李娜, 滕培基, 雷琬莹, 龙静泓, 李禄军. 外源有机物添加种类对农田黑土有机碳激发效应的影响及作用机理[J]. 中国生态农业学报 (中英文), 2023, 31(10): 1588−1601. DOI: 10.12357/cjea.20230234
引用本文: 李娜, 滕培基, 雷琬莹, 龙静泓, 李禄军. 外源有机物添加种类对农田黑土有机碳激发效应的影响及作用机理[J]. 中国生态农业学报 (中英文), 2023, 31(10): 1588−1601. DOI: 10.12357/cjea.20230234
LI N, TENG P J, LEI W Y, LONG J H, LI L J. Effects and mechanisms of addition of different types of exogenous organic materials on priming effect of organic carbon in arable black soils[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1588−1601. DOI: 10.12357/cjea.20230234
Citation: LI N, TENG P J, LEI W Y, LONG J H, LI L J. Effects and mechanisms of addition of different types of exogenous organic materials on priming effect of organic carbon in arable black soils[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1588−1601. DOI: 10.12357/cjea.20230234

外源有机物添加种类对农田黑土有机碳激发效应的影响及作用机理

Effects and mechanisms of addition of different types of exogenous organic materials on priming effect of organic carbon in arable black soils

  • 摘要: 外源有机物添加通过激发效应影响土壤有机碳(SOC)的矿化和稳定。目前研究较少考虑不同种类外源有机物添加对同一土壤类型不同SOC含量的土壤激发效应及作用机理。本研究以中国东北典型黑土带上4个不同SOC含量的表层农田黑土为研究对象, 向土壤中添加13C标记的玉米秸秆、葡萄糖和丙氨酸, 研究不同种类外源有机物添加对黑土SOC激发效应的影响及作用机理。研究发现, 与不添加外源有机物处理相比, 外源有机物添加均促进了4个不同SOC含量的农田土壤中SOC的矿化, 并引起土壤正激发效应。添加葡萄糖和丙氨酸处理的4个土壤在培养前30 d累积激发量均显著大于添加秸秆处理; 土壤本底SOC含量越高的土壤, 添加丙氨酸和葡萄糖产生的累积激发量越大, 但相对累积激发量越小。随着培养时间增加, 4个土壤的SOC矿化和激发效应降低并趋于稳定且处理间无显著差异。傅里叶红外光谱发现, 外源有机物添加后4个土壤脂肪族碳官能团的相对峰面积略有增加, 芳香族碳官能团峰面积略有下降, 土壤和外源有机物添加种类对脂肪族和芳香族碳官能团的影响均表现为土样>添加物种类。结构方程模型表明, 外源有机物添加产生的正激发效应主要受土壤细菌和放线菌磷脂脂肪酸的影响, 受土壤SOC含量影响较小。该研究结果表明, 外源有机物添加显著增加了农田黑土中k型微生物生长代谢, 促进了微生物对SOC中难分解组分的降解, 外源有机物与土壤自身有机碳分解的“共代谢”理论是本研究黑土产生正激发效应的主要作用机理。

     

    Abstract: The addition of exogenous organic matter (EOM) affects the mineralization and stabilization of soil organic carbon (SOC) via priming effects (PE). However, few studies have considered the effects of different EOM additions on PE in the same soil type with a gradient in SOC content. The underlying mechanisms have rarely been revealed, and related studies can provide in-depth insights into the microbial mechanisms that regulate carbon accumulation and stability in agricultural soils. It is crucial to predict dynamic changes in SOC and carbon pool stability in response to EOM inputs from different sources. Therefore, this study focused on topsoil with four SOC contents, which ranged from 10 g·kg1 to nearly 70 g·kg1, in the typical black-soil region of Northeast China, and aimed to investigate the effects and microbial mechanisms involving different types of EOM addition on PEs by adding 13C-labeled maize straw, glucose, and alanine to the soil. Compared to a control treatment without EOM, the addition of EOM promoted the mineralization of SOC in the four soils with different SOC contents. Specifically, glucose, alanine, and straw addition increased the cumulative mineralization of SOC by 50.88%–419.65%, 69.54%–409.48%, and 13.14%–321.43%, respectively. The addition of the three types of EOM also induced a positive PE in soils with different SOC contents. During the initial 30 days of incubation, the cumulative PEs in soils with different SOC contents under glucose and alanine addition treatments were considerably higher than those under straw addition treatment. Soils with higher SOC content exhibited greater cumulative mineralization and PEs with the addition of glucose and alanine, whereas their relative cumulative PEs were lower. SOC mineralization and PEs decreased and reached a stable state with incubation time in soils with different SOC contents. Fourier-Transform Infrared spectroscopy revealed a slight increase in the relative peak area of aliphatic carbon functional group and a slight decrease in the peak area of aromatic carbon group in soils with different contents of SOC after addition of EOM. The effects of SOC content on aliphatic and aromatic carbon functional groups were greater than those of the EOM type. Correlation analysis revealed that cumulative SOC mineralization and PEs were significantly positively correlated with total phospholipid fatty acids, biomass of total bacteria, gram-positive bacteria, gram-negative bacteria, and actinomycetes, with a peak area of aliphatic carbon at 1420 cm1 (P<0.05). In addition, cumulative SOC mineralization and cumulative PEs were significantly negatively correlated with the biomass of fungi and anaerobic bacteria, with a peak area of aromatic carbon at 1630 cm1 (P<0.05). Structural equation modeling indicated that the positive PE resulting from EOM addition was primarily influenced by bacterial and actinomycete phospholipid fatty acids in the soil, regardless of the SOC content of the four soil samples. These results demonstrated that EOM addition significantly increased the growth and metabolism of k-type microorganisms, such as gram-negative bacteria and actinomycetes, in arable black soil and promoted the decomposition of recalcitrant components in SOC. The “co-metabolism” theory, namely the co-decomposition of EOM and SOC, is considered as the primary mechanism behind the positive PE in black soil.

     

/

返回文章
返回