-
摘要: 为了探究曹妃甸湿地和鸟类省级自然保护区植物多样性以及土壤理化性质空间分布规律, 采用生态学样地调查方法对研究区内植被群落结构及其相应土壤理化性质进行调查与测定, 通过相关性分析探讨植物多样性与土壤盐分和养分指标的关系。研究结果表明: 1)研究区种子植物共有23科47属54种, 被子植物占绝对优势, 植物种绝大部分是中生草本植物。2)研究区植物区系数量结构分析显示研究区内优势科有4科, 分别是菊科、禾本科、藜科和豆科; 优势属有5属, 分别是藜属、莴苣属、碱蓬属、蒿属和补血草属; 数量结构特征表现出科级和属级水平上的多样性, 区系地理成分特征相对复杂, 以温带分布为主, 但也出现了热带分布。3)研究区植物群落主要以草本植物为主, 可分为9种类型, 其中茵陈蒿、葎草群落更为稳定, 芦苇群落的多样性最差。4)土壤盐分和速效钾高值区主要分布在研究区西南部地区, 土壤速效磷高值区主要分布在西北部地区, 速效氮和有机质含量高值区空间分布较为分散。5)湿地植物多样性指数整体上与土壤盐分呈负相关关系, 与土壤养分尤其速效氮呈现正相关关系。该研究结果明确了该区植物的分布及多样性情况, 并对其影响因素进行了初步分析, 可为曹妃甸湿地植物多样性保护和管理提供一定科学依据。Abstract: Coastal wetlands are one of the most biodiverse ecosystems. Studying wetland plant diversity is important for maintaining the integrity and stability of wetland ecosystems. To provide a basis for the scientific management of the coastal wetland ecosystem, this study used the Caofeidian Wetland and Bird Provincial Nature Reserve as the research area, adopted the ecological sampling survey method, and selected sample plots with typical plant communities along the river bank, coast, and the direction perpendicular to the river bank and the coast, to investigate the spatial distribution of plant diversity, soil physical and chemical properties, and calculated the correlation between the two. The results showed that: 1) there were 23 families, 47 genera, and 54 species of seed plants in the study area. Angiosperms were dominant, and most of the plant species were mesophytic herbs. 2) The results of the quantitative structural analysis of the flora showed that there were four dominant families in the study area, namely Asteraceae, Poaceae, Chenopodiaceae and Fabaceae, and three representative families, namely, Chenopodiaceae, Plumbaginaceae, and Salicaceae. There were five dominant genera: Chenopodium, Lactuca, Suaeda, Artemisia, and Limonium, and the characteristic genera were Lactuca and Suaeda. The quantitative structure featured diversity at the family and genus levels. The geographical components of the flora were relatively complex, mainly in temperate and tropical zones. 3) The plant communities in the study area were mainly herbaceous, including nine vegetation communities: Suaeda salsa, Bassia scoparia, Artemisia annua, Suaeda glauca, Phragmites australis, Humulus scandens, Carex phacota, Bidens pilosa, and Artemisia capillaris, among which the communities of A. capillaris and H. scandens were most stable, and the diversity of P. australis community was the lowest. 4) The high-value areas of soil salt and available potassium were mainly distributed in the southwest of the study area, those of soil available phosphorus were mainly distributed in the northwest, and those of available nitrogen and organic matter content were relatively scattered. 5) The wetland plant diversity indexes were negatively correlated with soil salinity and positively correlated with soil nutrients, especially available nitrogen. The results of this study clarified the distribution and diversity of plants in the area and preliminarily analyzed soil impact factors. These results provide a scientific basis for the protection and management of plant diversity in the Caofeidian wetlands.
