Effects of Pichia anomala and cellulase on methane production potential of sweet sorghum silage
-
摘要: 本文探究了单独或联合使用异常毕赤酵母(Pichia anomala)和纤维素酶对甜高粱青贮质量和厌氧消化产甲烷潜力的调控效果, 利用高通量测序解析了厌氧消化过程中微生物菌群的多样性, 结合经济性能分析筛选廉价高效的青贮预处理添加剂。结果表明, 甜高粱青贮过程中, 单独或联合使用2种添加剂的青贮品质均为优良, 其中异常毕赤酵母和纤维素酶联合处理组(PC组)的综合评价值为0.66, 单独添加异常毕赤酵母(Pa组)的评价值次之为0.63; 两种添加剂均能有效保存青贮甜高粱的可溶性碳水化合物、粗蛋白、纤维素和半纤维素等能量组分, 降低酸性洗涤木质素、中性洗涤纤维和酸性洗涤纤维等木质纤维组分, 增加乳酸和乙酸含量, 强化青贮发酵进程。尤其, PC组的可溶性碳水化合物保存效果最佳, 木质素去除率高达62.55%; Pa组中蛋白质保存完好, 乳酸和乙酸含量最高, 分别为50.01 g·kg−1(DM)和18.35 g·kg−1(DM)。青贮预处理能明显提升甜高粱的厌氧发酵产甲烷效能, 与新鲜原料组相比, PC组累计产甲烷量提高30.13%, 为457.70 mL(CH4)·g−1(VS), 消化迟滞期缩短62.96%, 生物降解指数最高, 达72.39%; Pa组的预处理效果次之, 最大产甲烷速率提升33.57%, 消化迟滞期缩短33.33%, 且消化系统都相对稳定。厌氧消化系统中属水平优势细菌为发酵单胞菌(Fermentimonas)和梭状芽孢杆菌(Clostridium_sensu_stricto_1), 与pH呈负相关, 与化学需氧量(COD)和总挥发性脂肪酸(TVFA)呈正相关。优势古菌属为甲烷八叠球菌(Methanosarcina)和甲烷短杆菌(Methanobrevibacter), 其中甲烷八叠球菌与COD和TVFA呈负相关, 与pH呈正相关; 甲烷短杆菌与COD和TVFA呈正相关, 与pH呈负相关关系。综合青贮质量、产甲烷性能和经济性分析, 推荐单独使用异常毕赤酵母作为甜高粱青贮预处理的生物强化剂。Abstract: The effects of Pichia anomala, cellulase, and a combination of both on the regulation of ensiling quality and methanogenic potential during anaerobic digestion of sweet sorghum were investigated in this study. Moreover, microbial community diversity during anaerobic digestion was analyzed using high-throughput DNA sequencing, and economic performance was evaluated to screen for inexpensive and highly efficient additives. The results revealed that the two additives improved the ensiling fermentation quality of sweet sorghum to different extents. The highest comprehensive assessment value was for the silages treated with the combination of P. anomala and cellulase (PC, 0.66), followed by 0.63 in silages treated with P. anomala alone (Pa). PC was effective in preserving energy components such as water-soluble carbohydrates, crude protein, cellulose, and hemicellulose in sweet sorghum silage. The addition of the two could also reduce lignocellulosic components, such as acid detergent lignin, neutral detergent fiber, and acid detergent fiber and subsequently increase the content of lactic and acetic acid and enhance ensiling fermentation. In particular, there were more residual water-soluble carbohydrates and the highest lignin removal (62.55%) after PC treatment, and the well-preserved protein and the highest lactic and acetic acid content, 50.01 g·kg−1 and 18.35 g·kg−1 (based on dry matter, DM), were determined in Pa silages. Ensiling pretreatment markedly improved the methanogenic potential of sweet sorghum. In particular, for PC, the maximum cumulative methane production was 457.70 mL(CH4)·g−1 (based on volatile solids, VS), which was increased by 30.13% compared to raw sweet sorghum, the maximum biodegradability index was 72.39%, and the lag phase was decreased by 62.96% compared to raw sweet sorghum (CK). In comparison with CK, the maximum methane production rate in Pa increased by 33.57%, and the lag phase decreased by 33.33%. The species richness of bacteria and archaea increased after sweet sorghum was treated with additives. Simultaneously, the use of different silage additives can affect the variation in bacterial community diversity with fermentation time but no such effect was observed in archaea. At the genus level, the dominant bacteria in the anaerobic digestion effluent were Fermentimonas and Clostridium_ sensu_stricto_1, which negatively correlated with pH and positively correlated with chemical oxygen demand (COD) and total volatile fatty acid (TVFA). The dominant archaea were Methanosarcina and Methanobrevibacter, where Methanosarcina was negatively correlated with COD and TVFA and positively correlated with pH. Methanobrevibacter was positively correlated with COD and TVFA concentrations and negatively correlated with pH. After the combined analysis of ensiling quality, methanogenic performance, and economy, it is recommended to use Pa as a biological additive for ensiling pretreatment in practical production.
