Effects of long-term application of organic fertilizer on soil available phosphorus content and leaching risk in greenhouse tomato cultivation
-
摘要: 探讨设施蔬菜长期施用有机肥的土壤有效磷含量及磷素淋失风险, 可为设施蔬菜栽培合理施肥提供重要参考。以连续8 a设施番茄栽培田间定位施肥试验为依托, 选择不施肥(CK)、单施化肥(NPK)及与低、中、高量有机肥配施(M1NPK、M2NPK、M3NPK) 5个处理, 研究各施肥处理土壤全磷(Total-P)、有效磷(Olsen-P)和可溶性磷(CaCl2-P)含量及其剖面分布特征, 分析了土壤磷素环境阈值和农学阈值随剖面分布的变化以及设施番茄栽培适宜的磷素施用量。结果表明: 在0~50 cm土层, 各处理土壤Total-P、Olsen-P和CaCl2-P含量均随土层深度的增加呈逐渐下降趋势, 其含量均表现为0~10 cm土层显著高于30~50 cm土层(P<0.05); 与CK相比, 各施肥处理土壤Total-P、Olsen-P和CaCl2-P含量均有所增加, 且随有机肥施用量的增加而增加, 且施用中量(M2)和高量(M3)有机肥对0~20 cm土层土壤Total-P、Olsen-P和CaCl2-P含量的影响显著(P<0.05)。在0~10 cm、10~20 cm、20~30 cm、30~40 cm和40~50 cm土层, 土壤磷素环境阈值随土层深度的增加呈先上升后下降趋势, 其数值依次为139.6 mg·kg−1、152.4 mg·kg−1、133.5 mg·kg−1、86.1 mg·kg−1和42.3 mg·kg−1; 在0~10 cm、10~20 cm、20~30 cm和30~40 cm土层, 土壤磷素农学阈值随土层深度的增加而逐渐降低, 依次为185.1 mg·kg−1、120.5 mg·kg−1、92.8 mg·kg−1和56.0 mg·kg−1。以土壤磷素农学阈值所对应的土壤Olsen-P含量作为磷素淋失风险评价标准, 通过土壤Olsen-P含量与施磷量(P2O5)之间的相关关系, 求出设施番茄栽培适宜磷素(P2O5)用量为344.9~530.3 kg∙hm−2, 其中有机肥供应的磷素(P2O5)用量为119.9~305.3 kg·hm−2。综上, 连续8 a设施番茄栽培定位施肥条件下, 在施用化学氮磷钾肥(N 375 kg·hm−2、P2O5 225 kg·hm−2和K2O 450 kg·hm−2)的基础上配施低量有机肥(15 000 kg·hm−2), 不仅可以提高0~20 cm土壤有效磷含量, 使番茄产量显著增加, 而且可以有效控制土壤磷素淋失风险。Abstract: This study explored the soil available phosphorus content and leaching risk of long-term application of organic fertilizers under greenhouse tomato cultivation to provide an important reference for rational fertilization in greenhouse tomato cultivation. Based on a field experiment of located fertilization in greenhouse tomato cultivation over eight years, five treatments were selected: no fertilization (CK), application of chemical fertilizers (NPK), and combined application of low, medium, and high amounts of organic fertilizer and chemical fertilizers (M1NPK, M2NPK, M3NPK). The contents and profile distribution of soil total phosphorus (Total-P), available phosphorus (Olsen-P), and soluble phosphorus (CaCl2-P) in each fertilization treatment were studied. The changes in the soil phosphorus environmental and agricultural thresholds with profile distribution, and appropriate phosphorus application amount in greenhouse tomato cultivation were analyzed. The results showed that the contents of Total-P, Olsen-P, and CaCl2-P in all treatments decreased gradually with increasing soil depth in the 0–50 cm soil layer, and their contents in the 0–10 cm soil layer were significantly higher than those in the 30–50 cm soil layer (P<0.05). Total-P, Olsen-P, and CaCl2-P contents increased in all fertilizer treatments compared with CK, and they increased with the amount of organic fertilizer applied, and the effect of medium (M2) and high (M3) organic fertilizer application on Total-P, Olsen-P, and CaCl2-P contents in the 0–20 cm soil layer was significant (P<0.05). In the 0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, and 40–50 cm soil layers, the environmental thresholds of soil phosphorus increased first and then decreased with increasing soil depth, which were 139.6 mg·kg−1, 152.4 mg·kg−1, 133.5 mg·kg−1, 86.1 mg·kg−1 and 42.3 mg·kg−1, respectively. In the 0–10 cm, 10–20 cm, 20–30 cm, and 30–40 cm soil layers, the agriculture thresholds of soil phosphorus decreased gradually with increasing soil depth, which were 185.1 mg·kg−1, 120.5 mg·kg−1, 92.8 mg·kg−1, and 56.0 mg·kg−1, respectively. Taking the soil Olsen-P content corresponding to the soil phosphorus agriculture threshold as the risk assessment criterion of phosphorus leaching, through the relationship between soil Olsen-P content and phosphorus application rate (P2O5), it was inferred that the suitable amount of phosphorus (P2O5) for greenhouse tomato cultivation was 344.9−530.3 kg·hm−2, and the amount of P2O5 supplied by organic fertilizer was 119.9−305.3 kg·hm−2. Under the condition of located fertilization in greenhouse tomato cultivation for 8 years, on the basis of chemical nitrogen, phosphorus, and potassium fertilizers (N 375 kg∙hm−2, P2O5 225 kg∙hm−2, and K2O 450 kg∙hm−2), the application of a low amount of organic fertilizer (15 000 kg·hm−2) could not only improve the available soil phosphorus content at 0–20 cm and significantly increase the tomato yield but also effectively control the risk of soil phosphorus leaching.
