al. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize[J]. Frontiers in Plant Science, 2017, 8: 684 doi: 10.3389/fpls.2017.00684

    [74]

    MAHERALI H, KLIRONOMOS J N. Influence of phylogeny on fungal community assembly and ecosystem functioning[J]. Science, 2007, 316(5832): 1746−1748 doi: 10.1126/science.1143082

    [75]

    HAZARD C, JOHNSON D. Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function?[J]. The New Phytologist, 2018, 220(4): 1122−1128 doi: 10.1111/nph.15010

    [76]

    POWELL J R, RILLIG M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. The New Phytologist, 2018, 220(4): 1059−1075 doi: 10.1111/nph.15119

    [77]

    WANG X X, HOFFLAND E, MOMMER L, et al. Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists[J]. Mycorrhiza, 2019, 29(3): 251−261 doi: 10.1007/s00572-019-00885-3

    [78]

    WANG X X. Variation in phosphorus acquisition efficiency among maize varieties as related to mycorrhizal functioning[D]. Wageningen: Wageningen University and Research, 2016. DOI: 10.18174/379596

    [79]

    YACHI S, LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463−1468 doi: 10.1073/pnas.96.4.1463

    [80]

    MONTESINOS-NAVARRO A, SEGARRA-MORAGUES J G, VALIENTE-BANUET A, et al. Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi[J]. The New phytologist, 2012, 196(3): 835−844 doi: 10.1111/j.1469-8137.2012.04290.x

    [81]

    SCHEUBLIN T R, VAN LOGTESTIJN R S P, VAN DER HEIJDEN M G A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species[J]. Journal of Ecology, 2007, 95(4): 631−638 doi: 10.1111/j.1365-2745.2007.01244.x

    [82]

    WALDER F, NIEMANN H, NATARAJAN M, et al. Mycorrhizal networks: common goods of plants shared under unequal terms of trade[J]. Plant Physiology, 2012, 159(2): 789−797 doi: 10.1104/pp.112.195727

    [83]

    DE DEYN G B, QUIRK H, OAKLEY S, et al. Increased plant carbon translocation linked to overyielding in grassland species mixtures[J]. PLoS One, 2012, 7(9): e45926 doi: 10.1371/journal.pone.0045926

    [84]

    WEI Z, JOUSSET A. Plant breeding goes microbial[J]. Trends in Plant Science, 2017, 22(7): 555−558 doi: 10.1016/j.tplants.2017.05.009

    [85]

    REYNOLDS H L, PACKER A, BEVER J D, et al. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics[J]. Ecology, 2003, 84(9): 2281−2291 doi: 10.1890/02-0298

    [86]

    MONTESINOS-NAVARRO A, VALIENTE-BANUET A, VERDÚ M. Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions[J]. Fungal Ecology, 2019, 40: 98−106 doi: 10.1016/j.funeco.2018.05.003

    [87]

    BEVER J D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests[J]. New Phytologist, 2003, 157(3): 465−473 doi: 10.1046/j.1469-8137.2003.00714.x

    [88]

    CONG W F, VAN RUIJVEN J, MOMMER L, et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes[J]. Journal of Ecology, 2014, 102(5): 1163−1170 doi: 10.1111/1365-2745.12280

    [89]

    CONG W F, VAN RUIJVEN J, VAN DER WERF W, et al. Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil[J]. Soil Biology and Biochemistry, 2015, 80: 341−348 doi: 10.1016/j.soilbio.2014.10.017

    [90] 林伟伟, 李娜, 陈丽珊, 等. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响[J]. 中国生态农业学报(中英文), 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222

    LIN W W, LI N, CHEN L S, et al. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26−37 doi: 10.12357/cjea.20210222

    [91]

    HAGHSHENAS A, EMAM Y, SEPASKHAH A R, et al. Can extended phenology in wheat cultivar mixtures mitigate post-anthesis water stress?[J]. European Journal of Agronomy, 2021, 122: 126188 doi: 10.1016/j.eja.2020.126188

    [92]

    BURNS J H, STRAUSS S Y. Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits[J]. Ecology, 2012, 93(sp8): S126−S137 doi: 10.1890/11-0401.1

    [93]

    ZHU J Q, WERF W, ANTEN N P R, et al. The contribution of phenotypic plasticity to complementary light capture in plant mixtures[J]. New Phytologist, 2015, 207(4): 1213−1222 doi: 10.1111/nph.13416

    [94]

    WANG X X, LI H B, CHU Q, et al. Mycorrhizal impacts on root trait plasticity of six maize varieties along a phosphorus supply gradient[J]. Plant and Soil, 2020, 448(1/2): 71−86

    [95]

    WANG X X, HOFFLAND E, FENG G, et al. Arbuscular mycorrhizal symbiosis increases phosphorus uptake and productivity of mixtures of maize varieties compared to monocultures[J]. Journal of Applied Ecology, 2020, 57(11): 2203−2211 doi: 10.1111/1365-2664.13739

    [96]

    LAVOREL S, GARNIER E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail[J]. Functional Ecology, 2002, 16(5): 545−556 doi: 10.1046/j.1365-2435.2002.00664.x

    [97]

    BELLO F, LAVOREL S, DÍAZ S, et al. Towards an assessment of multiple ecosystem processes and services via functional traits[J]. Biodiversity and Conservation, 2010, 19(10): 2873−2893 doi: 10.1007/s10531-010-9850-9

    [98]

    VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882−892 doi: 10.1111/j.0030-1299.2007.15559.x

    [99]

    RENTING H, ROSSING W A H, GROOT J C J, et al. Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework[J]. Journal of Environmental Management, 2009, 90(Suppl 2): S112–S123

    [100]

    HELLAND S J, HOLLAND J B. Genome-wide genetic diversity among components does not cause cultivar blend responses[J]. Crop Science, 2003, 43(5): 1618−1627 doi: 10.2135/cropsci2003.1618

    [101] 胡秉民, 耿旭. 作物稳定性分析法[M]. 北京: 科学出版社, 1993

    HU B M, GENG X. Crop Stability Analysis Method[M]. Beijing: Science Press, 1993

    [102] 陈企村. 小麦品种单种和混种产量及条锈病发生程度的比较研究[D]. 杨凌: 西北农林科技大学, 2008

    CHEN Q C. Relative performance of wheat cultivars and their mixtures: yield and stripe rust severity[D]. Yangling: Northwest A & F University, 2008

    [103]

    BENDER S F, WAGG C, VAN DER HEIJDEN M G A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability[J]. Trends in Ecology & Evolution, 2016, 31(6): 440−452

    [104]

    BOMMARCO R, KLEIJN D, POTTS S G. Ecological intensification: harnessing ecosystem services for food security[J]. Trends in Ecology & Evolution, 2013, 28(4): 230−238

    [105]

    LI C J, HOFFLAND E, KUYPER T W, et al. Syndromes of production in intercropping impact yield gains[J]. Nature Plants, 2020, 6(6): 653−660 doi: 10.1038/s41477-020-0680-9

图(2)
计量
  • 文章访问数:  879
  • HTML全文浏览量:  388
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2023-01-16

目录

    /

    返回文章
    返回