-
表 1 不同添加剂处理下甜高粱青贮前后理化性质的变化
Table 1 Physicochemical properties of sweet sorghum before and after ensiling with different additives
性质
Property原料甜高粱
Raw sweet sorghum青贮甜高粱 Silage sweet sorghum SS Pa Cx PC 干物质量 Dry matter (DM) [g∙kg−1(FW)] 378.68±4.081A 287.89±1.11B 279.43±1.65B 278.85±1.54B 282.53±2.56B 干物质损失率 Dry matter loss (LDM) (%) — 34.71±0.05A 32.32±0.05C 32.28±0.05C 34.03±0.01B 可溶性碳水化合物 Water-soluble carbohydrates (WSC) [g∙kg−1(DM)] 228.04±1.02A 81.43±0.39D 109.02±1.60C 83.22±0.87D 123.86±0.29B 粗蛋白 Crude protein (CP) [g∙kg−1(DM)] 57.90±0.32A 46.35±0.68D 56.27±0.48A 51.30±0.24C 53.51±0.25B 酸性洗涤木质素 Acid detergent lignin (ADL) [g∙kg−1(DM)] 203.90±1.68A 97.16±1.33B 87.30±2.23C 71.92±2.27D 76.36±1.03D 酸性洗涤纤维 Acid detergent fiber (ADF)[g∙kg−1(DM)] 327.20±3.02A 277.28±0.90B 230.63±3.59C 229.69±0.69C 226.29±1.70C 中性洗涤纤维 Neutral detergent fiber (NDF) [g∙kg−1(DM)] 502.82±0.64A 481.52±1.25B 412.03±2.27D 444.21±0.18C 432.49±1.95C 纤维素 Cellulose (CL) [g∙kg−1(DM)] 123.30±1.59D 180.12±2.30A 143.33±0.79C 157.88±2.02B 149.93±2.60C 半纤维素 Hemicellulose (HC) [g∙kg−1(DM)] 175.62±3.25D 204.24±1.33B 181.40±5.86C 214.52±0.87A 206.20±2.95B pH 6.56±0.02A 4.29±0.01B 3.98±0.01B 4.16±0.01B 3.76±0.01B 乳酸 (LA) Lactic acid [g∙kg−1(DM)] 4.47±0.45E 46.30±0.24B 50.01±0.65A 31.93±0.96D 42.35±0.15C 乙酸 (AA) Acetic acid [g∙kg−1(DM)] 9.43±1.02B 5.13±0.78C 18.35±0.66A 3.29±0.20D 10.26±0.29B 隶属函数综合评价值 Comprehensive evaluation — 0.30 0.63 0.47 0.66 SS: 无青贮添加剂组; Pa: 添加异常毕赤酵母青贮组; Cx: 添加纤维素酶青贮组; PC: 联合添加异常毕赤酵母和纤维素酶青贮组。干物质含量以湿基(FW)表示, 其余含量以干物质(DM)为基准。同行不同大写字母表示组间差异显著(P<0.05)。SS: silage without additives; Pa: silage with Pichia anomala; Cx: silage with cellulase; PC: silages with both P. anomala and cellulase. Dry matter based on wet basis (FW), the chemical components content based on dry matter (DM). Different capital letters in the same row indicate significant differences among treatments (P<0.05). 表 2 不同添加剂处理下青贮甜高粱的厌氧消化产甲烷动力学拟合参数
Table 2 Kinetic parameters of methane production during anaerobic digestion of sweet sorghum silage under different additive treatments
处理
Treatment最大累计产甲烷量
Max cumulative methane production
[mL(CH4)∙g−1(VS)]最大产甲烷速率
Max methane production rate
[mL(CH4)∙g−1(VS)∙d−1]迟滞期
Lag phase (d)R2 CK 349.19±2.39C 50.01±2.33E 0.27±0.17A 0.991 SS 430.85±2.64B 64.20±2.64C 0.21±0.15B 0.993 Pa 436.18±2.97D 66.80±2.79A 0.18±0.16B 0.992 Cx 450.83±2.64A 63.28±2.44D 0.12±0.15C 0.993 PC 452.07±2.79A 65.00±2.70B 0.10±0.15C 0.993 CK: 原料甜高粱组; SS: 无青贮添加剂组; Pa: 添加异常毕赤酵母青贮组; Cx: 添加纤维素酶青贮组; PC: 联合添加异常毕赤酵母和纤维素酶青贮组。不同大写字母表示组间差异显著(P<0.05)。CK: raw sweet sorghum; SS: silage without additives; Pa: silage with Pichia anomala; Cx: silage with cellulase; PC: silages with both P. anomala and cellulase. Different capital letters mean significant differences among different treatments (P<0.05). 表 3 青贮预处理前后的经济性能分析
Table 3 Economic performance analysis before and after ensiling pretreatment
处理
Treatment甲烷产量
Methane yield
[m3(CH4)∙t−1(VS)]甲烷增量
Methane increment
[m3(CH4)∙t−1(VS)]甲烷价格
Methane price
(¥∙m−3)总收益
Gross income
[¥∙t−1(VS)]添加剂成本
Additive cost
[¥∙t−1(VS)]纯收益
Net income