-
表 1 2012年试验前土壤理化性质
Table 1 Physical and chemical properties of soil before the experiment in 2012
土层
Soil layer
(cm)有机质
Organic matter
(g·kg−1)全氮
Total N
(g·kg−1)碱解氮
Alkaline N
(mg·kg−1)全磷
Total P
(g·kg−1)有效磷
Olsen P
(mg·kg−1)全钾
Total K
(g·kg−1)速效钾
Available K
(mg·kg−1)pH 容重
Soil bulk density
(g·cm−3)0~10 25.2 2.1 58.5 0.8 13.5 19.3 29.7 7.1 1.3 10~20 8.4 1.2 53.2 0.7 11.3 18.5 42.5 7.0 1.6 20~40 9.8 1.5 34.2 0.4 8.5 18.6 35.5 7.0 1.8 40~60 12.0 1.5 26.6 0.3 9.2 17.2 63.3 7.0 1.9 表 2 不同长期施肥处理土壤有机碳、活性铁和活性铝含量及pH
Table 2 Soil organic carbon (SOC) and active Fe and Al contents, and pH under different long-term fertilization treatments
土层
Soil depth (cm)处理
TreatmentpH 有机碳
SOC (g·kg−1)活性铁
Active Fe (g·kg−1)活性铝
Active Al (g·kg−1)0~10 CK 6.84±0.07a 11.17±0.27cd 0.56±0.11b 0.50±0.04a NPK 5.87±0.03c 9.47±0.29d 0.65±0.04b 0.51±0.02a M1NPK 6.44±0.08b 15.54±0.14bc 0.65±0.00b 0.55±0.06a M2NPK 6.48±0.19b 18.83±2.81b 0.68±0.03b 0.56±0.01a M3NPK 6.39±0.03b 26.02±1.43a 0.98±0.17a 0.64±0.10a 10~20 CK 6.92±0.09a 10.01±0.82c 0.64±0.03b 0.65±0.04a NPK 6.00±0.07c 8.85±0.58c 0.64±0.03b 0.62±0.00a M1NPK 6.45±0.07b 12.82±0.50bc 0.69±0.01ab 0.53±0.09a M2NPK 6.63±0.13b 16.63±2.49ab 0.72±0.02ab 0.61±0.07a M3NPK 6.47±0.02b 20.52±1.98a 0.77±0.05a 0.48±0.14a 20~30 CK 6.92±0.11a 8.48±0.47b 0.60±0.01b 0.61±0.00a NPK 5.66±0.09c 8.43±0.93b 0.60±0.01b 0.62±0.02a M1NPK 6.41±0.18b 10.02±0.59ab 0.65±0.01a 0.58±0.04a M2NPK 6.56±0.02ab 13.39±2.12a 0.67±0.01a 0.62±0.03a M3NPK 5.86±0.15c 10.96±1.37ab 0.65±0.01a 0.56±0.04a 30~40 CK 6.40±0.12a 8.71±0.37a 0.64±0.02b 0.57±0.04a NPK 5.28±0.01d 9.07±0.97a 0.67±0.02ab 0.52±0.04a M1NPK 5.93±0.10bc 9.31±0.28a 0.70±0.02a 0.44±0.09a M2NPK 6.10±0.08b 11.76±1.57a 0.71±0.00a 0.46±0.04a M3NPK 5.70±0.08c 10.07±0.93a 0.71±0.02a 0.39±0.10a 40~50 CK 5.73±0.11a 8.66±0.67a 0.73±0.06a 0.44±0.09a NPK 5.27±0.09b 7.67±0.72a 0.69±0.03a 0.56±0.01a M1NPK 5.62±0.08ab 9.56±0.52a 0.69±0.02a 0.65±0.04a M2NPK 5.71±0.08a 10.41±1.50a 0.70±0.01a 0.54±0.06a M3NPK 5.35±0.21ab 9.38±0.28a 0.59±0.10a 0.49±0.12a 同列不同小写字母表示相同土层不同处理间差异显著(P<0.05)。CK、NPK、M1NPK、M2NPK和M3NPK分别表示不施肥、单施化肥以及低、中和高量有机肥与化肥配施处理。Different lowercase letters in the same column indicate significant differences among different treatments of the same soil depth at P<0.05 level. CK, NPK, M1NPK, M2NPK and M3NPK are five treatments of no fertilization, chemical fertilizers application, and combined applicaiton of low, medium and high organic fertilizer and chemical fertilizers, respectively. -
[1] ZHANG Y J, GAO W, LUAN H A, et al. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. Journal of Integrative Agriculture, 2022, 21(7): 2119−2133 doi: 10.1016/S2095-3119(21)63715-2
[2] 蔡祖聪. 我国设施栽培养分管理中待解的科学和技术问题[J]. 土壤学报, 2019, 56(1): 36−43 CAI Z C. Scientific and technological issues of nutrient management under greenhouse cultivation in China[J]. Acta Pedologica Sinica, 2019, 56(1): 36−43
[3] FAN Y N, ZHANG Y X, HESS F, et al. Nutrient balance and soil changes in plastic greenhouse vegetable production[J]. Nutrient Cycling in Agroecosystems, 2020, 117(1): 77−92 doi: 10.1007/s10705-020-10057-x
