Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community
-
摘要:
微生物是土壤物质循环与肥力演变的驱动者, 其群落组成关系到土壤微生态系统的稳定与可持续性。对抗虫转基因水稻土壤微生物群落变化的研究是其环境安全性评价的重要内容。本研究基于细菌16S rRNA基因和真菌ITS基因的高通量测序, 分析了田间试验中抗虫转基因水稻‘MFB’及其转基因杂交水稻‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’与非转基因常规水稻‘闽恢3301’及杂交水稻‘天优华占’的土壤微生物群落多样性与组成的差异, 并得出以下结果。首先, 与两个非转基因水稻品种相比, 抗虫转基因水稻及转基因杂交水稻均能显著增产(P<0.05)。同时, 高通量测序结果表明, 除水稻成熟期的土壤真菌群落外, 与‘闽恢3301’相比 ‘MFB’的土壤细菌或真菌群落的α-多样性指数Chao1、Observed_species和Shannon均有所提高, 且分别在水稻成熟期或分蘖期达到显著性水平(P<0.05); 水稻齐穗期转基因杂交水稻‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’的土壤细菌及真菌群落的多样性指数Shannon均介于‘MFB’与‘天优华占’之间; 微生物群落β-多样性分析结果表明, 本田间试验中不同品种水稻土壤细菌或真菌的群落组成均没有显著差异。但与‘闽恢3301’相比, 稻田土壤细菌中丰度最高的变形菌门的相对丰度在‘MFB’土壤中明显增加, 且在水稻分蘖期及成熟期达显著水平(P<0.05), 而土壤真菌中丰度最高的子囊菌门的相对丰度在‘MFB’土壤中明显减少, 且在水稻分蘖期及齐穗期差异显著(P<0.05); 水稻齐穗期‘闽丰A/MFB’ ‘天丰A/MFB’和‘谷丰A/MFB’的土壤变形菌门或子囊菌门的相对丰度也均介于‘MFB’与‘天优华占’之间。此外, 通过对微生物群落的功能组成预测可见, 随水稻生长, ‘MFB’与‘闽恢3301’的土壤细菌群落功能组成间差异存在增大的趋势。综上所述, 本研究田间试验中, 抗虫转基因水稻及其转基因杂交水稻在增产的同时提高了稻田土壤细菌或真菌群落的多样性, 改变了主要细菌或真菌种类的相对丰度, 但对细菌或真菌的群落及功能组成的影响不显著。
Abstract:Microorganisms drive the soil material cycle and evolution of fertility, and their community composition is related to the stability and sustainability of the soil microecosystem. The study of changes in the soil microbial community in insect-resistant transgenic rice is an important part of environmental safety assessments. Based on high-throughput sequencing of the bacterial 16S rRNA and fungal ITS genes, this study analyzed the differences in diversity and composition of microbial communities in paddy soils with insect-resistant transgenic rice ‘MFB’, insect-resistant transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ and non-transgenic conventional rice ‘Minhui 3301’ or hybrid rice ‘Tianyouhuazhan’. The results showed that, compared with non-transgenic conventional rice ‘Minhui 3301’ or hybrid rice ‘Tianyouhuazhan’, both insect-resistant transgenic rice ‘MFB’ and transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ could significantly increase the yield (P<0.05). At the same time, high-throughput sequencing showed that the α-diversity indexes of Chao1, Observed_species, and Shannon of bacterial or fungal communities in paddy soil with ‘MFB’ were higher than those in soil with ‘Minhui 3301’ at all stage except for fungal communities at rice maturation stage, and the differences at rice maturation or tillering stage are significant (P<0.05). At the heading stage of rice, the values of α-diversity indexes of Shannon of bacterial or fungal communities in paddy soils with the insect-resistant transgenic hybrid rice ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ were between those of soils with ‘MFB’ and ‘Tianyouhuazhan’. The results of β-diversity analysis of bacterial or fungal communities showed that there were no significant differences in the composition of microbial communities in paddy soils with different varieties of rice in this field experiment. However, the relative abundance of Proteobacteria, which showed the highest abundance of bacteria, in paddy soil with ‘MFB’ increased compared with that of ‘Minhui 3301’, and reached the significance level at the tillering and maturation stage of rice (P<0.05). In contrast, the relative abundance of Ascomycota, which showed the highest abundance of fungi, was reduced in paddy soil with ‘MFB’ and reached the significance level at the tillering and heading stages of rice (P<0.05). At the heading stage of rice, the relative abundances of Proteobacteria and Ascomycota in paddy soils with ‘Minfeng A/MFB’ ‘Tianfeng A/MFB’ or ‘Gufeng A/MFB’ were between those of soils with ‘MFB’ and ‘Tianyouhuazhan’. According to the functional prediction of microbial communities, the differences in functional composition of bacterial communities in paddy soil between soils with ‘MFB’ and ‘Minhui 3301’ gradually increased with rice growth. In summary, insect-resistant transgenic rice and its transgenic hybrid rice increased the diversity of soil bacterial and fungal communities and changed the relative abundance of major bacterial and fungal species with increased yield, but did not have significant effects on the community and functional composition of bacteria or fungi.