-
Keywords:
- Caofeidian wetland /
- Plant diversity /
- Analysis of wetland plants /
- Soil salinity /
- Soil nutrients
-
表 1 研究区植物优势科和表征科
Table 1 Dominant families and representative families of vegetation in the study area
编号
Number科名
Family name所含种数
Number of species included编号
Number科名
Family name所含种数
Number of species included优势科 Dominant species 17 蔷薇科 Rosaceae 1 1 菊科 Asteraceae 12 18 茄科 Solanaceae 1 2 禾本科 Poaceae 8 19 桑科 Moraceae 1 3 藜科 Chenopodiaceae 7 20 天南星科 Araceae 1 4 豆科 Fabaceae 5 21 卫矛科 Celastraceae 1 5 白花丹科 Plumbaginaceae 2 22 旋花科 Convolvulaceae 1 6 蓼科 Polygonaceae 2 23 榆科 Ulmaceae 1 7 杨柳科 Salicaceae 2 平均值 Average 3 8 白刺科 Nitrariaceae 1 表征科 Representative species 9 柏科 Cupressaceae 1 1 菊科 Asteraceae 12 10 柽柳科 Tamaricaceae 1 2 禾本科 Poaceae 8 11 大麻科 Cannabaceae 1 3 藜科 Chenopodiaceae 7 12 锦葵科 Malvaceae 1 4 豆科 Fabaceae 5 13 萝藦科 Asclepiadaceae 1 5 白花丹科 Plumbaginaceae 2 14 马齿苋科 Portulacaceae 1 6 蓼科 Polygonaceae 2 15 漆树科 Anacardiaceae 1 7 杨柳科 Salicaceae 2 16 茜草科 Rubiaceae 1 平均值 Average 5 表 2 研究区植物优势属及表征属
Table 2 Dominant genera and representative genera of vegetation in the study area
编号
Number属名
Genus name所含种数
Number of species included编号
Number属名
Genus name所含种数
Number of species included优势属 Dominant genera 29 马齿苋属 Portulaca 1 1 藜属 Chenopodium 3 30 马唐属 Digitaria 1 2 莴苣属 Lactuca 2 31 穇属 Eleusine 1 3 碱蓬属 Suaeda 2 32 鬼针草属 Bidens 1 4 蒿属 Artemisia 2 33 虎掌藤属 Pharbitis 1 5 补血草属 Limonium 2 34 茜草属 Rubia 1 6 白刺属 Nitraria 1 35 半夏属 Pinellia 1 7 白茅属 Imperata 1 36 桑属 Morus 1 8 稗属 Echinochloa 1 37 稻属 Oryza 1 9 萹蓄属 Polygonum 1 38 蓼属 Persicaria 1 10 草木樨属 Melilotus 1 39 大豆属 Glycine 1 11 侧柏属 Platycladus 1 40 槐属 Styphnolobium 1 12 柽柳属 Tamarix 1 41 紫穗槐属 Amorpha 1 13 蓟属 Cirsium 2 42 苘麻属 Abutilon 1 14 刺槐属 Robinia 1 43 蓟属 Cirsium 1 15 鬼针草属 Bidens 1 44 苦荬菜属 Ixeris 1 16 地肤属 Kochia 1 45 榆属 Ulmus 1 17 鹅绒藤属 Cynanchum 1 46 苹果属 Malus 1 18 苋属 Amaranthus 1 47 杨属 Populus 1 19 狗尾草属 Setaria 1 48 卫矛属 Euonymus 1 20 虎尾草属 Chloris 1 平均值 Average 1 21 盐麸木属 Rhus 1 表征属 Representative genera 22 苦苣菜属 Sonchus 1 1 藜属 Chenopodium 3 23 鳢肠属 Eclipta 1 2 莴苣属 Lactuca 2 24 柳属 Salix 1 3 碱蓬属 Suaeda 2 25 茄属 Solanum 1 4 蒿属 Artemisia 2 26 芦苇属 Phragmites 1 5 补血草属 Limonium 2 27 裸柱菊属 Soliva 1 6 蓟属 Cirsium 2 28 葎草属 Humulus 1 平均值 Average 2 表 3 研究区植物科级区系的类型
Table 3 Types of family level flora in the study area
分布区
Distributive flora分布类型
Distribution type科名
Family name世界分布
World distribution温带分布, 5科
Temperate distribution, 5 families菊科、禾本科、藜科、蓼科、蔷薇科
Asteraceae, Poaceae, Chenopodiaceae, Polygonaceae, Rosaceae热带分布, 4科
Tropical distribution, 4 families萝藦科、茄科、天南星科、旋花科
Asclepiadaceae, Solanaceae, Araceae, Convolvulaceae温带-热带分布, 4科
Temperate-tropical distribution, 4 families豆科、白花丹科、锦葵科、马齿苋科
Fabaceae, Plumbaginaceae, Malvaceae, Portulacaceae温带分布
Temperate distribution北温带-南温带间断, 3科
