抗虫转基因水稻及其杂交水稻对土壤微生物群落多样性与组成的影响

宋亚娜, 陈在杰, 林艳, 胡太蛟, 吴明基, 王锋

宋亚娜, 陈在杰, 林艳, 胡太蛟, 吴明基, 王锋. 抗虫转基因水稻及其杂交水稻对土壤微生物群落多样性与组成的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 15−29. DOI: 10.12357/cjea.20230267
引用本文: 宋亚娜, 陈在杰, 林艳, 胡太蛟, 吴明基, 王锋. 抗虫转基因水稻及其杂交水稻对土壤微生物群落多样性与组成的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 15−29. DOI: 10.12357/cjea.20230267
SONG Y N, CHEN Z J, LIN Y, HU T J, WU M J, WANG F. Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 15−29. DOI: 10.12357/cjea.20230267
Citation: SONG Y N, CHEN Z J, LIN Y, HU T J, WU M J, WANG F. Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 15−29. DOI: 10.12357/cjea.20230267

抗虫转基因水稻及其杂交水稻对土壤微生物群落多样性与组成的影响

基金项目: 福建省公益类科研院所专项(2021R1027002)、福建省政府与中国农业科学院合作农业优质发展和超越“5511”合作创新项目(XTCXGC2021002)和福建省科技重大专项(2020NZ08017)资助
详细信息
    作者简介:

    宋亚娜, 主要研究方向为微生物分子生态。E-mail: syana@sina.com

    通讯作者:

    王锋, 主要研究方向为作物遗传育种。E-mail: wf@fjage.org

  • 中图分类号: S154

Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community

Funds: This study was supported by Fujian Provincial Public Welfare Research Institute Special Project (2021R1027002), The ‘5511’ Collaborative Innovation Project for High-quality Development and Surpasses of Agriculture between Government of Fujian Province and Chinese Academy of Agricultural Sciences (XTCXGC2021002), and Fujian Province Science and Technology Major Project (2020NZ08017).
More Information
  • 摘要:

    微生物是土壤物质循环与肥力演变的驱动者, 其群落组成关系到土壤微生态系统的稳定与可持续性。对抗虫转基因水稻土壤微生物群落变化的研究是其环境安全性评价的重要内容。本研究基于细菌16S rRNA基因和真菌ITS基因的高通量测序, 分析了田间试验中抗虫转基因水稻‘MFB’及其转基因杂交水稻‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’与非转基因常规水稻‘闽恢3301’及杂交水稻‘天优华占’的土壤微生物群落多样性与组成的差异, 并得出以下结果。首先, 与两个非转基因水稻品种相比, 抗虫转基因水稻及转基因杂交水稻均能显著增产(P<0.05)。同时, 高通量测序结果表明, 除水稻成熟期的土壤真菌群落外, 与‘闽恢3301’相比 ‘MFB’的土壤细菌或真菌群落的α-多样性指数Chao1、Observed_species和Shannon均有所提高, 且分别在水稻成熟期或分蘖期达到显著性水平(P<0.05); 水稻齐穗期转基因杂交水稻‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’的土壤细菌及真菌群落的多样性指数Shannon均介于‘MFB’与‘天优华占’之间; 微生物群落β-多样性分析结果表明, 本田间试验中不同品种水稻土壤细菌或真菌的群落组成均没有显著差异。但与‘闽恢3301’相比, 稻田土壤细菌中丰度最高的变形菌门的相对丰度在‘MFB’土壤中明显增加, 且在水稻分蘖期及成熟期达显著水平(P<0.05), 而土壤真菌中丰度最高的子囊菌门的相对丰度在‘MFB’土壤中明显减少, 且在水稻分蘖期及齐穗期差异显著(P<0.05); 水稻齐穗期‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’的土壤变形菌门或子囊菌门的相对丰度也均介于‘MFB’与‘天优华占’之间。此外, 通过对微生物群落的功能组成预测可见, 随水稻生长, ‘MFB’与‘闽恢3301’的土壤细菌群落功能组成间差异存在增大的趋势。综上所述, 本研究田间试验中, 抗虫转基因水稻及其转基因杂交水稻在增产的同时提高了稻田土壤细菌或真菌群落的多样性, 改变了主要细菌或真菌种类的相对丰度, 但对细菌或真菌的群落及功能组成的影响不显著。

