华北平原典型区大豆生产全生命周期分析

李颖, 谢骐泽, 刘兵强, 何素琴, 武西增, 杨庆, 刘智, 史晓蕾, 张孟臣, 杨春燕, 闫龙, 张瑞芳, 陶佩君

李颖, 谢骐泽, 刘兵强, 何素琴, 武西增, 杨庆, 刘智, 史晓蕾, 张孟臣, 杨春燕, 闫龙, 张瑞芳, 陶佩君. 华北平原典型区大豆生产全生命周期分析[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841
引用本文: 李颖, 谢骐泽, 刘兵强, 何素琴, 武西增, 杨庆, 刘智, 史晓蕾, 张孟臣, 杨春燕, 闫龙, 张瑞芳, 陶佩君. 华北平原典型区大豆生产全生命周期分析[J]. 中国生态农业学报 (中英文), 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841
LI Y, XIE Q Z, LIU B Q, HE S Q, WU X Z, YANG Q, LIU Z, SHI X L, ZHANG M C, YANG C Y, YAN L, ZHANG R F, TAO P J. Life cycle analysis of soybean production in typical district of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841
Citation: LI Y, XIE Q Z, LIU B Q, HE S Q, WU X Z, YANG Q, LIU Z, SHI X L, ZHANG M C, YANG C Y, YAN L, ZHANG R F, TAO P J. Life cycle analysis of soybean production in typical district of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841

华北平原典型区大豆生产全生命周期分析

基金项目: 河北省大豆产业体系(HBCT2019190101)和国家大豆产业技术体系(CARS-04-PSO6)资助
详细信息
    作者简介:

    李颖, 主要研究方向为农村区域发展。E-mail: ly17740418618@163.com

    通讯作者:

    闫龙, 主要研究方向为大豆遗传育种, E-mail: dragonyan1979@163.com

    张瑞芳, 主要研究方向为植物营养学, E-mail: zhrf@hebau.edu.cn

    陶佩君, 主要研究方向为农业发展与农业推广, E-mail: taopeijun@sina.com

  • 中图分类号: S-09

Life cycle analysis of soybean production in typical district of the North China Plain