Punctuated distribution of northern temperate southern temperate zone, 3 families杨柳科、柏科、柽柳科
Salicaceae, Cupressaceae, Tamaricaceae热带分布
Tropical distribution泛热带分布, 6科
Pan tropical distribution, 6 families大麻科、漆树科、茜草科、桑科、卫矛科、榆科
Cannabaceae, Anacardiaceae, Rubiaceae, Moraceae, Celastraceae, Ulmaceae古地中海分布
Ancient Mediterranean distribution古地中海分布, 1科
Ancient Mediterranean distribution, 1 families白刺科
Nitrariaceae表 4 研究区植物属一级区系的类型
Table 4 Types of genus level flora in the study area
分布区
Distributive flora分布类型及变型
Distribution type and variant属数
Genuera number占非世界分布
Percentage of non
world distribution (%)世界分布
World distribution1 型世界分布
World distribution11 — 热带分布
Tropical distribution2 泛热带分布
Pan tropical distribution6 16.7 5 热带亚洲至热带澳大利亚分布
Distribution from tropical Asia to tropical Australia1 2.8 7 越南(或中南半岛)至华南(或西南)
Vietnam (or Indochina Peninsula) to South China (or southwest)1 2.8 温带分布
Temperate distribution8 北温带广布
Widely distributed in north temperate zone3 8.3 8-4北温带南温带间断(泛温带)
North temperate zone south temperate zone discontinuity9 25.0 9 东亚—北美间断分布
East Asia North America discontinuous distribution2 5.6 10 欧亚温带分布或旧世界温带分布
Eurasian temperate distribution or old world temperate distribution3 8.3 10-3 欧亚和南部非洲(有时还有大洋洲)间断
Eurasia and Southern Africa (and sometimes Oceania) discontinuities1 2.8 亚洲分部
Asian distribution12 中亚、西亚至地中海分布
Distribution from Central Asia, West Asia to Mediterranean1 2.8 12-3 地中海至温带-热带亚洲、大洋洲和南美洲间断
Mediterranean to temperate tropical Asia, Oceania and South America discontinuities1 2.8 14 东亚分布
Distribution in East Asia1 2.8 14 (SH) 中国-喜马拉雅
China-Himalayan distribution1 2.8 14 (SJ) 中国-日本
Distribution from China to Japan3 8.3 其他分布
Other distributions其他分布
Other distributions3 8.3 表 5 研究区主要植物群落及其主要特征
Table 5 Main plant communities and their main characteristics in the study area
群落
Community盖度
Cover degree
(%)植物种数
Plant species
number多度和
Abundance
sum香农-维纳指数
Shannon-Wiener
index (H)辛普森指数
Simpson
index (D)均匀度指数
Pielou
index (E)丰富度指数
Margalef
index (R)碱蓬
Suaeda glauca59.6 3 59 0.77 0.67 0.76 1.78 地肤
Kochia scoparia79.7 8 46 1.69 0.71 0.79 6.56 黄花蒿
Artemisia annua95.6 10 86 1.53 0.84 0.83 4.23 盐地碱蓬
Suaeda salsa98.9 8 199 1.29 0.63 0.61 5.52 芦苇
Phragmites australis91.2 5 149 0.91 0.44 0.53 3.45 葎草
Humulus scandens99.9 13 75 2.18 0.84 0.85 9.64 三棱草
Carex phacota72.6 7 222 1.13 0.54 0.58 2.71 婆婆刺
Bidens pilosa97.8 9 200 1.46 0.67 0.67 5.50 茵陈蒿
Artemisia capillaris96.3 9 74 2.02 0.86 0.92 5.05 表 6 研究区不同样带的土壤盐渍化程度及养分含量
Table 6 Salinization degrees and nutrients contents of soil in different zones in the study area
样带
Area土壤深度
Soil depth
(cm)盐分含量
Salt content
(g∙kg−1)速效氮
Available nitrogen
(mg∙kg−1)速效磷
Available phosphorus
(mg∙kg−1)速效钾
Available potassium
(mg∙kg−1)有机质
Soil organic matter