     

    Abstract:

    Microorganisms drive the soil material cycle and evolution of fertility, and their community composition is related to the stability and sustainability of the soil microecosystem. The study of changes in the soil microbial community in insect-resistant transgenic rice is an important part of environmental safety assessments. Based on high-throughput sequencing of the bacterial 16S rRNA and fungal ITS genes, this study analyzed the differences in diversity and composition of microbial communities in paddy soils with insect-resistant transgenic rice ‘MFB’, insect-resistant transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ and non-transgenic conventional rice ‘Minhui 3301’ or hybrid rice ‘Tianyouhuazhan’. The results showed that, compared with non-transgenic conventional rice ‘Minhui 3301’ or hybrid rice ‘Tianyouhuazhan’, both insect-resistant transgenic rice ‘MFB’ and transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ could significantly increase the yield (P<0.05). At the same time, high-throughput sequencing showed that the α-diversity indexes of Chao1, Observed_species, and Shannon of bacterial or fungal communities in paddy soil with ‘MFB’ were higher than those in soil with ‘Minhui 3301’ at all stage except for fungal communities at rice maturation stage, and the differences at rice maturation or tillering stage are significant (P<0.05). At the heading stage of rice, the values of α-diversity indexes of Shannon of bacterial or fungal communities in paddy soils with the insect-resistant transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ were between those of soils with ‘MFB’ and ‘Tianyouhuazhan’. The results of β-diversity analysis of bacterial or fungal communities showed that there were no significant differences in the composition of microbial communities in paddy soils with different varieties of rice in this field experiment. However, the relative abundance of Proteobacteria, which showed the highest abundance of bacteria, in paddy soil with ‘MFB’ increased compared with that of ‘Minhui 3301’, and reached the significance level at the tillering and maturation stage of rice (P<0.05). In contrast, the relative abundance of Ascomycota, which showed the highest abundance of fungi, was reduced in paddy soil with ‘MFB’ and reached the significance level at the tillering and heading stages of rice (P<0.05). At the heading stage of rice, the relative abundances of Proteobacteria and Ascomycota in paddy soils with ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ were between those of soils with ‘MFB’ and ‘Tianyouhuazhan’. According to the functional prediction of microbial communities, the differences in functional composition of bacterial communities in paddy soil between soils with ‘MFB’ and ‘Minhui 3301’ gradually increased with rice growth. In summary, insect-resistant transgenic rice and its transgenic hybrid rice increased the diversity of soil bacterial and fungal communities and changed the relative abundance of major bacterial and fungal species with increased yield, but did not have significant effects on the community and functional composition of bacteria or fungi.

     

  • 图  6   不同品种水稻不同生育期土壤真菌群落的物种组成聚类热图

    Figure  6.   Cluster heat map of fungal communities in paddy soils at different growth stages of different rice varieties

    图  1   不同品种水稻不同生育期稻田土壤细菌群落β-多样性的主坐标分析

    Figure  1.   Principal co-ordinates analysis for beta diversity of bacterial communities in paddy soils at different growth stages of different rice varieties

    图  2   不同品种水稻不同生育期稻田土壤真菌群落β-多样性的主坐标分析

    Figure  2.   Principal co-ordinates analysis for beta diversity of fungal communities in paddy soils at different growth stages of different rice varieties

    图  3   不同品种水稻不同生育期土壤主要细菌门的相对丰度

    Figure  3.   Relative abundances of main bacterial phylum in paddy soils at different growth stages of different rice varieties

    图  4   不同品种水稻不同生育期土壤主要真菌门的相对丰度

    Figure  4.   Relative abundances of main fungal phylum in paddy soils at different growth stages of different rice varieties