-
表 1 不同品种水稻的产量性状
Table 1 Yield characteristics of different rice varieties
水稻品种
Rice variety有效穗数
Effective panicle number结实率
Setting rate (%)千粒重
1000-grain weight (g)单株产量
Yield per plant (g∙plant−1)闽丰A/MFB Minfeng A/MFB 11.8±1.2ab 71.7±5.4a 30.7±0.5a 57.9±6.2a 天丰A/MFB Tianfeng A/MFB 12.2±1.0a 64.6±1.9b 31.8±0.7a 55.7±5.1a 谷丰A/MFB Gufeng A/MFB 9.9±1.2b 62.4±5.2bc 33.7±1.6a 44.8±6.1b 天优华占 Tianyouhuazhan 11.4±2.2ab 45.9±3.6d 33.4±3.9a 32.7±10.1cd MFB 11.9±1.1a 58.1±3.0c 30.6±1.9a 41.4±8.2bc 闽恢3301 Minhui 3301 12.8±2.0a 51.6±3.2d 30.9±4.8a 27.6±6.6d ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种间差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties (P<0.05). 表 2 不同品种水稻不同生育期稻田土壤细菌群落的α-多样性指数
Table 2 Alpha diversity indexes of bacterial communities in paddy soils at different growth stages of different rice varieties
生育期
Growth stage水稻品种
Rice variety丰富度指数 Richness index 多样性指数 Diversity index 均匀度指数
Pielou_eChao1 Observed_species Shannon Simpson 分蘖期
Tillering stage闽丰A/MFB
Minfeng A/MFB5842±815a 5310±495ab 11.20±0.13ab 0.9987±0.0001c 0.9054±0.0022b 天丰A/MFB
Tianfeng A/MFB5552±201a 4929±99b 11.10±0.01b 0.9990±0.0000b 0.9047±0.0011b 谷丰A/MFB
Gufeng A/MFB5718±288a 5116±140ab 11.21±0.03ab 0.9991±0.0000a 0.9097±0.0015a 天优华占
Tianyouhuazhan5753±326a 4970±186b 11.19±0.05ab 0.9991±0.0000a 0.9112±0.0002a MFB 6286±214a 5501±134a 11.30±0.03a 0.9991±0.0000a 0.9096±0.0010a 闽恢3301
Minhui33015731±502a 4937±342b 11.10±0.11b 0.9990±0.0001b 0.9047±0.0020b 齐穗期
Heading stage闽丰A/MFB
Minfeng A/MFB6481±133a 6131±116ab 11.04±0.03a 0.9982±0.0001a 0.8777±0.0029b 天丰A/MFB
Tianfeng A/MFB6280±211a 5796±178ab 10.76±0.01b 0.9960±0.0001c 0.8611±0.0024c 谷丰A/MFB
Gufeng A/MFB6450±240a 6124±180ab 10.76±0.04b 0.9961±0.0002c 0.8550±0.0018d 天优华占
Tianyouhuazhan5971±169a 5692±197b 10.68±0.12b 0.9959±0.0006c 0.8563±0.0060cd MFB 6492±295a 6221±215a 11.06±0.04a 0.9972±0.0001b 0.8773±0.0022b 闽恢3301
Minhui33016012±621a 5684±491b 11.03±0.07a 0.9981±0.0001a 0.8847±0.0034a 成熟期
Maturation stage闽丰A/MFB
Minfeng A/MFB5051±357c 4879±295c 10.87±0.09c 0.9980±0.0002b 0.8876±0.0019b 天丰A/MFB
Tianfeng A/MFB5120±20c 4980±40c 11.00±0.04b 0.9985±0.0001a 0.8960±0.0025a 谷丰A/MFB
Gufeng A/MFB4730±130c 4551±119c 10.80±0.05c 0.9980±0.0001b 0.8888±0.0013b 天优华占
Tianyouhuazhan5157±478c 4897±352c 10.99±0.08b 0.9984±0.0001a 0.8969±0.0011a MFB 6646±720a 6240±459a 11.23±0.07a 0.9983±0.0000a 0.8910±0.0020b 闽恢3301