[¥∙t−1(VS)]CK 351.72 0 — — — — SS 435.76 84.04 3.5 294.14 0 294.14 Pa 441.53 89.81 3.5 314.33 0 314.33 Cx 455.56 103.84 3.5 363.44 180 183.44 PC 457.77 106.05 3.5 371.17 180 191.17 CK: 原料甜高粱组; SS: 无青贮添加剂组; Pa: 添加异常毕赤酵母青贮组; Cx: 添加纤维素酶青贮组; PC: 联合添加异常毕赤酵母和纤维素酶青贮组。CK: raw sweet sorghum; SS: silage without additives; Pa: silage with Pichia anomala; Cx: silage with cellulase; PC: silages with both P. anomala and cellulase. -
[1] GŁĄB L, SOWIŃSKI J, CHMIELEWSKA J, et al. Comparison of the energy efficiency of methane and ethanol production from sweet sorghum [Sorghum bicolor (L.) Moench] with a variety of feedstock management technologies[J]. Biomass and Bioenergy, 2019, 129: 105332 doi: 10.1016/j.biombioe.2019.105332
[2] 董妙音, 王曙阳, 姜伯玲, 等. 添加不同的青贮菌剂对甜高粱青贮品质的影响[J]. 饲料工业, 2016, 37(1): 28−31 DONG M Y, WANG S Y, JIANG B L, et al. Effects of different silage inoculants on silage quality of sweet sorghum silage[J]. Feed Industry, 2016, 37(1): 28−31
[3] ZHAO J, JING Z D, YIN X J. et al. Insight into the key limiting factors affecting anaerobic fermentation quality and bacterial community of sweet sorghum by irradiation sterilization and microbiota transplant[J]. Chemical and Biological Technologies in Agriculture, 2023, 10(1): 1−13 doi: 10.1186/s40538-022-00376-2
[4] HU F, JUNG S, RAGAUSKAS A. Pseudo-lignin formation and its impact on enzymatic hydrolysis[J]. Bioresource Technology, 2012, 117: 7−12 doi: 10.1016/j.biortech.2012.04.037
[5] WANG Y L, WANG W K, WU Q C, et al. The effect of different lactic acid bacteria inoculants on silage quality, phenolic acid profiles, bacterial community and in vitro rumen fermentation characteristic of whole corn silage[J]. Fermentation, 2022, 8(6): 285 doi: 10.3390/fermentation8060285
[6] KAEWPILA C, GUNUN P, KESORN P, et al. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage[J]. Scientific Reports, 2021, 11(1): 1968 doi: 10.1038/s41598-021-81505-z
[7] ANTONOPOULOU G, LYBERATOS G. Effect of pretreatment of sweet Sorghum biomass on methane generation[J]. Waste and Biomass Valorization, 2013, 4(3): 583−591 doi: 10.1007/s12649-012-9183-x
[8] ZHAO J, DONG Z H, LI J F, et al. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion[J]. Bioresource Technology, 2018, 266: 158−165 doi: 10.1016/j.biortech.2018.06.058
[9] GARCIA N H, BENEDETTI M, BOLZONELLA D. Effects of enzymes addition on biogas production from anaerobic digestion of agricultural biomasses[J]. Waste and Biomass Valorization, 2019, 10(12): 3711−3722 doi: 10.1007/s12649-019-00698-7
[10] 李秋园. 纤维素酶预处理对木糖渣沼气发酵性能的影响[J]. 中国沼气, 2018, 36(4): 18−22 LI Q Y. Biogas production of cellulase pretreated xylose residue[J]. China Biogas, 2018, 36(4): 18−22
[11] DUNIERE L, JIN L, SMILEY B, et al. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage[J]. Journal of Animal Science, 2015, 93(5): 2322−2335 doi: 10.2527/jas.2014-8287
[12] ZHOU X L, OUYANG Z, ZHANG X L, et al. Effects of a high-doseSaccharomyces cerevisiae inoculum alone or in combination with Lactobacillus plantarum on the nutritional composition and fermentation traits of maize silage[J]. Animal Production Science, 2020, 60(6): 833−842 doi: 10.1071/AN18701
[13] SUNTARA C, CHERDTHONG A, URIYAPONGSON S, et al. Comparison effects of ruminal crabtree-negative yeasts and crabtree-positive yeasts for improving ensiled rice straw quality and ruminal digestion using in vitro gas production[J]. Journal of Fungi, 2020, 6(3): 109