(g∙kg−1)1 0~20 4.71±4.29ab 23.84±23.57a 21.42±8.85ab 43.29±13.36a 8.41±4.10ab 20~40 5.98±5.42a 17.50±9.17a 18.92±3.09ab 47.21±19.27a 11.58±5.58ab 2 0~20 2.10±2.56b 30.47±19.48a 25.87±14.78a 41.62±17.33a 12.00±5.94a 20~40 2.29±2.99b 17.09±12.32a 15.53±5.97b 34.12±11.74a 7.61±6.02ab 3 0~20 1.98±2.67b 31.29±13.78a 28.94±16.15a 40.87±17.51a 10.18±5.58ab 20~40 3.03±5.23b 18.27±10.75a 22.06±10.41ab 35.15±10.36a 6.89±4.30b 样带1、样带2和样带3与含盐最高的研究区西南角距离分别为0~5 km、5~10 km 和10~15 km, 分别包括8个、17个和17个样地。不同小写字母表于不同样带不同土层间差异显著(P<0.05)。The zone 1, zone 2 and zone 3 are 0−5 km, 5−10 km and 10−15 km from the southwest corn of the study area, where has the highest salt content, containing 8, 17 and 17 sampling plots, respectively. Different lowercase letters mean significant differences among different soil layers of different zones. 表 7 曹妃甸湿地植物群落多样性与土壤环境因子的相关系数
Table 7 Correlation coefficient between plant community diversity and soil environmental factors in Caofeidian wetland
样带
Zone多样性指数
Diversity index盐分含量
Salt content速效氮
Available nitrogen速效磷
Available phosphorus速效钾
Available potassium有机质
Soil organic matter0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 1 丰富度指数 Margalef index (R) −0.046 −0.786* 0.624 0.585 0.388 −0.211 −0.448 −0.714* 0.791* 0.860* 香农-维纳指数 Shannon-Wiener index (H) −0.229 −0.555 0.830* 0.842* −0.077 −0.174 −0.574 −0.504 0.236 0.403 辛普森指数 Simpson index (D) −0.258 −0.318 0.672 0.739* −0.350 −0.208 −0.458 −0.254 −0.291 −0.023 均匀度指数 Pielou index (E) −0.255 0.323 0.342 0.326 −0.454 −0.213 −0.380 0.107 −0.731 −0.659 2 丰富度指数 Margalef index (R) −0.238 −0.153 −0.013 −0.077 0.024 0.420 0.365 0.228 −0.096 −0.051 香农-维纳指数 Shannon-Wiener index (H) −0.200 0.051 0.052 0.018 −0.027 0.357 0.255 0.383 −0.058 0.036 辛普森指数 Simpson index(D) −0.274 0.020 0.087 0.044 −0.022 0.255 0.153 0.264 −0.065 0.032 均匀度指数 Pielou index (E) −0.261 0.025 0.076 0.047 −0.029 0.246 0.190 0.340 0.003 0.030 3 丰富度指数 Margalef index (R) −0.164 −0.104 0.275 0.504 0.567* 0.638* 0.287 0.163 0.458 0.559* 香农-维纳指数 Shannon-Wiener index (H) −0.149 −0.096 0.368 0.516* 0.530* 0.548* 0.230 0.132 0.467 0.543* 辛普森指数 Simpson index (D) −0.242 −0.197 0.389 0.308 0.366 0.254 0.084 −0.060 0.352 0.316 均匀度指数 Pielou index (E) −0.209 −0.192 0.398 0.255 0.211 0.120 0.100 −0.062 0.207 0.180 样带1、样带2和样带3与含盐最高的研究区西南角距离分别为0~5 km、5~10 km 和10~15 km, 分别包括8个、17个和17个样地。*表示相关性显著(P<0.05)。The zone 1, zone 2 and zone 3 are 0−5 km, 5−10 km and 10−15 km from the southwest corn of the study area, where has the highest salt content, containing 8, 17 and 17 sampling plots, respectively. * shows significant correlation at P<0.05. -
[1] 刘芳, 叶思源, 汤岳琴, 等. 黄河三角洲湿地土壤微生物群落结构分析[J]. 应用与环境生物学报, 2007, 13(5): 691−696 doi: 10.3321/j.issn:1006-687x.2007.05.018 LIU F, YE S Y, TANG Y Q, et al. Analysis of microbial community structure in coastal wetland soil of the Yellow River Delta[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(5): 691−696 doi: 10.3321/j.issn:1006-687x.2007.05.018