[4] YAN Z J, LIU P P, LI Y H, et al. Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications[J]. Journal of Environmental Quality, 2013, 42(4): 982−989 doi: 10.2134/jeq2012.0463
[5] 王婷婷, 王俊, 赵牧秋, 等. 有机肥对设施菜地土壤磷素累积及有效性的影响[J]. 农业环境科学学报, 2009, 28(1): 95−100 doi: 10.3321/j.issn:1672-2043.2009.01.018 WANG T T, WANG J, ZHAO M Q, et al. Effects of organic manure on phosphorus accumulating and its availability in a greenhouse soil in Shenyang suburb[J]. Journal of Agro-Environment Science, 2009, 28(1): 95−100 doi: 10.3321/j.issn:1672-2043.2009.01.018
[6] 段鹏鹏, 丛耀辉, 徐文静, 等. 氮肥与有机肥配施对设施土壤可溶性氮动态变化的影响[J]. 中国农业科学, 2015, 48(23): 4717−4727 DUAN P P, CONG Y H, XU W J, et al. Effect of combined application of nitrogen fertilizer and manure on the dynamic of soil soluble N in greenhouse cultivation[J]. Scientia Agricultura Sinica, 2015, 48(23): 4717−4727
[7] 李媛, 郝鲜俊, 高文俊, 等. 不同有机肥对矿区复垦土壤磷素累积及淋失风险研究[J]. 水土保持学报, 2022, 36(2): 344−351 LI Y, HAO X J, GAO W J, et al. Effects of different organic fertilizers on phosphorus accumulation and leaching risk of reclaimed soil in mining area[J]. Journal of Soil and Water Conservation, 2022, 36(2): 344−351
[8] 刘建玲, 廖文华, 王新军, 等. 大量施用磷肥和有机肥对白菜产量和土壤磷积累的影响[J]. 中国农业科学, 2006, 39(10): 2147−2153 LIU J L, LIAO W H, WANG X J, et al. Effects of phosphate fertilizer and organic manure to the yield of Chinese cabbage and soil phosphorus accumulation[J]. Scientia Agricultura Sinica, 2006, 39(10): 2147−2153
[9] SUN B, ZHANG L X, YANG L Z, et al. Agricultural non-point source pollution in China: causes and mitigation measures[J]. AMBIO, 2012, 41(4): 370−379 doi: 10.1007/s13280-012-0249-6
[10] SHARPLEY A N, MCDOWELL R W, KLEINMAN P J A. Amounts, forms, and solubility of phosphorus in soils receiving manure[J]. Soil Science Society of America Journal, 2004, 68(6): 2048−2057 doi: 10.2136/sssaj2004.2048
[11] DE JAGER P C, CLAASSENS A S. Long-term phosphate desorption kinetics of an acid sandy clay soil from mpumalanga, South Africa[J]. Communications in Soil Science and Plant Analysis, 2005, 36(1/2/3): 309−319
[12] ZICKER T, VON TUCHER S, KAVKA M, et al. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany[J]. Field Crops Research, 2018, 218: 158−170 doi: 10.1016/j.fcr.2018.01.008
[13] XAVIER F A D S, OLIVEIRA T S D, ANDRADE F V, et al. Phosphorus fractionation in a sandy soil under organic agriculture in Northeastern Brazil[J]. Geoderma, 2009, 151(3/4): 417−423
[14] GARG S, BAHL G S. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils[J]. Bioresource Technology, 2008, 99(13): 5773−5777 doi: 10.1016/j.biortech.2007.10.063
[15] 吕鉴于, 高文俊, 郝鲜俊, 等. 不同有机肥对矿区复垦土壤磷素矿化特征研究[J]. 灌溉排水学报, 2020, 39(4): 59−67 LYU J Y, GAO W J, HAO X J, et al. Study of phosphorus mineralization characteristics in a mine reclaimed soil under different organic fertilizers[J]. Journal of Irrigation and Drainage, 2020, 39(4): 59−67