[14] NTAIKOU I, ANTONOPOULOU G, LYBERATOS G. Sustainable second-generation bioethanol production from enzymatically hydrolyzed domestic food waste using Pichia anomala as biocatalyst[J]. Sustainability, 2020, 13(1): 259 doi: 10.3390/su13010259
[15] LI L Z, LIU C J, QU M R, et al. Characteristics of a recombinant Lentinula edodes endoglucanase and its potential for application in silage of rape straw[J]. International Journal of Biological Macromolecules, 2019, 139: 49−56 doi: 10.1016/j.ijbiomac.2019.07.199
[16] VOHRA A, KAUR P, SATYANARAYANA T. Production, characteristics and applications of the cell-bound phytase of Pichia anomala[J]. Antonie Van Leeuwenhoek, 2011, 99(1): 51−55 doi: 10.1007/s10482-010-9498-1
[17] TAYEL A A, EL-TRAS W F, MOUSSA S H, et al. Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement[J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3259−3263 doi: 10.1002/jsfa.6169
[18] OLSTORPE M, PASSOTH V. Pichia anomala in grain biopreservation[J]. Antonie Van Leeuwenhoek, 2011, 99(1): 57−62 doi: 10.1007/s10482-010-9497-2
[19] 任海伟, 唐多利, 康宝, 等. 接种异常毕赤酵母对干玉米秸秆与废弃白菜混贮品质的动态影响及微生物群落结构分析[J]. 应用与环境生物学报, 2019, 25(3): 710−718 REN H W, TANG D L, KANG B, et al. Dynamic effects of Pichia anomala inoculation on the mixed storage quality of dry maize straw and cabbage wastes and their microbial communities[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 710−718
[20] KHOTA W, PHOLSEN S, HIGGS D, et al. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(11): 1568−1574 doi: 10.5713/ajas.16.0502
[21] GHELLER L S, GHIZZI L G, TAKIYA C S, et al. Different organic acid preparations on fermentation and microbiological profile, chemical composition, and aerobic stability of whole-plant corn silage[J]. Animal Feed Science and Technology, 2021, 281: 115083 doi: 10.1016/j.anifeedsci.2021.115083
[22] BADSHAH M, LAM D M, LIU J, et al. Use of an Automatic Methane Potential Test System for evaluating the biomethane potential of sugarcane bagasse after different treatments[J]. Bioresource Technology, 2012, 114: 262−269 doi: 10.1016/j.biortech.2012.02.022
[23] 李超, 刘刚金, 刘静溪, 等. 基于产甲烷潜力和基质降解动力学的沼气发酵物料评估[J]. 农业工程学报, 2015, 31(24): 262−268 LI C, LIU G J, LIU J X, et al. Organic substrates evaluation based on biochemical methane potential and degradation kinetic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 262−268
[24] 闫晶, 陆冰圆, 席华悦, 等. 外源添加剂对黄贮小麦秸秆产甲烷潜力及微生物群落的影响[J]. 农业工程学报, 2020, 36(15): 252−260 YAN J, LU B Y, XI H Y, et al. Effects of yellow silage additives on methane production and microbial community dynamics during anaerobic digestion of wheat straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 252−260
[25] 袁玲莉, 刘研萍, 袁彧, 等. 存储时间对玉米秸秆理化性状及产甲烷潜力的影响[J]. 农业工程学报, 2019, 35(13): 210−217 YUAN L L, LIU Y P, YUAN Y, et al. Effect of storage time on physiochemical properties and methanogenesis potential of maize straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 210−217
[26] LI F H, DING Z T, KE W C, et al. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification[J]. Bioresource Technology, 2019, 282: 211−221 doi: 10.1016/j.biortech.2019.03.022
