气候变化背景下农业低碳发展: 国际经验与中国策略

郑玉雨, 于法稳

郑玉雨, 于法稳. 气候变化背景下农业低碳发展: 国际经验与中国策略[J]. 中国生态农业学报 (中英文), 2024, 32(2): 183−195. DOI: 10.12357/cjea.20230261
引用本文: 郑玉雨, 于法稳. 气候变化背景下农业低碳发展: 国际经验与中国策略[J]. 中国生态农业学报 (中英文), 2024, 32(2): 183−195. DOI: 10.12357/cjea.20230261
ZHENG Y Y, YU F W. Low-carbon agricultural development in the context of climate change: International experiences and China’s strategies[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 183−195. DOI: 10.12357/cjea.20230261
Citation: ZHENG Y Y, YU F W. Low-carbon agricultural development in the context of climate change: International experiences and China’s strategies[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 183−195. DOI: 10.12357/cjea.20230261

气候变化背景下农业低碳发展: 国际经验与中国策略

基金项目: 中国社会科学院创新工程“学者资助计划”项目(XC2023001)资助
详细信息
    作者简介:

    郑玉雨, 主要研究方向为生态经济理论与方法、农村生态治理。E-mail: yuyuzheng1994@163.com

    通讯作者:

    于法稳, 主要研究方向为生态经济理论与方法、农村生态治理。E-mail: yufaw@cass.org.cn

  • 中图分类号: F323; X322

Low-carbon agricultural development in the context of climate change: International experiences and China’s strategies

Funds: This study was supported by the Innovation Project “Scholar Funding Program” of Chinese Academy of Social Sciences (XC2023001).
More Information
  • 摘要:

    在全球共同应对气候变化的时代背景下, 探索国际视野下农业温室气体减排的先进经验, 对于中国践行气候变化国际合作倡议、推动自身农业可持续发展实现具有重要现实意义。以美国、欧盟和日本等国家为对象, 分别梳理其农业低碳发展的主要做法、最新行动和取得成效, 据此, 结合中国特色农业发展的基本理念, 提出农业低碳发展的中国策略。研究表明: 1)较之于同为新兴经济体的印度, 2020年中国在农业温室气体排放总量和人均排放量上与其相近, 但中国的单位GDP排放量[44.52 t∙(106$)−1]远低于印度[278.11 t∙(106$)−1]; 较之于同作为人口大国的美国, 中国在排放总量方面较高, 但中国的人均排放量(0.46 t∙cap.−1)明显低于美国(1.15 t∙cap.−1)。中国必须充分考虑自身作为人口大国和发展中国家的现实, 科学合理地展开农业温室气体减排目标规划。2)美国主要在法律法规完善、财政税收和减排补贴、清洁能源开发及推广、碳排放权和碳汇市场交易等方面做出积极探索, 其2020年人均农业温室气体排放量较1990年下降19.58%; 欧盟的先进做法主要体现在法律法规完善、财税支持和生态保护补偿、管理创新和技术创新等方面, 其2020年人均排放量同比1990年下降29.03%; 日本主要在可再生能源推广、管理创新和技术创新、粮食生产保障和气候适应等方面展开行动, 其2020年人均排放量同比1990年下降29.17%。3)农业低碳发展的中国策略旨在保障粮食供给、减少温室效应和实现生态价值。据此, 提出持续完善相关法律法规体系、加大财税扶持和绿色金融支持、加强管理创新和科技创新、加快能源结构调整和转型升级以及逐步完善碳交易市场机制5个方面的政策启示。

     

    Abstract:

    In the context of a global joint response to climate change, it is of great practical significance for China to explore international experiences in agricultural greenhouse gas (GHG) reduction to implement its cooperation initiative on climate change and promote sustainable agricultural development. Taking the USA, EU, and Japan as representative countries, their main practices, latest actions, and achievements in low-carbon agricultural development were identified. By combining basic concepts with Chinese characteristics, strategies targeting low-carbon agricultural development were proposed. The research showed that: 1) Compared with India, as an emerging economy, China’s total agricultural GHG emissions and per capita emissions were similar, but China’s per GDP emissions, 44.52 t∙(106$)−1, were far lower than that of India, 278.11 t∙(106$)−1. Compared with the USA, as a populous country, China’s total GHG emissions were much higher, but its per capita emissions (0.46 t∙cap.−1) were significantly lower than that of USA (1.15 t∙cap.−1). China must fully consider its reality as a populous country and a developing economy, and scientifically and reasonably formulate emission reduction targets. 2) The USA has actively explored perfecting laws and regulations, fiscal taxation and subsidies, clean energy promotion, carbon emission rights, and carbon sink market transactions, and its per capita agricultural GHG emissions in 2020 have decreased by 19.58% compared to those in 1990. The EU’s advanced practices were mainly reflected in improvements in laws and regulations, fiscal and taxation support and ecological compensation, and innovations in management and technology; its per capita GHG emissions in 2020 decreased by 29.03% compared with those in 1990. Japan mainly launched actions in renewable energy promotion, innovations in management and technology, food production guarantees, and climate adaptation, and its per capita GHG emissions in 2020 decreased by 29.17% compared to those in 1990. 3) China’s strategies for low-carbon agricultural development aim at ensuring food supply, reducing greenhouse effects, and realizing ecological values. Given this, continuously improving relevant laws and regulations, increasing support for public finance and taxation plus green finance, strengthening innovations in management and technology, accelerating the adjustment and upgrading of the energy structure, and gradually improving the trading mechanism of the carbon market have been put forward.

     

  • 图  1   农业低碳发展经验借鉴的框架

    Figure  1.   Framework for experiences reference of agricultural low-carbon development

    表  1   全球气候变化议程协定及中国响应行动

    Table  1   Global climate change agenda agreement and situation of China’s response

    年份
    Year
    国际谈判
    International negotiation
    主要内容
    Main content
    中国响应行动
    China’s response
    1992 《联合国气候变化框架公约》
    United Nations Framework Convention on Climate Change
    确立国际合作应对气候变化的基本原则,主要包括“共同但有区别的责任”原则等。明确发达国家应率先减排
    Establish the basic principles of international cooperation to deal with climate change, mainly including the principle of “common but differentiated responsibilities”. Clarify that developed countries should take the lead in reducing emissions
    制定《中国21世纪议程》《中国可持续发展国家报告》
    Formulation of China’s Agenda 21 and The People’s Republic of China National Report on Sustainable Development
    1997 《京都议定书》
    Kyoto Protocol
    设立第一承诺期内主要工业发达国家的年均温室气体排放量减排目标; 明确6种减排温室气体
    Set the annual average GHGs reduction targets of major industrialized countries during the first commitment period. Identify 6 GHGs for emission reduction
    推动自愿减排项目清洁发展机制(CDM)的国际合作, 颁布《清洁发展机制项目运行管理暂行办法》
    Promote international cooperation on Clean Development Mechanism (CDM) of voluntary emission reduction projects. Proclaim Interim Measures for the Operation and Management
    2015 《巴黎协定》
    Paris Agreement
    设立“温控2 ℃以内”的长期目标, 提出每5年提交
    一次的“国家自主贡献”计划
    A long-term goal of “temperature control within 2℃”. Proposal of a submission of “Intended Nationally Determined Contributions (INDC)” every 5 years
    启动中国气候变化南南合作基金项目; 将减排行动目标纳入国家整体发展议程
    Launch the South-South Cooperation Fund for Climate Change in China; incorporate emission reduction action targets into the overall national development agenda
    2020 第75届联合国大会一般性辩论
    General debate of the 75th United Nations General Assembly
    一般性辩论
    General Assembly for climate change
    提出2030年前实现碳达峰、2060年前实现碳中和的“双碳”目标
    Proposal of the goal of peaking carbon before 2030 and achieving carbon neutrality before 2060
    2021 《联合国气候变化框架公约》第26次缔约方大会(COP26)
    26th Conference of the Parties (COP26) to the United Nations Framework Convention on Climate Change
    推动完成《巴黎协定》实施细则后续谈判
    Follow-up negotiations on the implementation rules of Paris Agreement
    提交《中国落实国家自主贡献成效和新目标新举措》《中国本世纪中叶长期温室气体低排放发展战略》
    Submission of China’s Achievements, New Targets and New Measures in Implementing Its Intended Nationally Determined Contributions, and China’s Mid-Century Long-term Low Greenhouse Gas Emission Development Strategy
    下载: 导出CSV