[2] 周云轩, 田波, 黄颖, 等. 我国海岸带湿地生态系统退化成因及其对策[J]. 中国科学院院刊, 2016, 31(10): 1157−1166 doi: 10.16418/j.issn.1000-3045.2016.10.004 ZHOU Y X, TIAN B, HUANG Y, et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1157−1166 doi: 10.16418/j.issn.1000-3045.2016.10.004
[3] TURNER R K, DAILY G C. The ecosystem services framework and natural capital conservation[J]. Environmental and Resource Economics, 2008, 39(1): 25−35 doi: 10.1007/s10640-007-9176-6
[4] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016 LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity[J]. Acta Pedologica Sinica, 2008, 45(5): 892−900 doi: 10.3321/j.issn:0564-3929.2008.05.016
[5] LUKÁCS B A, SRAMKÓ G, MOLNÁR V A. Plant diversity and conservation value of continental temporary pools[J]. Biological Conservation, 2013, 158: 393−400 doi: 10.1016/j.biocon.2012.08.024
[6] 徐洁, 谢高地, 肖玉, 等. 国家重点生态功能区生态环境质量变化动态分析[J]. 生态学报, 2019, 39(9): 3039−3050 XU J, XIE G D, XIAO Y, et al. Dynamic analysis of ecological environmental quality changes in national key ecological function areas in China[J]. Acta Ecologica Sinica, 2019, 39(9): 3039−3050
[7] SIEFERT A, RAVENSCROFT C, ALTHOFF D, et al. Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data[J]. Journal of Vegetation Science, 2012, 23(5): 942−951 doi: 10.1111/j.1654-1103.2012.01401.x
[8] SILES G, VOIRIN Y, BÉNIÉ G B. Open-source based geo-platform to support management of wetlands and biodiversity in Quebec[J]. Ecological Informatics, 2018, 43: 84−95 doi: 10.1016/j.ecoinf.2017.11.005
[9] LITE S J, BAGSTAD K J, STROMBERG J C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA[J]. Journal of Arid Environments, 2005, 63(4): 785–813
[10] 赵敏, 赵锐锋, 张丽华, 等. 基于盐分梯度的黑河中游湿地植物多样性及其与土壤因子的关系[J]. 生态学报, 2019, 39(11): 4116−4126 ZHAO M, ZHAO R F, ZHANG L H, et al. Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient[J]. Acta Ecologica Sinica, 2019, 39(11): 4116−4126
[11] 宋香静, 李胜男, 郭嘉, 等. 环境变化对湿地植物根系的影响研究[J]. 水生态学杂志, 2017, 38(2): 1−9 SONG X J, LI S N, GUO J, et al. Response of wetland plant roots to environmental factors: a review[J]. Journal of Hydroecology, 2017, 38(2): 1−9
[12] 毛庆功, 鲁显楷, 陈浩, 等. 陆地生态系统植物多样性对矿质元素输入的响应[J]. 生态学报, 2015, 35(17): 5884−5897 MAO Q G, LU X K, CHEN H, et al. Responses of terrestrial plant diversity to elevated mineral element inputs[J]. Acta Ecologica Sinica, 2015, 35(17): 5884−5897
[13] 张永超, 牛得草, 韩潼, 等. 补播对高寒草甸生产力和植物多样性的影响[J]. 草业学报, 2012, 21(2): 305−309 doi: 10.11686/cyxb20120240 ZHANG Y C, NIU D C, HAN T, et al. Effect of reseeding on productivity and plant diversity on alpine meadows[J]. Acta Prataculturae Sinica, 2012, 21(2): 305−309 doi: 10.11686/cyxb20120240