[16] 戴佩彬. 模拟条件下磷肥配施有机肥对土壤磷素转化迁移及水稻吸收利用的影响[D]. 杭州: 浙江大学, 2016 DAI P B. Effects of phosphate fertilizer combined with organic fertilizer on soil phosphorus transformation and migration and rice absorption and utilization under simulated conditions[D]. Hangzhou: Zhejiang University, 2016
[17] 章爱群, 贺立源, 赵会娥, 等. 有机酸对土壤无机态磷转化和速效磷的影响[J]. 生态学报, 2009, 29(8): 4061−4069 ZHANG A Q, HE L Y, ZHAO H E, et al. Effect of organic acids on inorganic phosphorus transformation in soils and its readily available phosphate[J]. Acta Ecologica Sinica, 2009, 29(8): 4061−4069
[18] 牛君仿, 冯俊霞, 张喜英. 不同磷源对设施菜田土壤速效磷及其淋溶阈值的影响[J]. 中国生态农业学报(中英文), 2019, 27(5): 686−693 NIU J F, FENG J X, ZHANG X Y. Available phosphorus status and critical threshold for leaching in greenhouse soils influenced by different fertilizer sources[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 686−693
[19] SU D C, YANG F H, ZHANG F S. Profile characteristics and potential environmental effect of accumulated phosphorus in soils of vegetable fields in Beijing[J]. Pedosphere, 2002, 12(2): 179−184
[20] CREWS T E, BROOKES P C. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems[J]. Agriculture, Ecosystems & Environment, 2014, 184: 168−181
[21] LOURENZI C R, CERETTA C A, CERINI J B, et al. Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources[J]. Revista Brasileira De Ciência Do Solo, 2014, 38(2): 544−556
[22] EGHBALL B, BINFORD G D, BALTENSPERGER D D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application[J]. Journal of Environmental Quality, 1996, 25(6): 1339−1343
[23] ZHAO X R, ZHONG X Y, BAO H J, et al. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils[J]. Geoderma, 2007, 142(3/4): 237−244
[24] HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105−110
[25] 王瑞, 仲月明, 李慧敏, 等. 高投入菜地土壤磷素环境与农学阈值研究进展[J]. 土壤, 2022, 54(1): 1−8 WANG R, ZHONG Y M, LI H M, et al. Research progresses on environmental and agriculture thresholds of soil phosphorus in high-input vegetable fields[J]. Soils, 2022, 54(1): 1−8
[26] 黄绍敏, 郭斗斗, 张水清. 长期施用有机肥和过磷酸钙对潮土有效磷积累与淋溶的影响[J]. 应用生态学报, 2011, 22(1): 93−98 HUANG S M, GUO D D, ZHANG S Q. Effects of long-term application of organic fertilizer and superphosphate on accumulation and leaching of Olsen-P in Fluvo-aquic soil[J]. Chinese Journal of Applied Ecology, 2011, 22(1): 93−98
[27] POULTON P R, JOHNSTON A E, WHITE R P. Plant-available soil phosphorus. Part I: the response of winter wheat and spring barley to Olsen-P on a silty clay loam[J]. Soil Use and Management, 2013, 29(1): 4−11 doi: 10.1111/j.1475-2743.2012.00450.x
[28] 沈浦. 长期施肥下典型农田土壤有效磷的演变特征及机制[D]. 北京: 中国农业科学院, 2014 SHEN P. Evolution characteristics and mechanism of available phosphorus in typical farmland soil under long-term fertilization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014
[29] 席雪琴. 土壤磷素环境阈值与农学阈值研究[D]. 杨凌: 西北农林科技大学, 2015 XI X Q. Study on environmental threshold and agronomic threshold of soil phosphorus[D]. Yangling: Northwest A & F University, 2015