    表  2   发达经济体/新兴经济体代表性国家2020年农业温室气体排放量和减排承诺时间

    Table  2   Agricultural greenhouse gases emissions (GHGs) in 2020 and reduction commitment time for the representative countries of developed economies and emerging economies

    类型
    Type
    组织
    Organization
    国家
    Country
    农业温室气体
    排放总量
    Total agricultural GHGs emissions (Mt)
    人均农业温室
    气体排放量
    Agricultural GHG emission per capita (t∙cap.−1)
    单位GDP农业温室
    气体排放量
    Agricultural GHGs emission per GDP
    [t∙(106 $)−1]
    碳中和时间
    Carbon neutral year
    发达经济体
    代表
    Representatives of developed economies
    七国集团
    Group of Seven
    (G7)
    美国
    United States of America
    382.011.1518.282050
    日本 Japan21.860.174.342050
    德国 Germany58.000.7015.082045
    英国 United Kingdom50.030.7518.152050
    法国 France71.341.0627.122050
    意大利 Italy33.240.5617.562050
    加拿大 Canada63.281.6638.462050
    新兴经济体
    代表
    Representatives of emerging economies
    金砖五国
    BRICS
    中国 China653.970.4644.522060
    印度 India741.920.54278.112070
    俄罗斯 Russia104.130.7269.972060
    巴西 Brazil518.862.44358.192060
    南非 South Africa28.590.4885.232050
      数据来源于世界资源研究所(https://www.climatewatchdata.org/net-zero-tracker)。Data from World Resources Institute (https://www.climatewatchdata.org/net-zero-tracker).
    下载: 导出CSV

    表  3   国外农业低碳发展做法及成效

    Table  3   Practices and effects of agricultural low-carbon development in foreign countries

    国家或地区
    Country or region
    主要的激励和监管措施
    Major incentive and regulatory measures
    取得成效
    Results achieved
    农业温室气体变化
    Changes of agricultural greenhouse gases (%)
    总量
    Gross amount
    人均
    Per capita
    美国
    United States of America
    法律法规完善、财政税收支持、减排补贴、清洁
    能源开发及推广、碳排放权和碳汇市场交易
    Perfecting laws and regulations, financial and tax support, emission reduction subsidies, development and promotion of clean energy, carbon emission rights and carbon sink market transactions
    极大地推动了农业生产领域清洁能源的应用, 自愿碳市场积极带动了农户碳减排和碳抵消的相关行为, 探索出生物技术免耕、地质碳储存等先进技术模式
    It has greatly promoted the application of clean energy in agricultural production. Voluntary carbon market has actively promoted farmers’ carbon emission reduction and carbon offset. The advanced technical modes such as biotechnology, no-tillage, and geological carbon storage have been explored
    +7.21 −19.58
    欧盟
    European Union
    法律法规完善、财政税收支持、生态保护补偿、
    管理创新和技术创新
    Perfecting laws and regulations, fiscal subsidies and tax support, ecological protection compensation,
    management innovation and
    technological innovation
    制定了科学合理的减排目标和路线图, 广泛采用了有机农业、生态农业、生物技术应用等模式, 以基于自然的解决方案有力推动了农业低碳发展
    Scientific and reasonable emission reduction targets and road maps have been formulated. Organic agriculture, ecological agriculture and biotechnology application are widely adopted. The low-carbon development of agriculture has been strongly promoted by nature-based solutions
    −24.75 −29.03
    日本
    Japan
    可再生能源推广、管理创新、技术创新、粮食生产保障与气候适应
    Promotion of renewable energy, management innovation, technological innovation, and guarantee of grain production and its climate adaptation
    加快了农林渔业领域应对全球变暖的目标任务进度, 开发和推广应用适应气候变化的稳产技术和品种, 增强了粮食生产应对气候变化和稳产保供的能力
    Progress of tasks for responding to global warming in the fields of agriculture, forestry and fisheries has been accelerated. Stable yield technologies and varieties adapted to climate change have been developed and popularized. The ability of grain production to cope with climate change and to stabilize production and supply has been enhanced
    −25.47 −29.17
    下载: 导出CSV
  • [1] 杜志雄, 金书秦. 从国际经验看中国农业绿色发展[J]. 世界农业, 2021(2): 4−9, 18