Minhui33015923±97b 5620±52b 11.05±0.04b 0.9981±0.0001b 0.8875±0.0029b ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种在同一生育期差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties at the same growth stage (P<0.05). 表 3 不同品种水稻不同生育期稻田土壤真菌群落的α-多样性指数
Table 3 Alpha diversity indexes of fungal communities in paddy soils at different growth stages of different rice varieties
生育期
Growth stage水稻品种
Rice variety丰富度指数 Richness index 多样性指数 Diversity index 均匀度指数
Pielou_eChao1 Observed_species Shannon Simpson 分蘖期
Tillering stage闽丰A/MFB
Minfeng A/MFB254±2a 254±3a 5.94±0.12b 0.9605±0.0043b 0.7437±0.0136c 天丰A/MFB
Tianfeng A/MFB178±6c 178±5c 6.03±0.06ab 0.9725±0.0035ab 0.8070±0.0073a 谷丰A/MFB
Gufeng A/MFB245±28a 245±28a 6.26±0.30ab 0.9740±0.0082a 0.7894±0.0215ab 天优华占
Tianyouhuazhan223±3b 222±3b 6.33±0.12a 0.9751±0.0032a 0.8116±0.0172a MFB 194±7c 193±7c 6.21±0.22ab 0.9776±0.0047a 0.8173±0.0241a 闽恢3301
Minhui 3301155±7d 154±6d 5.50±0.30c 0.9527±0.0136b 0.7569±0.0365bc 齐穗期
Heading stage闽丰A/MFB
Minfeng A/MFB654±48c 653±47c 6.19±0.48bc 0.9544±0.0271b 0.6618±0.0448bc 天丰A/MFB
Tianfeng A/MFB787±20b 783±22b 6.34±0.12b 0.9484±0.0037bc 0.6599±0.0097c 谷丰A/MFB
Gufeng A/MFB784±48b 775±45b 6.35±0.07b 0.9553±0.0024b 0.6617±0.0097bc 天优华占
Tianyouhuazhan696±44c 690±41c 5.91±0.10c 0.9341±0.0012c 0.6267±0.0052c MFB 919±56a 906±56a 7.18±0.26a 0.9832±0.0038a 0.7310±0.0212a 闽恢3301
Minhui 3301852±13ab 840±16ab 6.79±0.13a 0.9758±0.0037a 0.6992±0.0124ab 成熟期
Maturation stage闽丰A/MFB
Minfeng A/MFB948±44ab 936±43ab 7.24±0.0ab 0.9825±0.0008a 0.7335±0.0046a 天丰A/MFB
Tianfeng A/MFB797±20c 796±18c 7.11±0.06b 0.9811±0.0009a 0.7376±0.0074a 谷丰A/MFB
Gufeng A/MFB972±70ab 954±65ab 7.24±0.15ab 0.9807±0.0048a 0.7316±0.0225a 天优华占
Tianyouhuazhan1038±54a 1013±54a 7.29±0.08a 0.9796±0.0038a 0.7304±0.0131a MFB 884±102b 872±91b 7.27±0.09ab 0.9837±0.0005a 0.7442±0.0056a 闽恢3301
Minhui 3301943±107ab 922±97ab 7.33±0.14a 0.9832±0.0011a 0.7443±0.0043a ‘MFB’为 抗虫转基因水稻, ‘天优华占’ 为籼型三系杂交水稻, ‘闽恢3301’为籼型常规水稻, 其他3个品种为转基因杂交水稻。同列不同小写字母表示不同品种间在同一生长期差异显著(P<0.05)。‘MFB’ is insect-resistant transgenic rice variety, ‘Tianyouhuazhan’ is indica hybrid rice variety, ‘Minhui 3301’ is conventional indica rice variety, the other three varieties are transgenic hybrid rice. Different lowercase letters in the same column mean significant differences among different rice varieties at the same growth stage (P<0.05). -
[1] 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114−119 International Service for the Acquisition of Agri-biotech Applications. Global commercialization of biotechnology/transgenic crops in 2019[J]. China Biotechnology, 2021, 41(1): 114−119