[30] QIN H L, QUAN Z, LIU X L, et al. Phosphorus status and risk of phosphate leaching loss from vegetable soils of different planting years in suburbs of Changsha, China[J]. Agricultural Sciences in China, 2010, 9(11): 1641−1649 doi: 10.1016/S1671-2927(09)60261-3
[31] BAI Z H, LI H G, YANG X Y, et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types[J]. Plant and Soil, 2013, 372(1): 27−37
[32] 王颖. 辽宁省设施蔬菜施肥现状及建议[J]. 辽宁农业科学, 2015(3): 49−50 doi: 10.3969/j.issn.1002-1728.2015.03.013 WANG Y. Present situation and suggestions on fertilization of protected vegetables in Liaoning Province[J]. Liaoning Agricultural Sciences, 2015(3): 49−50 doi: 10.3969/j.issn.1002-1728.2015.03.013
[33] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
[34] OLSEN S R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate[M]. Washington, D. C.: US Deparptment of Agriculture, 1954
[35] 徐孟泽, 王磊, 卢艳丽, 等. 砂质潮土长期施磷的农学效应及有效性演变[J]. 植物营养与肥料学报, 2022, 28(2): 205−215 XU M Z, WANG L, LU Y L, et al. Agronomic effect and variation of P availability under long-term phosphorus application in sandy fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 2022, 28(2): 205−215
[36] WANG J, LIU W Z, MU H F, et al. Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application[J]. Pedosphere, 2010, 20(3): 304−310 doi: 10.1016/S1002-0160(10)60018-5
[37] MA B, ZHOU Z Y, ZHANG C P, et al. Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert[J]. Journal of Arid Environments, 2009, 73(1): 55−61 doi: 10.1016/j.jaridenv.2008.08.006
[38] MOODY P W. Environmental risk indicators for soil phosphorus status[J]. Soil Research, 2011, 49(3): 247 doi: 10.1071/SR10140
[39] 张田, 许浩, 茹淑华, 等. 不同有机肥中磷在土壤剖面中累积迁移特征与有效性差异[J]. 环境科学, 2017, 38(12): 5247−5255 ZHANG T, XU H, RU S H, et al. Distribution of phosphorus in soil profiles after continuous application of different fertilizers[J]. Environmental Science, 2017, 38(12): 5247−5255
[40] 李清华. 畜禽有机肥磷的形态、养分矿化及流失潜力评价研究进展[J]. 安徽农学通报, 2013, 19(3): 73−75 LI Q H. Research progress on forms, nutrient mineralization and loss potential evaluation of phosphorus in livestock and poultry organic fertilizer[J]. Anhui Agricultural Science Bulletin, 2013, 19(3): 73−75
[41] 王敏锋, 严正娟, 陈硕, 等. 施用粪肥和沼液对设施菜田土壤磷素累积与迁移的影响[J]. 农业环境科学学报, 2016, 35(7): 1351−1359 WANG M F, YAN Z J, CHEN S, et al. Effects of manure and biogas slurry applications on phosphorus accumulation and mobility in organic vegetable soil under greenhouse[J]. Journal of Agro-Environment Science, 2016, 35(7): 1351−1359
[42] 谢林花, 吕家珑, 张一平, 等. 长期施肥对石灰性土壤磷素肥力的影响Ⅱ. 无机磷和有机磷[J]. 应用生态学报, 2004, 15(5): 790−794 XIE L H, LYU J L, ZHANG Y P, et al. Influence of long-term fertilization on phosphorus fertility of calcareous soil Ⅱ. Inorganic and organic phosphorus[J]. Chinese Journal of Applied Ecology, 2004, 15(5): 790−794
[43] 牛明芬, 温林钦, 赵牧秋, 等. 可溶性磷损失与径流时间关系模拟研究[J]. 环境科学, 2008, 29(9): 2580−2585 NIU M F, WEN L Q, ZHAO M Q, et al. Simulation of relationship between dissoluble phosphorus loss and runoff time[J]. Chinese Journal of Environmental Science, 2008, 29(9): 2580−2585