    图  5   不同品种水稻不同生育期土壤细菌群落的物种组成聚类热图

    Figure  5.   Cluster heat maps of bacterial communities in paddy soils at different growth stages of different rice varieties

    图  7   不同品种水稻不同生育期土壤细菌群落功能单元主坐标分析

    Figure  7.   Principal co-ordinates analysis for functional unit of bacterial communities in paddy soils at different growth stages of different rice varieties

    图  8   不同品种水稻不同生育期土壤真菌群落功能单元主坐标分析

    Figure  8.   Principal co-ordinates analysis for functional unit of fungal communities in paddy soils at different growth stages of different rice varieties

    表  1   不同品种水稻的产量性状

    Table  1   Yield characteristics of different rice varieties

    水稻品种
    Rice variety
    有效穗数
    Effective panicle number
    结实率
    Setting rate (%)
    千粒重
    1000-grain weight (g)
    单株产量
    Yield per plant (g∙plant−1)
    闽丰A/MFB Minfeng A/MFB11.8±1.2ab71.7±5.4a30.7±0.5a57.9±6.2a
    天丰A/MFB Tianfeng A/MFB12.2±1.0a64.6±1.9b31.8±0.7a55.7±5.1a
    谷丰A/MFB Gufeng A/MFB9.9±1.2b62.4±5.2bc33.7±1.6a44.8±6.1b
    天优华占 Tianyouhuazhan11.4±2.2ab45.9±3.6d33.4±3.9a32.7±10.1cd
    MFB11.9±1.1a58.1±3.0c30.6±1.9a41.4±8.2bc
    闽恢3301 Minhui 330112.8±2.0a51.6±3.2d30.9±4.8a27.6±6.6d
      ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种间差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties (P<0.05).
    下载: 导出CSV

    表  2   不同品种水稻不同生育期稻田土壤细菌群落的α-多样性指数

    Table  2   Alpha diversity indexes of bacterial communities in paddy soils at different growth stages of different rice varieties

    生育期
    Growth stage
    水稻品种
    Rice variety
    丰富度指数 Richness index多样性指数 Diversity index均匀度指数
    Pielou_e
    Chao1Observed_speciesShannonSimpson
    分蘖期
    Tillering stage
    闽丰A/MFB
    Minfeng A/MFB
    5842±815a5310±495ab11.20±0.13ab0.9987±0.0001c0.9054±0.0022b
    天丰A/MFB
    Tianfeng A/MFB
    5552±201a4929±99b11.10±0.01b0.9990±0.0000b0.9047±0.0011b
    谷丰A/MFB
    Gufeng A/MFB
    5718±288a5116±140ab11.21±0.03ab0.9991±0.0000a0.9097±0.0015a
    天优华占
    Tianyouhuazhan
    5753±326a4970±186b11.19±0.05ab0.9991±0.0000a0.9112±0.0002a
    MFB6286±214a5501±134a11.30±0.03a0.9991±0.0000a0.9096±0.0010a
    闽恢3301
    Minhui3301
    5731±502a4937±342b11.10±0.11b0.9990±0.0001b0.9047±0.0020b
    齐穗期
    Heading stage
    闽丰A/MFB
    Minfeng A/MFB
    6481±133a6131±116ab11.04±0.03a0.9982±0.0001a0.8777±0.0029b
    天丰A/MFB
    Tianfeng A/MFB
    6280±211a5796±178ab10.76±0.01b0.9960±0.0001c0.8611±0.0024c
    谷丰A/MFB
    Gufeng A/MFB
    6450±240a6124±180ab10.76±0.04b0.9961±0.0002c0.8550±0.0018d
    天优华占
    Tianyouhuazhan
    5971±169a5692±197b10.68±0.12b0.9959±0.0006c0.8563±0.0060cd
    MFB6492±295a6221±215a11.06±0.04a0.9972±0.0001b0.8773±0.0022b
    闽恢3301
    Minhui3301
    6012±621a5684±491b11.03±0.07a0.9981±0.0001a0.8847±0.0034a
    成熟期
    Maturation stage
    闽丰A/MFB
    Minfeng A/MFB
    5051±357c4879±295c10.87±0.09c0.9980±0.0002b0.8876±0.0019b
    天丰A/MFB
    Tianfeng A/MFB
    5120±20c4980±40c11.00±0.04b0.9985±0.0001a0.8960±0.0025a
    谷丰A/MFB
    Gufeng A/MFB
    4730±130c4551±119c10.80±0.05c0.9980±0.0001b0.8888±0.0013b
    天优华占
    Tianyouhuazhan
    5157±478c4897±352c10.99±0.08b0.9984±0.0001a0.8969±0.0011a
    MFB6646±720a6240±459a11.23±0.07a0.9983±0.0000a0.8910±0.0020b
    闽恢3301
    Minhui3301
    5923±97b5620±52b11.05±0.04b0.9981±0.0001b0.8875±0.0029b
      ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种在同一生育期差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties at the same growth stage (P<0.05).
    下载: 导出CSV