Funds: This study was supported by Hebei Soybean Industry System (HBCT2019190101) and China Agriculture Research System (CARS-04-PSO6).
More Information
  • 摘要: 科学评价区域内大豆生产的生态效率, 有利于促进区域内大豆产业的可持续发展。本研究以华北平原大豆生产典型县——石家庄市藁城区50个农户为例, 基于生命周期评价法(LCA)和超效率(SBM)模型, 对其进行了生命周期评价和生态效率分析。结果显示, 大豆生产4个主导的潜在环境影响类别依次为全球变暖潜力(global warming potential, GWP)、陆地生态毒性潜力(terrestrial eco-toxicity potential, TETP)、酸化潜力(acidification potential, AP)及富营养化潜力(eutrophication potential, EP)。其中, 种植规模方面, 大规模农户的GWP、TETP及EP影响潜力最大; 生态效率值为大规模>中规模>小规模; 其6个投入指标当中, 杀虫剂的冗余率极差最大(5.89%)。灌溉模式方面, 滴灌的GWP和AP影响潜力最大, 沟灌的TETP和EP影响潜力最大; 生态效率为滴灌>喷灌>无灌溉>沟灌; 6个投入指标中, 灌溉用水的冗余率极差最大(8.40%)。种植区域方面, 藁城北部地区的GWP、AP和EP影响潜力均大于藁城南部地区; 生态效率值为南部地区>北部地区; 6个投入指标中, 化肥的冗余率极差最大(2.79%)。综上所述, 藁城区大豆生产应向大规模化发展, 并积极推广滴灌技术, 控制化肥和杀虫剂使用量, 以保证大豆产量的同时, 提高大豆生产的生态效率。研究结果可为藁城区大豆生产的生态评价提供参考依据, 有助于其大豆产业的可持续发展。
    Abstract: In recent years, the low self-sufficiency ratio of soybeans has become an urgent issue in China. Gaocheng District of Shijiazhuang City of Hebei Province is an important county for soybean production in the Huang-Huai-Hai area. Although soybean has symbiotic nitrogen fixation efficiency, excessive inputs like fertilizers and pesticides still cause environmental pollution. Therefore, scientific evaluation of the eco-efficiency of soybean production is conducive to promoting the sustainable development of the soybean industry in the Gaocheng District. Based on a survey of 50 farmer households in the Gaocheng District, we evaluated the environmental impact and eco-efficiency of local soybean production using a life cycle assessment (LCA) and a super-efficiency slakck-based measure (SBM) model (super-SBM). The environmental impact results showed that the four indices, global warming potential (GWP), terrestrial eco-toxicity potential (TETP), acidification potential (AP), and eutrophication potential (EP), were the dominant potential environmental impact categories in soybean production. The sowing-to-seedling stage contributed to the largest part (1.45E−5) of GWP, the largest part (5.34E−6) of AP, and the largest part (3.21E−6) of EP; the largest part (5.85E−6) of TETP was attributed to the flowering-to-podding stage. Among the four indicators, GWP, TETP, and EP of large-scale farming were the highest according to the planting scale. Concerning irrigation methods, GWP and AP were highest in trickle irrigation, and TETP and EP were highest in furrow irrigation. Based on the planting areas, GWP, AP, and EP in northern Gaocheng were higher than in southern Gaocheng. The eco-efficiency analysis showed that the mean value of all farmers’ eco-efficiency was 0.84, indicating that local soybean production was inefficient and had room for improvement. Concerning the planting scales, eco-efficiency followed the order of large-scale > mid-scale > small-scale. Concerning irrigation methods, eco-efficiency decreased in the order of trickle irrigation, sprinkling irrigation, no irrigation, and furrow irrigation. Concerning the planting areas, the eco-efficiency in southern Gaocheng was higher than that in northern Gaocheng. Moreover, six redundancy indices were compared under three planting scales. The range of redundancy ratio (max−min) in pesticides was the highest (5.89%), indicating that the change in planting scale had the greatest impact on the use of insecticides. Six redundancy indices were compared under four irrigation methods, and the range of redundancy ratio in water was the highest (8.40%), indicating that irrigation methods had the greatest influence on irrigation water. Six redundancy indices were compared under two planting areas. The range of the redundancy ratio in fertilizer was the highest (2.79%), indicating that the difference in planting area had the greatest impact on fertilizer application. Overall, to ensure the yield and improve the ecological efficiency of soybean production in Gaocheng District, we suggest farming soybean at a large scale, constructing water conservancy facilities, developing trickle irrigation, and controlling the use of fertilizers and pesticides at the different stages of soybean production. These results provide a reference basis for the eco-efficiency evaluation of local soybean production that might benefit the sustainable development of the soybean industry in the Gaocheng District.
  • 图  1   大豆生产全生命周期系统边界

    Figure  1.   Life cycle system boundary of soybean production

    图  2   藁城区大豆生产3个生育阶段排名前4的标准化环境影响指数

    GWP: 全球变暖潜力; TETP: 陆地生态毒性潜力; AP: 酸化潜力; EP: 富营养化潜力。GWP: global warming potential; TETP: terrestrial eco-toxicity potential; AP: acidification potential; EP: eutrophication potential.

    Figure  2.   Top 4 standardized environmental impact indexes of three growth stages of soybean production in Gaocheng District

    图  3   藁城区不同大豆种植规模(A)、灌溉模式(B)和种植区域(C)的大豆生产全生命周期标准化环境影响指数

    GWP: 全球变暖潜力; TETP: 陆地生态毒性潜力; AP: 酸化潜力; EP: 富营养化潜力。不同小写字母表示不同种植规模、灌溉模式和区域间在P<0.05水平差异显著。GWP: global warming potential; TETP: terrestrial eco-toxicity potential; AP: acidification potential; EP: eutrophication potential. Different lowercase letters mean significant differences among different planting scales, irrigation modes and regions at P<0.05 level.