    DU Z X, JIN S Q. Viewing the green development of agriculture in China from international experience[J]. World Agriculture, 2021(2): 4−9, 18

    [2] 张斌, 金书秦. 荷兰农业绿色转型经验与政策启示[J]. 中国农业资源与区划, 2020, 41(5): 1−7

    ZHANG B, JIN S Q. Green transition and policy enlightenment of agricultural development in the Netherlands[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(5): 1−7

    [3]

    LU Y L, NORSE D, POWLSON D. Agriculture green development in China and the UK: common objectives and converging policy pathways[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 98 doi: 10.15302/J-FASE-2019298

    [4] 励汀郁, 王明利. 畜牧业助力“双碳”目标实现路径研究−基于不同国家的经验比较与启示[J]. 世界农业, 2023(1): 5−16

    LI T Y, WANG M L. Research on the realization path of carbon peaking and carbon neutrality goals assisted by animal husbandry — Based on the experience comparison and enlightenment of different countries[J]. World Agriculture, 2023(1): 5−16

    [5] 潘友菊, 徐玉婷, 於冉, 等. 气候智慧型农业研究: 热点、趋势和展望[J]. 中国生态农业学报(中英文), 2023, 31(1): 136−148

    PAN Y J, XU Y T, YU R, et al. Climate-smart agriculture research: hotspots, trends, and prospects[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 136−148

    [6] 马健, 虞昊, 周佳. 日本农业绿色发展的路径、成效与政策启示[J]. 中国生态农业学报(中英文), 2023, 31(1): 149−162 doi: 10.12357/cjea.20220372

    MA J, YU H, ZHOU J. Sustainable agricultural development from a green perspective in Japan: paths, results, and policy inspirations[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 149−162 doi: 10.12357/cjea.20220372

    [7]

    CHEN W D, PENG Y F, YU G Y. The influencing factors and spillover effects of interprovincial agricultural carbon emissions in China[J]. PLoS One, 2020, 15(11): e0240800 doi: 10.1371/journal.pone.0240800

    [8] 王若梅, 马海良, 王锦. 基于水-土要素匹配视角的农业碳排放时空分异及影响因素−以长江经济带为例[J]. 资源科学, 2019, 41(8): 1450−1461 doi: 10.18402/resci.2019.08.06

    WANG R M, MA H L, WANG J. Spatial and temporal differences of agricultural carbon emissions and impact factors of the Yangtze River Economic Belt based on a water-land perspective[J]. Resources Science, 2019, 41(8): 1450−1461 doi: 10.18402/resci.2019.08.06

    [9] 刘丽娜, 王春妤, 袁子薇, 等. 区域农业碳排放LMDI分解和脱钩效应分析[J]. 统计与决策, 2019, 35(23): 95−99

    LIU L N, WANG C Y, YUAN Z W, et al. Analysis of LMDI decomposition and decoupling effect of regional agricultural carbon emissions[J]. Statistics & Decision, 2019, 35(23): 95−99