    表  3   不同品种水稻不同生育期稻田土壤真菌群落的α-多样性指数

    Table  3   Alpha diversity indexes of fungal communities in paddy soils at different growth stages of different rice varieties

    生育期
    Growth stage
    水稻品种
    Rice variety
    丰富度指数 Richness index多样性指数 Diversity index均匀度指数
    Pielou_e
    Chao1Observed_speciesShannonSimpson
    分蘖期
    Tillering stage
    闽丰A/MFB
    Minfeng A/MFB
    254±2a254±3a 5.94±0.12b0.9605±0.0043b0.7437±0.0136c
    天丰A/MFB
    Tianfeng A/MFB
    178±6c178±5c6.03±0.06ab0.9725±0.0035ab0.8070±0.0073a
    谷丰A/MFB
    Gufeng A/MFB
    245±28a245±28a6.26±0.30ab0.9740±0.0082a0.7894±0.0215ab
    天优华占
    Tianyouhuazhan
    223±3b222±3b6.33±0.12a0.9751±0.0032a0.8116±0.0172a
    MFB194±7c193±7c6.21±0.22ab0.9776±0.0047a0.8173±0.0241a
    闽恢3301
    Minhui 3301
    155±7d154±6d5.50±0.30c0.9527±0.0136b0.7569±0.0365bc
    齐穗期
    Heading stage
    闽丰A/MFB
    Minfeng A/MFB
    654±48c653±47c6.19±0.48bc0.9544±0.0271b0.6618±0.0448bc
    天丰A/MFB
    Tianfeng A/MFB
    787±20b783±22b6.34±0.12b0.9484±0.0037bc0.6599±0.0097c
    谷丰A/MFB
    Gufeng A/MFB
    784±48b775±45b6.35±0.07b0.9553±0.0024b0.6617±0.0097bc
    天优华占
    Tianyouhuazhan
    696±44c690±41c5.91±0.10c0.9341±0.0012c0.6267±0.0052c
    MFB919±56a906±56a7.18±0.26a0.9832±0.0038a0.7310±0.0212a
    闽恢3301
    Minhui 3301
    852±13ab840±16ab6.79±0.13a0.9758±0.0037a0.6992±0.0124ab
    成熟期
    Maturation stage
    闽丰A/MFB
    Minfeng A/MFB
    948±44ab936±43ab7.24±0.0ab0.9825±0.0008a0.7335±0.0046a
    天丰A/MFB
    Tianfeng A/MFB
    797±20c796±18c7.11±0.06b0.9811±0.0009a0.7376±0.0074a
    谷丰A/MFB
    Gufeng A/MFB
    972±70ab954±65ab7.24±0.15ab0.9807±0.0048a0.7316±0.0225a
    天优华占
    Tianyouhuazhan
    1038±54a1013±54a7.29±0.08a0.9796±0.0038a0.7304±0.0131a
    MFB884±102b872±91b7.27±0.09ab0.9837±0.0005a0.7442±0.0056a
    闽恢3301
    Minhui 3301
    943±107ab922±97ab7.33±0.14a0.9832±0.0011a0.7443±0.0043a
      ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种间在同一生长期差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties at the same growth stage (P<0.05).
    下载: 导出CSV
  • [1] 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114−119