    Figure  3.   Standardized environmental impact indexes for the full life cycle of soybean production at different soybean cropping scales (A), irrigation modes (B) and cropping regions (C) in Gaocheng District

    表  1   4种环境影响类型概念简介

    Table  1   Introduction to four types of environmental impacts

    影响类型
    Impact category
    单位
    Unit
    定义
    Definition
    全球变暖潜力
    Global warming potential
    kg CO2 eqCO2和CH4等温室气体的排放导致全球气温上涨
    Emissions of greenhouse gases, such as CO2 and CH4 lead to global temperature rise
    陆地生态毒性潜力
    Terrestrial eco-toxicity potential
    kg 1,4-DCB eq陆地生态环境受有毒物质侵害的现象
    Phenomenon of terrestrial ecological environment damaged by toxic substances
    酸化潜力
    Acidification potential
    kg SO2 eqSO2等气体排放, 形成酸雨, 导致酸化生态系统
    Emission of SO2 and other gases forming acid rain and leading to acidifying ecosystems
    富营养化潜力
    Eutrophication potential
    kg PO43− eqN、P等元素在水中富集, 造成藻类大量繁殖, 水体环境破坏的现象
    N, P and other elements are enriched in water, resulting in algae blooms and damage of water environment
    下载: 导出CSV

    表  2   4种环境影响类型的标准化基准和当量系数

    Table  2   Standardized benchmarks and equivalent coefficients for four types of environmental impacts

    影响类型 Impact category基准值 Reference value污染物(当量系数) Pollutant (quivalent factor)
    全球变暖潜力 Global warming potential6869.00 kg(CO2 eq)∙a−1∙cap−1CO2 (1), CO (2), N2O (310), CH4 (21)
    陆地生态毒性潜力 Terrestrial eco-toxicity potential6.11 kg(1,4-DCB eq)∙a−1∙cap−11,4-DCB (1), 丙草胺 Pretilachlor (0.54)
    酸化潜力 Acidification potential52.26 kg(SO2 eq)∙a−1∙cap−1SO2 (1), NE3 (1.88), NO3 (0.7)
    富营养化潜力 Eutrophication potential1.88 kg(PO43− eq)∙a−1∙cap−1PO43− (1), NOX (0.13), NO3(0.42), NH3 (0.35), NH4+ (0.33)
    下载: 导出CSV

    表  3   藁城区50个农户生产1 t大豆的生态效率评价指标体系

    Table  3   Evaluation index system of eco-efficiency of 50 farms to produce 1 t soybean in Gaocheng District

    一级指标
    Level 1 indicator
    二级指标
    Level 2 indicator
    三级指标
    Level 3 indicator
    单位
    Unit
    投入指标
    Input indicator
    能源投入 Energy inputs电力 ElectricitykWh∙t−1
    资源投入 Resources inputs灌溉用水 Irrigation waterm3∙t−1
    经济投入 Economic inputs柴油 Dieselkg∙t−1
    化肥 Fertilizerskg∙t−1
    除草剂 Herbicideskg∙t−1
    杀虫剂 Insecticideskg∙t−1
    产出指标
    Output indicator
    非期望产出 Undesirable outputs全球变暖潜力 Global warming potentialkg(CO2 eq)∙t−1
    陆地生态毒性潜力 Terrestrial eco-toxicity potentialkg(1,4-DCB eq)∙t−1
    酸化潜力 Acidification potentialkg(SO2 eq)∙t−1
    富营养化潜力 Eutrophication potentialkg(PO43− eq)∙t−1
    期望产出 Desirable outputs单产 Yieldkg∙hm−2
    下载: 导出CSV

    表  4   藁城区50农户在大豆生产的3个生育阶段全部影响类型的标准化指数

    Table  4   Standardized indexes of all the impacts categories during three growth stages of soybean production for 50 farms in Gaocheng District