[14] 王杰, 王计平, 张华新, 等. 滦河河口地区植物区系分析及多样性研究[J]. 山西农业大学学报: 自然科学版, 2020, 40(4): 111−120 WANG J, WANG J P, ZHANG H X, et al. Floristic and diversity study of indigenous plants in estuary area of Luanhe[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(4): 111−120
[15] 李艳红, 李发东, 马雯. 艾比湖湿地植物多样性特征及其影响因素研究[J]. 生态科学, 2016, 35(3): 78−84 LI Y H, LI F D, MA W. Study on the features of plant diversity and its impact factors in the wetlands surrounding the Ebinur Lake[J]. Ecological Science, 2016, 35(3): 78−84
[16] 彭琼, 刘宝元, 曹琦, 等. 作物覆盖度对土壤侵蚀的影响[J]. 水土保持学报, 2022, 36(5): 97−103 doi: 10.13870/j.cnki.stbcxb.2022.05.014 PENG Q, LIU B Y, CAO Q, et al. Effect of crop coverage on soil erosion[J]. Journal of Soil and Water Conservation, 2022, 36(5): 97−103 doi: 10.13870/j.cnki.stbcxb.2022.05.014
[17] 郑春雨, 王光华. 湿地生态系统中主要功能微生物研究进展[J]. 湿地科学, 2012, 10(2): 243−249 doi: 10.3969/j.issn.1672-5948.2012.02.018 ZHENG C Y, WANG G H. Research progress on main functional microorganisms in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 243−249 doi: 10.3969/j.issn.1672-5948.2012.02.018
[18] 王丽娜, 于永强, 芦东旭, 等. 土壤pH调控固氮植物和非固氮植物间的氮转移[J]. 植物生态学报, 2022, 46(1): 1−17 doi: 10.17521/cjpe.2021.0283 WANG L N, YU Y Q, LU D X, et al. Soil pH modulates nitrogen transfer from nitrogen-fixing plants to non-nitrogen-fixing plants[J]. Chinese Journal of Plant Ecology, 2022, 46(1): 1−17 doi: 10.17521/cjpe.2021.0283
[19] WIEGAND T, MOLONEY K A. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104(2): 209−229 doi: 10.1111/j.0030-1299.2004.12497.x
[20] 魏强, 席增雷, 苏寒云, 等. 曹妃甸滨海湿地生态系统支持服务价值空间分异研究[J]. 地理科学, 2021, 41(5): 890−899 doi: 10.13249/j.cnki.sgs.2021.05.017 WEI Q, XI Z L, SU H Y, et al. Spatial differentiation of supporting service value of coastal wetland ecosystem in the Caofeidian District of Tangshan in Hebei Province[J]. Scientia Geographica Sinica, 2021, 41(5): 890−899 doi: 10.13249/j.cnki.sgs.2021.05.017
[21] 李南, 梁洋洋. 大型临港经济区建设的生态安全演化与调控−以曹妃甸为例[J]. 中国发展, 2016, 16(3): 7−10 doi: 10.3969/j.issn.1671-2404.2016.03.004 LI N, LIANG Y Y. Evolution and control of ecological security in large port-vicinity zone: Caofeidian as a case[J]. China Development, 2016, 16(3): 7−10 doi: 10.3969/j.issn.1671-2404.2016.03.004
[22] 孟鑫磊. 曹妃甸湿地生态旅游开发研究[D]. 成都: 西南交通大学, 2017 MENG X L. Caofeidian wetland eco-tourism development research[D]. Chengdu: Southwest Jiaotong University, 2017
[23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
[24] 王琳, 张金屯, 上官铁梁, 等. 历山山地草甸的物种多样性及其与土壤理化性质的关系[J]. 应用与环境生物学报, 2004, 10(1): 18−22 WANG L, ZHANG J T, SHANGGUAN T L, et al. Species diversity of mountain meadow of Lishan and the relation with the soil physicochemical properties[J]. Chinese Journal of Appplied and Environmental Biology, 2004, 10(1): 18−22
[25] 赵杏花, 蓝登明, 左合君, 等. 阴山山脉乌拉山段种子植物区系组成及特征研究[J]. 西北植物学报, 2012, 32(6): 1245−1253 doi: 10.3969/j.issn.1000-4025.2012.06.026 ZHAO X H, LAN D M, ZUO H J, et al. Flora composition and characteristics of Wula Mountain in Yin Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6): 1245−1253 doi: 10.3969/j.issn.1000-4025.2012.06.026