[27] 苗芳, 张凡凡, 唐开婷, 等. 同/异质型乳酸菌添加对全株玉米青贮发酵特性、营养品质及有氧稳定性的影响[J]. 草业学报, 2017, 26(9): 167−175 MIAO F, ZHANG F F, TANG K T, et al. Effects of homo- and hetero-fermentative lactic acid bacteria on the fermentation characteristics, nutritional quality, and aerobic stability of whole corn silage[J]. Acta Prataculturae Sinica, 2017, 26(9): 167−175
[28] ZHAO X, LIU J, LIU J, et al. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass[J]. Bioresource Technology, 2017, 241: 349−359
[29] 徐文倩, 董红敏, 尚斌, 等. 典型畜禽粪便厌氧发酵产甲烷潜力试验与计算[J]. 农业工程学报, 2021, 37(14): 228−234 XU W Q, DONG H M, SHANG B, et al. Experiment and calculation on the biochemical methane potential of typical livestock and poultry manure in anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 228−234
[30] PIRES A C C, CLEARY D F R, ALMERIDE A. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J]. Applied & Environmental Microbiology, 2012, 78(16): 5520
[31] LI Y Q, ZHANG R H, CHEN C, et al. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions[J]. Bioresource Technology, 2013, 149: 406−412 doi: 10.1016/j.biortech.2013.09.091
[32] 赵政, 陈学文, 朱梅芳, 等. 添加乳酸菌和纤维素酶对玉米秸秆青贮饲料品质的影响[J]. 广西农业科学, 2009, 40(7): 919−922 ZHAO Z, CHEN X W, ZHU M F, et al. Effects of Lactobacillus and cellulase on the quality of corn straw silage[J]. Guangxi Agricultural Sciences, 2009, 40(7): 919−922
[33] KAISER A G, MAILER R J, VONARX M M. A comparison of Karl Fischer titration with alternative methods for the analysis of silage dry matter content[J]. Journal of the Science of Food and Agriculture, 1995, 69(1): 51−59 doi: 10.1002/jsfa.2740690109
[34] WAGNER A O, LACKNER N, MUTSCHLECHNER M, et al. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production[J]. Energies, 2018, 11(7): 1797 doi: 10.3390/en11071797
[35] NKOSI B D, VADLANI P V, BRIJWANI K, et al. Effects of bacterial inoculants and an enzyme on the fermentation quality and aerobic stability of ensiled whole-crop sweet sorghum[J]. South African Journal of Animal Science, 2012, 42(3): 232−240
[36] BORLING W J, LYBERG K, PASSOTH V, et al. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium[J]. Frontiers in Plant Science, 2015, 6: 270
[37] WANNASEK L, ORTNER M, KAUL H P, et al. Double-cropping systems based on rye, maize and sorghum: impact of variety and harvesting time on biomass and biogas yield[J]. European Journal of Agronomy, 2019, 110: 125934 doi: 10.1016/j.eja.2019.125934
[38] CHOIŃSKA R, PIASECKA-JÓŹWIAK K, CHABŁOWSKA B, et al. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains[J]. Antonie Van Leeuwenhoek, 2020, 113(8): 1135−1146 doi: 10.1007/s10482-020-01420-7
[39] SCHNÜRER J, JONSSON A. Pichia anomala J121: a 30-year overnight near success biopreservation story[J]. Antonie Van Leeuwenhoek, 2011, 99(1): 5−12 doi: 10.1007/s10482-010-9509-2
[40] SUN H, LI J, CUI X, et al. Enhancement mechanism of biogas potential from lignocellulosic substrates in the ensiling process via acid-based hydrolysis and biological degradation[J]. Journal of Cleaner Production, 2021, 319: 128826 doi: 10.1016/j.jclepro.2021.128826
[41] 张蕾, 梁军锋, 崔文文, 等. 规模化秸秆沼气发酵反应器中微生物群落特征[J]. 农业环境科学学报, 2014, 33(3): 584−592 ZHANG L, LIANG J F, CUI W W, et al. Characteristics of microbial communities in full-scale biogas digesters with straw as substrate[J]. Journal of Agro-Environment Science, 2014, 33(3): 584−592