    影响类型
    Impact category
    播种—出苗期
    Sowing to
    seedling stage
    开花—结荚期
    Flowering to
    podding stage
    鼓粒—收获期
    Granulation to
    harvesting stage
    总计
    Total
    全球变暖潜力 Global warming potential (GWP)1.45E−59.60E−73.79E−61.93E−5
    陆地生态毒性潜力 Terrestrial eco-toxicity potential (TETP)2.46E−65.85E−63.54E−61.19E−5
    酸化潜力 Acidification potential (AP)5.34E−62.67E−61.77E−69.78E−6
    富营养化潜力 Eutrophication potential (EP)3.21E−62.16E−62.94E−68.31E−6
    海水生态毒性潜力 Marine aquatic eco-toxicity potential (MAETP)1.50E−76.49E−71.86E−79.85E−7
    人类毒性潜力 Human toxicity potential (HTP)1.18E−82.90E−76.10E−79.12E−7
    淡水生态毒性潜力 Freshwater aquatic eco-toxicity potential (FAETP)2.12E−87.79E−74.34E−88.44E−7
    非生物资源枯竭潜力 Abiotic depletion potential (ADP)2.81E−81.48E−74.37E−76.13E−7
    光化学臭氧生成潜力 Photochemical ozone creation potential (POCP)8.71E−81.81E−73.28E−75.96E−7
    臭氧层耗竭潜力 Ozone layer depletion potential (ODP)1.79E−83.58E−81.44E−86.81E−8
    下载: 导出CSV

    表  5   藁城区50个大豆农户生态有效和生态无效的描述性分析

    Table  5   Descriptive analysis of ecological effectiveness and ecological inefficiency of 50 soybean farmers in Gaocheng District

    最小值
    Minimum
    最大值
    Maximum
    平均值
    Mean
    变异系数
    Coefficient of variation
    农户数量
    Number of farms
    相对无效
    Relatively ineffective
    效率值 Efficiency value0.390.950.700.2137
    单产 Yield (kg∙hm−2)1500.003900.003053.920.17
    相对有效
    Relatively effective
    效率值 Efficiency value1.001.751.230.1813
    单产 Yield (kg∙hm−2)2250.004125.003467.310.15
    下载: 导出CSV

    表  6   藁城区50个大豆农户生态效率和单产水平

    Table  6   Ecological efficiencies and yield levels of 50 soybean farms in Gaocheng District

    编号
    Number
    效率值
    Efficiency value
    单产
    Yield (kg∙hm−2)
    编号
    Number
    效率值
    Efficiency value
    单产
    Yield (kg∙hm−2)
    编号
    Number
    效率值
    Efficiency value
    单产
    Yield (kg∙hm−2)
    10.393000180.742550350.883000
    20.403000190.753000360.903450
    30.453000200.753900370.953525
    40.471875210.763000381.002250
    50.513000220.763750391.003750
    60.533000230.773750401.003750
    70.541500240.783720411.093750
    80.543000250.793450421.113000
    90.573000260.802250431.123000
    100.622925270.803750441.233900
    110.633450280.813500451.253000
    120.642750290.813500461.263525
    130.653000300.823000471.273750
    140.692250310.833000481.344125
    150.703000320.853750491.513525
    160.712700330.873000501.753750
    170.732700340.873000平均值 Mean0.843161
    下载: 导出CSV

    表  7   藁城区50个大豆农户不同大豆种植规模、灌溉模式和种植区域的生态效率值描述性分析

    Table  7   Descriptive analysis of eco-efficiency values of soybean planting scale, irrigation mode and planting regions of 50 soybean farms in Gaocheng District

    不同条件
    Different conditions
    农户数量
    Number of farms
    最大值
    Maximum
    最小值
    Minimum
    均值
    Mean
    变异系数
    Coefficient of variation
    种植规模
    Planting scale
    小规模 Small scale221.230.470.730.22
    中规模 Middle scale161.750.400.920.37
    大规模 Large scale121.510.390.930.31
    灌溉模式
    Irrigation mode
    滴灌 Trickle irrigation141.510.510.960.33
    喷灌 Sprinkling irrigation151.750.400.860.31
    沟灌 Furrow irrigation151.340.390.730.40
    无灌溉 No irrigation61.000.690.790.15
    种植区域
    Planting area
    藁城区北部 North of Gaocheng District261.230.540.790.35
    藁城区南部 South of Gaocheng District241.750.390.880.32
    下载: 导出CSV

    表  8   藁城区50个大豆农户不同大豆种植规模、灌溉模式和种植区域的投入指标冗余率

    Table  8   Redundancy ratios of input indexes of soybean planting scale, irrigation mode and planting area of 50 soybean farmers in Gaocheng District