[44] HECKRATH G, BROOKES P C, POULTON P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment[J]. Journal of Environmental Quality, 1995, 24(5): 904−910
[45] 常会庆, 吴杰, 王启震, 等. 石灰性土壤添加污泥后土壤的肥力特征及磷素淋失临界值[J]. 农业工程学报, 2020, 36(6): 231−238 CHANG H Q, WU J, WANG Q Z, et al. Fertility property and phosphorus leaching risk threshold of calcareous soil with sludge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 231−238
[46] 汪玉, 袁佳慧, 陈浩, 等. 太湖流域典型农田土壤磷库演变特征及环境风险预测[J]. 土壤学报, 2022, 59(6): 1640−1649 WANG Y, YUAN J H, CHEN H, et al. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake Region[J]. Acta Pedologica Sinica, 2022, 59(6): 1640−1649
[47] 刘畅, 张玉龙, 孙伟. 灌溉方式对保护地土壤磷素淋失风险的影响[J]. 土壤通报, 2012, 43(4): 923−928 LIU C, ZHANG Y L, SUN W. Effect of irrigation methods on risk of phosphorus leaching loss in protected field[J]. Chinese Journal of Soil Science, 2012, 43(4): 923−928
[48] 史静, 张乃明, 包立. 我国设施农业土壤质量退化特征与调控研究进展[J]. 中国生态农业学报, 2013, 21(7): 787−794 doi: 10.3724/SP.J.1011.2013.00787 SHI J, ZHANG N M, BAO L. Research progress on soil degradation and regulation of facility agriculture in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(7): 787−794 doi: 10.3724/SP.J.1011.2013.00787
[49] 宋春丽, 樊剑波, 何园球, 等. 不同母质发育的红壤性水稻土磷素吸附特性及其影响因素的研究[J]. 土壤学报, 2012, 49(3): 607−611 doi: 10.11766/trxb201104200142 SONG C L, FAN J B, HE Y Q, et al. Phosphorous adsorption characteristics of red paddy soils derived from different parent materials and their influencing factors[J]. Acta Pedologica Sinica, 2012, 49(3): 607−611 doi: 10.11766/trxb201104200142
[50] 赵小蓉, 钟晓英, 李贵桐, 等. 我国23个土壤磷素淋失风险评估Ⅱ. 淋失临界值与土壤理化性质和磷吸附特性的关系[J]. 生态学报, 2006, 26(9): 3011−3017 doi: 10.3321/j.issn:1000-0933.2006.09.029 ZHAO X R, ZHONG X Y, LI G T, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils Ⅱ. The relationships between soil properties, P adsorption characteristics and the leaching criterion[J]. Acta Ecologica Sinica, 2006, 26(9): 3011−3017 doi: 10.3321/j.issn:1000-0933.2006.09.029
[51] 许俊香, 邹国元, 孙钦平, 等. 施用有机肥对蔬菜生长和土壤磷素累积的影响[J]. 核农学报, 2016, 30(9): 1824−1832 doi: 10.11869/j.issn.100-8551.2016.09.1824 XU J X, ZOU G Y, SUN Q P, et al. Effects of application manure on Olsen-P accumulation and distribution in soil profile and the yield of vegetable[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1824−1832 doi: 10.11869/j.issn.100-8551.2016.09.1824
[52] 宋雅欣, 赵同科, 安志装, 等. 有机无机肥料配施对设施番茄产量及土壤养分含量的影响[J]. 华北农学报, 2021, 36(S01): 306−311 SONG Y X, ZHAO T K, AN Z Z, et al. Effects of organic and inorganic fertilizers combined application on yield and soil nutrient in facility tomatoes[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S01): 306−311
[53] 姜波, 林咸永, 章永松. 杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 207−213 JIANG B, LIN X Y, ZHANG Y S. Phosphorus status and index for predicting environmental risk of phosphorus leaching in typical vegetable soils of Hangzhou[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2008, 34(2): 207−213