    [10] 陈银娥, 陈薇. 农业机械化、产业升级与农业碳排放关系研究−基于动态面板数据模型的经验分析[J]. 农业技术经济, 2018(5): 122−133

    CHEN Y E, CHEN W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission—The empirical research based on dynamic panel data model[J]. Journal of Agrotechnical Economics, 2018(5): 122−133

    [11] 田云, 林子娟. 长江经济带农业碳排放与经济增长的时空耦合关系[J]. 中国农业大学学报, 2021, 26(1): 208−218

    TIAN Y, LIN Z J. Spatio-temporal coupling relationship between agricultural carbon emissions and economic growth in the Yangtze River Economic Belt[J]. Journal of China Agricultural University, 2021, 26(1): 208−218

    [12] 田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097−2105

    TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China: calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097−2105

    [13] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 doi: 10.3969/j.issn.1002-2104.2012.07.004

    [14] 田云. 中国低碳农业发展: 生产效率、空间差异与影响因素研究[D]. 武汉: 华中农业大学, 2015

    TIAN Y. The development of China’s low-carbon agriculture: production efficiency, spatial differences and influencing[D]. Wuhan: Huazhong Agricultural University, 2015

    [15] 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596−608

    XIA S Y, ZHAO Y, XU X, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997 –2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596−608

    [16] 程琳琳. 中国农业碳生产率时空分异: 机理与实证[D]. 武汉: 华中农业大学, 2018

    CHENG L L. Spatial and temporal differentiation of China’s agricultural carbon productivity: mechanism and demonstration[D]. Wuhan: Huazhong Agricultural University, 2018

    [17] 彭立群, 张强, 贺克斌. 基于调查的中国秸秆露天焚烧污染物排放清单[J]. 环境科学研究, 2016, 29(8): 1109−1118

    PENG L Q, ZHANG Q, HE K B. Emissions inventory of atmospheric pollutants from open burning of crop residues in China based on a national questionnaire[J]. Research of Environmental Sciences, 2016, 29(8): 1109−1118

    [18] 李玉梅. 美国低碳农业发展及其对中国的借鉴[J]. 世界农业, 2016(1): 51−53, 58

    LI Y M. Development of low-carbon agriculture in the United States and its reference to China[J]. World Agriculture, 2016(1): 51−53, 58

    [19]

    RABE B G, BORICK C P. Carbon taxation and policy labeling: experience from American states and Canadian provinces[J]. Review of Policy Research, 2012, 29(3): 358−382 doi: 10.1111/j.1541-1338.2012.00564.x

    [20] 朱丽娟, 刘青. 气候变化背景下美国发展低碳农业的经验借鉴[J]. 世界农业, 2012(8): 4, 1−3

    ZHU L J, LIU Q. Experience of developing low-carbon agriculture in the United States under the background of climate change[J]. World Agriculture, 2012(8): 4, 1−3

    [21] 杨筠桦. 欧洲低碳农业发展政策的实践经验及对中国的启示[J]. 世界农业, 2018(2): 67−72

    YANG J H. Practical experience of European low-carbon agricultural development policy and its enlightenment to China[J]. World Agriculture, 2018(2): 67−72

    [22] 谢华玲, 迟培娟, 杨艳萍. 双碳战略背景下主要发达经济体低碳农业行动分析[J]. 世界科技研究与发展, 2022, 44(5): 605−617

    XIE H L, CHI P J, YANG Y P. Analysis of low-carbon agriculture action in major developed economies under the background of carbon peaking and carbon neutrality strategies[J]. World Sci-Tech R& D, 2022, 44(5): 605−617

    [23]

    LAING T, SATO M, GRUBB M, et al. The effects and side-effects of the EU emissions trading scheme[J]. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5(4): 509−519 doi: 10.1002/wcc.283