    % 
    种植规模 Planting scale灌溉模式 Irrigation mode种植区域 Planting area平均值
    Mean
    小规模
    Small scale
    中规模
    Middle scale
    大规模
    Large scale
    滴灌
    Trickle
    irrigation
    喷灌
    Sprinkling
    irrigation
    沟灌
    Furrow
    irrigation
    无灌溉
    No
    irrigation
    藁城区北部
    North of
    Gaocheng District
    藁城区南部
    South of
    Gaocheng District
    电力 Electricity2.303.794.594.543.552.231.313.264.273.21
    灌溉用水
    Irrigation water
    7.936.843.872.253.148.550.157.786.887.96
    柴油 Diesel10.787.907.648.178.326.698.298.297.488.89
    化肥 Fertilizers17.6517.5015.6718.7318.0216.5016.3818.2615.4717.98
    除草剂 Herbicides2.562.093.153.102.193.092.312.442.932.76
    杀虫剂 Pesticides2.543.298.435.834.505.193.285.193.594.87
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. “主要农作物播种面积” “主要农作物产品产量”[DB/OL]. 中华人民共和国国家统计局国家数据库网站. (2021)[2023-01-16]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistics of the People’s Republic of China. “Area sown for major crops” “Output of major crop products” [DB/OL]. National Data Database Website of the Bureau of Statistics of the People’s Republic of China. (2021)[2023-01-16]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    [2] 何素琴, 李翠霞, 武西增, 等. 石家庄市藁城富硒区夏播大豆管理技术[J]. 大豆科技, 2022(2): 47−51

    HE S Q, LI C X, WU X Z, et al. Management technology of summer sowing soybean in Gaocheng selenium-rich area of Shijiazhuang City[J]. Soybean Science & Technology, 2022(2): 47−51

    [3]

    WANG W L, MOORE J K, MARTINY A C, et al. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743): 205−211 doi: 10.1038/s41586-019-0911-2

    [4]

    ZEHR J P, CAPONE D G. Changing perspectives in marine nitrogen fixation[J]. Science, 2020, 368(6492): eaay9514 doi: 10.1126/science.aay9514

    [5]

    YANG Q, YANG Y Q, XU R N, et al. Genetic analysis and mapping of QTLs for soybean biological nitrogen fixation traits under varied field conditions[J]. Frontiers in Plant Science, 2019, 10: 75 doi: 10.3389/fpls.2019.00075

    [6] 李志远. 大豆多因素养分密度效应试验及优化研究[D]. 哈尔滨: 东北农业大学, 2019: 1–2

    LI Z Y. Research on multi-factor nutrient density test and optimization of soybean[D]. Harbin: Northeast Agricultural University, 2019: 1–2

    [7] 吴小庆, 王亚平, 何丽梅, 等. 基于AHP和DEA模型的农业生态效率评价−以无锡市为例[J]. 长江流域资源与环境, 2012, 21(6): 714−719

    WU X Q, WANG Y P, HE L M, et al. Agricultural eco-efficiency evaluation based on AHP and DEA model — A case of Wuxi City[J]. Resources and Environment in the Yangtze Basin, 2012, 21(6): 714−719

    [8]

    International Organization for Standardization. ISO 14040: 2006 Environmental Management: Life Cycle Assessment; Principles and Framework[S]. Switzerland: International Organization for Standardization, 2006

    [9] 钟方雷, 杨肖, 郭爱君. 基于LCA和DEA法相结合的干旱区绿洲农业生态经济效率研究−以张掖市制种玉米为例[J]. 生态经济, 2017, 33(11): 122−127

    ZHONG F L, YANG X, GUO A J. Study on ecological economy efficiency of oasis agriculture in arid region based on LCA and DEA method: taking seed maize production in Zhangye City as an example[J]. Ecological Economy, 2017, 33(11): 122−127

    [10] 吴晓雨. 华北平原小麦生产的生态效率评价[D]. 杨凌: 西北农林科技大学, 2021: 17–32

    WU X Y. Ecological efficiency evaluation of wheat production in North China Plain[D]. Yangling: Northwest A & F University, 2021: 17–32

    [11] 黄玛兰, 曾琳琳, 李晓云. LCA和DEA法相结合的农业生态效率研究−兼顾绿色认知和环境规制的影响[J]. 华中农业大学学报(社会科学版), 2022(1): 94−104