    International Service for the Acquisition of Agri-biotech Applications. Global commercialization of biotechnology/transgenic crops in 2019[J]. China Biotechnology, 2021, 41(1): 114−119

    [2]

    BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 2003, 35(9): 1183−1192 doi: 10.1016/S0038-0717(03)00179-2

    [3]

    AIRA M, GÓMEZ-BRANDÓN M, LAZCANO C, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biology and Biochemistry, 2010, 42(12): 2276−2281 doi: 10.1016/j.soilbio.2010.08.029

    [4]

    BERG G, SMALLA K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology, 2009, 68(1): 1−13 doi: 10.1111/j.1574-6941.2009.00654.x

    [5]

    INCEOĞLU O, SALLES J F, VAN OVERBEEK L, et al. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields[J]. Applied and Environmental Microbiology, 2010, 76(11): 3675−3684 doi: 10.1128/AEM.00040-10

    [6]

    LU G H, ZHU Y L, KONG L R, et al. Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by illumina MiSeq[J]. Journal of Microbiology and Biotechnology, 2017, 27(3): 561−572 doi: 10.4014/jmb.1609.09008

    [7] 杨永华. 转基因作物对土壤微生物群落的影响及主要研究策略[J]. 农业生物技术学报, 2011, 19(1): 1−8 doi: 10.3969/j.issn.1674-7968.2011.01.001

    YANG Y H. Advances on the effects of genetically modified crops on soil microbial community and main countermeasures of their approaches[J]. Journal of Agricultural Biotechnology, 2011, 19(1): 1−8 doi: 10.3969/j.issn.1674-7968.2011.01.001

    [8]

    JAMES C. Global Status of Commercialized Biotech/GM Crops: 2011[M]. Ithaca, NY: ISAAA, 2011

    [9]

    DONEGAN K K, PALM C J, FIELAND V J, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin[J]. Applied Soil Ecology, 1995, 2(2): 111−124 doi: 10.1016/0929-1393(94)00043-7

    [10]

    CASTALDINI M, TURRINI A, SBRANA C, et al. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms[J]. Applied and Environmental Microbiology, 2005, 71(11): 6719−6729 doi: 10.1128/AEM.71.11.6719-6729.2005

    [11]

    WU W X, YE Q F, MIN H, et al. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil[J]. Soil Biology and Biochemistry, 2004, 36(2): 289−295 doi: 10.1016/j.soilbio.2003.09.014

    [12]

    LU H H, WU W X, CHEN Y X, et al. Decomposition of Bt transgenic rice residues and response of soil microbial community in rapeseed-rice cropping system[J]. Plant and Soil, 2010, 336(1): 279−290

    [13]

    SONG Y N, SU J, CHEN R, et al. Diversity of microbial community in a paddy soil with cry1Ac/cpti transgenic rice[J]. Pedosphere, 2014, 24(3): 349−358 doi: 10.1016/S1002-0160(14)60021-7

    [14] 楼骏, 柳勇, 李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 2014, 30(15): 256−260 doi: 10.11924/j.issn.1000-6850.2013-2513

    LOU J, LIU Y, LI Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 256−260 doi: 10.11924/j.issn.1000-6850.2013-2513

    [15] 郑燕, 贾仲君. 新一代高通量测序与稳定性同位素示踪DNA/RNA技术研究稻田红壤甲烷氧化的微生物过程[J]. 微生物学报, 2013, 53(2): 173−184

    ZHENG Y, JIA Z J. Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils[J]. Acta Microbiologica Sinica, 2013, 53(2): 173−184