    [24] 生态环境部对外合作与交流中心. 碳达峰与碳中和国际经验研究[M]. 北京: 中国环境出版集团, 2021

    Foreign Environmental Cooperation Center, Ministry of Ecology and Environment. International Experiences of Carbon Peak and Carbon Neutralization[M]. Beijing: China Environment Publishing Group, 2021

    [25] 刘星辰, 杨振山. 从传统农业到低碳农业−国外相关政策分析及启示[J]. 中国生态农业学报, 2012, 20(6): 674−680 doi: 10.3724/SP.J.1011.2012.00674

    LIU X C, YANG Z S. From traditional agriculture to low-carbon agriculture: policies and implications in developed countries[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6): 674−680 doi: 10.3724/SP.J.1011.2012.00674

    [26]

    ZHANG X L, WANG Y. How to reduce household carbon emissions: a review of experience and policy design considerations[J]. Energy Policy, 2017, 102: 116−124 doi: 10.1016/j.enpol.2016.12.010

    [27]

    LEWIS J I, NEMET G F. Assessing learning in low carbon technologies: toward a more comprehensive approach[J]. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12(5): e730 doi: 10.1002/wcc.730

    [28]

    MOURAD K A, HOSSEINI S H, AVERY H. The role of citizen science in sustainable agriculture[J]. Sustainability, 2020, 12(24): 10375 doi: 10.3390/su122410375

    [29] 于法稳. 新时代农业绿色发展动因、核心及对策研究[J]. 中国农村经济, 2018(5): 19−34

    YU F W. An analysis of the reasons, core and countermeasures of agricultural green development in the new era[J]. Chinese Rural Economy, 2018(5): 19−34

    [30] 贺青, 张俊飚. 粮食主产区政策对农业碳排放的影响[J]. 华中农业大学学报(社会科学版), 2023(4): 47−55

    HE Q, ZHANG J B. The impacts of policies in main grain-producing areas on agricultural carbon emissions[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2023(4): 47−55

    [31] 张秀青. “双碳”目标下中国农业稳产保供路径探析[J]. 价格理论与实践, 2023(4): 1−5

    ZHANG X Q. Analysis on the path of stabilizing production and supply of agriculture in China under the “dual carbon” goal[J]. Price: Theory & Practice, 2023(4): 1−5

    [32] 张俊飚, 何可. “双碳”目标下的农业低碳发展研究: 现状、误区与前瞻[J]. 农业经济问题, 2022, 43(9): 35−46

    ZHANG J B, HE K. Current situation, misunderstandings and prospects of agricultural low-carbon development under the targets of carbon peak and carbon neutrality[J]. Issues in Agricultural Economy, 2022, 43(9): 35−46

    [33] 徐湘博, 李静, 薛颖昊, 等. 减排固碳目标纳入农业绿色发展政策的协同机制[J]. 农业环境科学学报, 2022, 41(10): 2091−2101 doi: 10.11654/jaes.2022-0308

    XU X B, LI J, XUE Y H, et al. Synergistic mechanism to incorporate the targets of greenhouse gas emission reduction and carbon sequestration into agricultural green development policies under a carbon-neutral background[J]. Journal of Agro-Environment Science, 2022, 41(10): 2091−2101 doi: 10.11654/jaes.2022-0308

    [34] 张康洁, 于法稳. “双碳”目标下农业绿色发展研究: 进展与展望[J]. 中国生态农业学报(中英文), 2023, 31(2): 214−225 doi: 10.12357/cjea.20220888

    ZHANG K J, YU F W. Research on green agricultural development under the dual-carbon goal: review and perspectives[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 214−225 doi: 10.12357/cjea.20220888

    [35] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37

图(1)  /  表(3)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  602
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 录用日期:  2023-10-29
  • 网络出版日期:  2023-11-05
  • 刊出日期:  2024-02-09

目录

    /

    返回文章
    返回