    HUANG M L, ZENG L L, LI X Y. Joint life cycle assessment and data envelopment analysis for assessing agriculture eco-efficiency — considering the impacts of green cognition and government regulations[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(1): 94−104

    [12] 李云霞, 杨润江, 鞠立川. 基于SimaPro的东北大豆碳足迹核算[J]. 质量与认证, 2016(1): 58−59

    LI Y X, YANG R J, JU L C. Carbon footprint accounting of soybean in Northeast China based on SimaPro[J]. China Quality Certification, 2016(1): 58−59

    [13] 罗燕, 乔玉辉, 吴文良. 东北有机及常规大豆对环境影响的生命周期评价[J]. 生态学报, 2011, 31(23): 185−193

    LUO Y, QIAO Y H, WU W L. Environment impact assessment of organic and conventional soybean production with LCA method in China Northeast Plain[J]. Acta Ecologica Sinica, 2011, 31(23): 185−193

    [14] 董进宁, 马晓茜. 生物柴油项目的生命周期评价[J]. 现代化工, 2007, 27(9): 59−63 doi: 10.3321/j.issn:0253-4320.2007.09.017

    DONG J N, MA X Q. Life cycle assessment on biodiesel production[J]. Modern Chemical Industry, 2007, 27(9): 59−63 doi: 10.3321/j.issn:0253-4320.2007.09.017

    [15] 熊正琴, 邢光熹, 鹤田治雄, 等. 种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J]. 中国农业科学, 2002, 35(9): 1104−1108 doi: 10.3321/j.issn:0578-1752.2002.09.013

    XIONG Z Q, XING G X, TSURUTA H, et al. The effects of summer legume crop cultivation on nitrous oxide emissions from upland farmland[J]. Scientia Agricultura Sinica, 2002, 35(9): 1104−1108 doi: 10.3321/j.issn:0578-1752.2002.09.013

    [16] 叶优良, 李隆, 孙建好. 3种豆科作物与玉米间作对土壤硝态氮累积和分布的影响[J]. 中国生态农业学报, 2008, 16(4): 818−823 doi: 10.3724/SP.J.1011.2008.00818

    YE Y L, LI L, SUN J H. Effect of intercropping three legume crops with maize on soil nitrate-N accumulation and distribution in the soil profile[J]. Chinese Journal of Eco-Agriculture, 2008, 16(4): 818−823 doi: 10.3724/SP.J.1011.2008.00818

    [17] 于佰双. 不同熟期大豆品种固氮率比较[J]. 黑龙江农业科学, 1997(3): 46−47

    YU B S. Comparison of nitrogen fixation rate of soybean varieties in different maturity periods[J]. Heilongjiang Agricultural Science, 1997(3): 46−47

    [18] 叶优良, 孙建好, 李隆, 等. 灌水对大麦/玉米带田土壤矿质氮影响的研究[J]. 水土保持学报, 2003, 17(1): 107−111 doi: 10.3321/j.issn:1009-2242.2003.01.026

    YE Y L, SUN J H, LI L, et al. Effect of irrigation on mineral nitrogen concentration in soils of maize/barley intercropping[J]. Journal of Soil Water Conservation, 2003, 17(1): 107−111 doi: 10.3321/j.issn:1009-2242.2003.01.026

    [19] 李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J]. 应用生态学报, 2008, 19(1): 99−104 doi: 10.13287/j.1001-9332.2008.0021

    LI X, JU X T, ZHANG L J, et al. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 99−104 doi: 10.13287/j.1001-9332.2008.0021

    [20]

    VAN CALKER K J, BERENTSEN P B M, DE BOER I M J, et al. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm “de Marke”[J]. Agricultural Systems, 2004, 82(2): 139−160 doi: 10.1016/j.agsy.2004.02.001

    [21] 梁龙, 陈源泉, 高旺盛, 等. 华北平原冬小麦-夏玉米种植系统生命周期环境影响评价[J]. 农业环境科学学报, 2009, 28(8): 1773−1776 doi: 10.3321/j.issn:1672-2043.2009.08.038

    LIANG L, CHEN Y Q, GAO W S, et al. Life cycle environmental impact assessment in winter wheat-summer maize system in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(8): 1773−1776 doi: 10.3321/j.issn:1672-2043.2009.08.038