[42] 李海红, 巴琦玥, 闫志英, 等. 不同原料厌氧发酵及其微生物种群的研究[J]. 中国环境科学, 2015, 35(5): 1449−1457 LI H H, BA Q Y, YAN Z Y, et al. Studies on microbial community of different materials and anaerobic fermentation[J]. China Environmental Science, 2015, 35(5): 1449−1457
[43] YUE Z B, CHEN R, YANG F, et al. Effects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance[J]. Bioresource Technology, 2013, 128: 65−71 doi: 10.1016/j.biortech.2012.10.115
[44] 张虹, 李蕾, 彭韵, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J]. 中国环境科学, 2020, 40(8): 3465−3474 ZHANG H, LI L, PENG Y, et al. Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community[J]. China Environmental Science, 2020, 40(8): 3465−3474
[45] 杨紫怡. 生物强化促进高含氮有机物厌氧产甲烷工艺优化及机理探究[D]. 北京: 北京化工大学, 2020: 87–88 YANG Z Y. Optimization and mechanism of alleviating ammonia inhibition through bioaugmentation in anaerobic digestion process[D]. Beijing: Beijing University of Chemical Technology, 2020: 87–88
[46] AMIN F R, KHALID H, EL-MASHAD H M, et al. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production[J]. Science of the Total Environment, 2021, 763: 143007 doi: 10.1016/j.scitotenv.2020.143007
[47] 于佳动, 赵立欣, 冯晶, 等. 序批式秸秆牛粪混合厌氧干发酵影响因素研究[J]. 农业工程学报, 2018, 34(15): 215−221 YU J D, ZHAO L X, FENG J, et al. Influence factors on batch dry anaerobic digestion for corn stalks-cow dung mixture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 215−221
[48] 常城, 明磊强, 牟云飞, 等. 厨余垃圾与污泥厌氧发酵产甲烷的协同作用[J]. 中国环境科学, 2022, 42(3): 1259−1266 CHANG C, MING L Q, MU Y F, et al. Synergistic effect of kitchen waste and sludge anaerobic fermentation for methane production[J]. China Environmental Science, 2022, 42(3): 1259−1266
[49] YANG H N, DENG L W. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids[J]. Bioresource Technology, 2020, 318: 124047 doi: 10.1016/j.biortech.2020.124047
[50] PROCHÁZKA J, DOLEJŠ P, MÁCA J, et al. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J]. Applied Microbiology and Biotechnology, 2012, 93(1): 439−447 doi: 10.1007/s00253-011-3625-4
[51] CHEN R L, LI Z X, FENG J, et al. Effects of digestate recirculation ratios on biogas production and methane yield of continuous dry anaerobic digestion[J]. Bioresource Technology, 2020, 316: 123963
[52] WANG Y, SONG J, ZHAI Y, et al. Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(4): 1193−1198
[53] 戴晓虎, 于春晓, 李宁, 等. 污泥超高温(65 ℃)厌氧消化系统启动方案[J]. 中国环境科学, 2017, 37(7): 2527−2535 DAI X H, YU C X, LI N, et al. Start-up strategy for hyperthermophilic anaerobic digestion system of sewage sludge[J]. China Environmental Science, 2017, 37(7): 2527−2535
[54] 赵一全, 马茹霞, 李家威, 等. 玉米秸秆厌氧发酵过程中添加氮素对微生物群落和沼气产量的影响[J]. 中国沼气, 2018, 36(5): 66−72 ZHAO Y Q, MA R X, LI J W, et al. Effects of nitrogen addition on biogas production and microbial community in corn straw anaerobic digestion system[J]. China Biogas, 2018, 36(5): 66−72
[55] GUAN R L, YUAN H R, ZHANG L, et al. Combined pretreatment using CaO and liquid fraction of digestate of rice straw: Anaerobic digestion performance and electron transfer[J]. Chinese Journal of Chemical Engineering, 2021, 36: 223−232 doi: 10.1016/j.cjche.2020.08.036