[26] 刘佳, 阎平, 翟伟, 等. 新疆玛纳斯河中上游低山荒漠种子植物区系特征[J]. 草业科学, 2019, 36(1): 83−92 LIU J, YAN P, ZHAI W, et al. Floristic characteristics of seed plants in low mountain deserts in the upper and middle reaches of the Manas River in Xinjiang[J]. Pratacultural Science, 2019, 36(1): 83−92
[27] 刘有军, 王继和, 马全林, 等. 甘肃省荒漠种子植物科的区系分析[J]. 草业科学, 2008, 25(5): 22−27 LIU Y J, WANG J H, MA Q L, et al. Floristic analysis of desert spermatophyte families in Gansu Province[J]. Pratacultural Science, 2008, 25(5): 22−27
[28] 张绪良, 叶思源, 印萍, 等. 黄河三角洲滨海湿地的维管束植物区系特征[J]. 生态环境学报, 2009, 18(2): 600−607 ZHANG X L, YE S Y, YIN P, et al. Flora characteristics of vascular plants of coastal wetlands in Yellow River Delta[J]. Ecology and Environmental Sciences, 2009, 18(2): 600−607
[29] 吴征镒, 孙航, 周浙昆, 等. 中国种子植物区系地理[M]. 北京: 科学出版社, 2010 WU Z Y, SUN H, ZHOU Z K, et al. Floristic of Seed Plants from China[M]. Beijing: Science Press, 2010
[30] 高金强, 王潜, 崔秀平. 天津北大港湿地植物调查及区系分析[C]//中国水利学会2021学术年会论文集第一分册. 北京: 中国水利学会, 2021: 431–438 GAO J Q, WANG Q, CUI X P. Investigation and floristic analysis of wetland plants in Tianjin Beidagang[C]//Volume 1 of the Proceedings of the 2021 Academic Annual Conference of the Chinese Water Conservancy Society. Beijing: Chinese Water Conservancy Society, 2021: 431–438
[31] 郭舜, 黄启堂, 吕国梁. 福建武平中山河国家湿地公园种子植物区系研究[J]. 中南林业科技大学学报, 2021, 41(5): 12−20 GUO S, HUANG Q T, LYU G L. Study on seed flora of Zhongshanhe National Wetland Park in Wuping, Fujian Province[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5): 12−20
[32] 朱莹, 孔磊, 张霄, 等. 江苏盐城滩涂湿地植物区系及植物资源研究[J]. 生物学杂志, 2014, 31(5): 71−75 ZHU Y, KONG L, ZHANG X, et al. Research on flora and plant resources on beach wetland of Yancheng, Jiangsu[J]. Journal of Biology, 2014, 31(5): 71−75
[33] 马玉, 吕光辉, 何学敏, 等. 盐梯度下艾比湖湿地植物多样性响应及土壤因子驱动研究[J]. 广东农业科学, 2015, 42(11): 141−147 doi: 10.3969/j.issn.1004-874X.2015.11.026 MA Y, LYU G H, HE X M, et al. Responses of plant diversity and soil factors driving to soil salinity in wetland of Ebinur Lake[J]. Guangdong Agricultural Sciences, 2015, 42(11): 141−147 doi: 10.3969/j.issn.1004-874X.2015.11.026
[34] YOUCEF H, LAMINE B M, HOCINE B, et al. Diversity of halophyte desert vegetation of the different saline habitats in the valley of Oued Righ, Low Sahara Basin, Algeria[J]. Research Journal of Environmental and Earth Sciences, 2012, 4(3): 308−315
[35] 张林静, 岳明, 赵桂仿, 等. 新疆阜康地区植物群落物种多样性及其测度指标的比较[J]. 西北植物学报, 2002, 22(2): 142−150 doi: 10.3321/j.issn:1000-4025.2002.02.022 ZHANG L J, YUE M, ZHAO G F, et al. Plant community species diversity on oasis-desert ecotone in Fukang of Xinjiang and comparison of its measurement[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 142−150 doi: 10.3321/j.issn:1000-4025.2002.02.022