    [22] 马丹. 基于SimaPro的燃料乙醇生命周期分析[D]. 青岛: 青岛科技大学, 2020: 17–18

    MA D. Life cycle assessment of fuel ethanol based on Simapro[D]. Qingdao: Qingdao University of Science & Technology, 2020: 17–18

    [23] 杨建新, 王如松, 刘晶茹. 中国产品生命周期影响评价方法研究[J]. 环境科学学报, 2001, 21(2): 234−237 doi: 10.3321/j.issn:0253-2468.2001.02.022

    YANG J X, WANG R S, LIU J R. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae, 2001, 21(2): 234−237 doi: 10.3321/j.issn:0253-2468.2001.02.022

    [24] 王明新, 包永红, 吴文良, 等. 华北平原冬小麦生命周期环境影响评价[J]. 农业环境科学学报, 2006, 25(5): 1127−1132 doi: 10.3321/j.issn:1672-2043.2006.05.007

    WANG M X, BAO Y H, WU W L, et al. Life cycle environmental impact assessment of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2006, 25(5): 1127−1132 doi: 10.3321/j.issn:1672-2043.2006.05.007

    [25] 谢小天. 生物质固体成型燃料技术路线生命周期环境影响评价[D]. 青岛: 青岛科技大学, 2016: 14–15

    XIE X T. Life cycle environmental impact assessment of biomass solid molding fuel technology route[D]. Qingdao: Qingdao University of Science & Technology, 2016: 14–15

    [26] 常俊彦. 辽宁地区水稻生产的生态环境影响研究[D]. 沈阳: 沈阳农业大学, 2018: 22

    CHANG J Y. Study of ecological environment impact of rice production in Liaoning region[D]. Shenyang: Shenyang Agricultural University, 2018: 22

    [27]

    TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498−509 doi: 10.1016/S0377-2217(99)00407-5

    [28] 潘丹, 应瑞瑶. 中国农业生态效率评价方法与实证−基于非期望产出的SBM模型分析[J]. 生态学报, 2013, 33(12): 3837−3845 doi: 10.5846/stxb201207080953

    PAN D, YING R Y. Agricultural eco-efficiency evaluation in China based on SBM model[J]. Acta Ecologica Sinica, 2013, 33(12): 3837−3845 doi: 10.5846/stxb201207080953

    [29] 秦丹. 山西省小麦生命周期的资源环境影响评价[D]. 太谷: 山西农业大学, 2016: 41–45

    QIN D. Life cycle environmental influence of wheat production in Shanxi Province[D]. Taigu: Shanxi Agricultural University, 2016: 41–45

    [30] 黄昌勇, 徐建明. 土壤学[M]. 3版. 北京: 中国农业出版社, 2010

    HUANG C Y, XU J M. Agrology[M]. 3rd ed. Beijing: China Agriculture Press, 2010

    [31] 施恩. 石家庄市藁城区浅层地下水资源量评价[D]. 石家庄: 河北地质大学, 2019: 13

    SHI E. Evaluation of shallow groundwater resources in Gaocheng District of Shijiazhuang City[D]. Shijiazhuang: Hebei GEO University, 2019: 13

    [32] 陈勇, 杨可攀, 段富媛, 等. 减氮对甜玉米//大豆间作系统大豆结瘤固氮特性的影响[J]. 生态科学, 2022, 41(4): 1−8

    CHEN Y, YANG K P, DUAN F Y, et al. Effect of reduced nitrogen application on nodulation characteristics of soybean in sweet maize//soybean intercropping system[J]. Ecological Science, 2022, 41(4): 1−8

    [33] 王明新, 吴文良, 夏训峰. 华北高产粮区夏玉米生命周期环境影响评价[J]. 环境科学学报, 2010, 30(6): 1339−1344 doi: 10.13671/j.hjkxxb.2010.06.001

    WANG M X, WU W L, XIA X F. Life cycle environmental assessment of summer maize in a North China high-yield region[J]. Acta Scientiae Circumstantiae, 2010, 30(6): 1339−1344 doi: 10.13671/j.hjkxxb.2010.06.001

图(3)  /  表(8)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  140
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回