    [16] 陈庆荣, 王成己, 陈曦, 等. 施用烟秆生物黑炭对红壤性稻田根际土壤微生物的影响[J]. 福建农业学报, 2016, 31(2): 184−188

    CHEN Q R, WANG C J, CHEN X, et al. Effect of tobacco stalk-derived biochar on microbes in rhizosphere soil at red paddy fields[J]. Fujian Journal of Agricultural Sciences, 2016, 31(2): 184−188

    [17] 张芳, 林绍艳, 徐颖洁. 水稻连作对江苏地区稻田土细菌微生物多样性的影响[J]. 山东农业大学学报(自然科学版), 2014, 45(2): 161−165

    ZHANG F, LIN S Y, XU Y J. The effect of continuous cropping rice on diversity of soil bacteria microbial in Jiangsu Province[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2014, 45(2): 161−165

    [18]

    SONG Y N, SU J, WU M J, et al. Effect of Hvsusiba2 transgenic rice on soil bacterial community and functional gene in paddy field in Fujian Province China[J]. Journal of Agricultural and Crop Research, 2021, 9(5): 112−120

    [19]

    CAPORASO J G, BITTINGER K, BUSHMAN F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266−267 doi: 10.1093/bioinformatics/btp636

    [20]

    LOZUPONE C, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005, 71(12): 8228−8235 doi: 10.1128/AEM.71.12.8228-8235.2005

    [21] 单贞. 异源表达Hvsusiba2籼稻“明恢86”稻田甲烷减排研究[D]. 福州: 福建农林大学, 2017

    SHAN Z. Study on mitigating methane in paddy fields of Indica rice “Minghui86” with heterologous expression of Hvsusiba2[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017

    [22]

    FLORES S, SAXENA D, STOTZKY G. Transgenic Bt plants decompose less in soil than non-Bt plants[J]. Soil Biology and Biochemistry, 2005, 37(6): 1073−1082 doi: 10.1016/j.soilbio.2004.11.006

    [23]

    POERSCHMANN J, GATHMANN A, AUGUSTIN J, et al. Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize — Characterization of lignin patterns[J]. Journal of Environmental Quality, 2005, 34(5): 1508−1518 doi: 10.2134/jeq2005.0070

    [24]

    POERSCHMANN J, RAUSCHEN S, LANGER U, et al. Molecular level lignin patterns of genetically modified Bt-maize MON88017 and three conventional varieties using tetramethylammonium hydroxide (TMAH)-induced thermochemolysis[J]. Journal of Agricultural and Food Chemistry, 2008, 56(24): 11906−11913 doi: 10.1021/jf8023694

    [25]

    POERSCHMANN J, RAUSCHEN S, LANGER U, et al. Fatty acid patterns of genetically modified Cry3Bb1 expressing Bt-maize MON88017 and its near-isogenic line[J]. Journal of Agricultural and Food Chemistry, 2009, 57(1): 127−132 doi: 10.1021/jf803009u

    [26] 曾千春, 周开达, 朱祯, 等. 中国水稻杂种优势利用现状[J]. 中国水稻科学, 2000, 14(4): 243−246 doi: 10.3321/j.issn:1001-7216.2000.04.012

    ZENG Q C, ZHOU K D, ZHU Z, et al. Current status in the use of hybrid rice heterosis in China[J]. Chinese Journal of Rice Science, 2000, 14(4): 243−246 doi: 10.3321/j.issn:1001-7216.2000.04.012

    [27]

    BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001

    [28]

    BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64: 807−838 doi: 10.1146/annurev-arplant-050312-120106

    [29]

    MASOERO F, MOSCHINI M, ROSSI F, et al. Nutritive value-mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (cry1A(b)) grown in Northern Italy[J]. Maydica, 1999, 44: 205−209

    [30]

    SONG Y N, CHEN Z J, WU M J, et al. Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice[J]. Journal of Integrative Agriculture, 2021, 20(6): 1674−1686 doi: 10.1016/S2095-3119(20)63271-3

图(8)  /  表(3)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  123
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 录用日期:  2023-08-20
  • 网络出版日期:  2023-10-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回