[36] BASHARAT A D, ABDULAZIZ M A, SAUD L A, et al. Vegetation composition of the halophytic grass Aeluropus lagopoides communities within coastal and inland Sabkhas of Saudi Arabia[J]. Plants, 2022, 11(666): 1−16
[37] 刘俊娟. 丹江湿地植物多样性特征及其环境影响因素[J]. 西南农业学报, 2017, 30(12): 2811−2819 LIU J J. Study on features of plant diversity and environmental factors in Danjiang Wetland[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(12): 2811−2819
[38] 郭舜, 黄启堂. 闽江河口湿地植物多样性与土壤养分和微生物因子关联分析[J]. 水土保持研究, 2021, 28(3): 30−37 GUO S, HUANG Q T. Correlation analysis of plant diversity and soil microecological environmental factors in wetland of Minjiang Estuary[J]. Research of Soil and Water Conservation, 2021, 28(3): 30−37
[39] 王琳, 张金屯, 欧阳华. 历山山地草甸的生态关系[J]. 山地学报, 2004, 22(6): 669−674 WANG L, ZHANG J T, OUYANG H. Ecological relationship in Lishan Mountain meadow[J]. Journal of Mountain Research, 2004, 22(6): 669−674
[40] 罗琰, 苏德荣, 纪宝明, 等. 辉河湿地不同草甸植被群落特征及其与土壤因子的关系[J]. 草业学报, 2018, 27(3): 33–43 LUO Y, SU D R, JI B M, et al. Vegetation community characteristics of different meadows and their relationship with soil factors in Huihe wetland[J]. Acta Prataculturae Sinica, 2018, 27(3): 33–43
[41] 黄燕, 庞兴宸, 陈景锋, 等. 广佛地区典型湿地类型植物多样性与土壤因子的关系[J]. 热带亚热带植物学报, 2022, 30(5): 697−707 HUANG Y, PANG X C, CHEN J F, et al. Relationship between plant diversity and soil factors of typical wetland types in Guangfo area[J]. Journal of Tropical and Subtropical Botany, 2022, 30(5): 697−707
[42] 肖德荣, 田昆, 张利权. 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系[J]. 生态学报, 2008, 28(7): 3116−3124 XIAO D R, TIAN K, ZHANG L Q. Relationship between plant diversity and soil fertility in Napahai Wetland of northwestern Yunnan Plateau[J]. Acta Ecologica Sinica, 2008, 28(7): 3116−3124
[43] 张雨瑶, 李世友. 土壤磷与植物关系研究进展[J]. 世界林业研究, 2013, 26(5): 19−24 ZHANG Y Y, LI S Y. Relationship between soil phosphorus and plant[J]. World Forestry Research, 2013, 26(5): 19−24
[44] 杨丽霞, 陈少锋, 安娟娟, 等. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究[J]. 草地学报, 2014, 22(2): 291−298 YANG L X, CHEN S F, AN J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different vegetation types in the gully region of loess region[J]. Acta Agrestia Sinica, 2014, 22(2): 291−298
[45] 王冠锴. 不同有机肥对滨海粘质盐土有机质、含盐量和小麦产量的影响[D]. 泰安: 山东农业大学, 2022 WANG G K. Effects of different organic fertilizers on organic matter, salt content and wheat yield in coastal clayey saline soil[D]. Tai’an: Shandong Agricultural University, 2022
[46] 杨海波, 陈运, 侯宪文. 生物腐植酸对土壤碳组分的影响[J]. 中国农学通报, 2015, 31(20): 137−141 doi: 10.11924/j.issn.1000-6850.casb15030243 YANG H B, CHEN Y, HOU X W. Effects of biology humic acid on the component of soil carbon[J]. Chinese Agricultural Science Bulletin, 2015, 31(20): 137−141 doi: 10.11924/j.issn.1000-6850.casb15030243