[2] BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 2003, 35(9): 1183−1192 doi: 10.1016/S0038-0717(03)00179-2
[3] AIRA M, GÓMEZ-BRANDÓN M, LAZCANO C, et al. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities[J]. Soil Biology and Biochemistry, 2010, 42(12): 2276−2281 doi: 10.1016/j.soilbio.2010.08.029
[4] BERG G, SMALLA K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology, 2009, 68(1): 1−13 doi: 10.1111/j.1574-6941.2009.00654.x
[5] INCEOĞLU O, SALLES J F, VAN OVERBEEK L, et al. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields[J]. Applied and Environmental Microbiology, 2010, 76(11): 3675−3684 doi: 10.1128/AEM.00040-10
[6] LU G H, ZHU Y L, KONG L R, et al. Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by illumina MiSeq[J]. Journal of Microbiology and Biotechnology, 2017, 27(3): 561−572 doi: 10.4014/jmb.1609.09008
[7] 杨永华. 转基因作物对土壤微生物群落的影响及主要研究策略[J]. 农业生物技术学报, 2011, 19(1): 1−8 doi: 10.3969/j.issn.1674-7968.2011.01.001 YANG Y H. Advances on the effects of genetically modified crops on soil microbial community and main countermeasures of their approaches[J]. Journal of Agricultural Biotechnology, 2011, 19(1): 1−8 doi: 10.3969/j.issn.1674-7968.2011.01.001
[8] JAMES C. Global Status of Commercialized Biotech/GM Crops: 2011[M]. Ithaca, NY: ISAAA, 2011
[9] DONEGAN K K, PALM C J, FIELAND V J, et al. Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin[J]. Applied Soil Ecology, 1995, 2(2): 111−124 doi: 10.1016/0929-1393(94)00043-7
[10] CASTALDINI M, TURRINI A, SBRANA C, et al. Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms[J]. Applied and Environmental Microbiology, 2005, 71(11): 6719−6729 doi: 10.1128/AEM.71.11.6719-6729.2005
[11] WU W X, YE Q F, MIN H, et al. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil[J]. Soil Biology and Biochemistry, 2004, 36(2): 289−295 doi: 10.1016/j.soilbio.2003.09.014
[12] LU H H, WU W X, CHEN Y X, et al. Decomposition of Bt transgenic rice residues and response of soil microbial community in rapeseed-rice cropping system[J]. Plant and Soil, 2010, 336(1): 279−290
[13] SONG Y N, SU J, CHEN R, et al. Diversity of microbial community in a paddy soil with cry1Ac/cpti transgenic rice[J]. Pedosphere, 2014, 24(3): 349−358 doi: 10.1016/S1002-0160(14)60021-7
[14] 楼骏, 柳勇, 李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 2014, 30(15): 256−260 doi: 10.11924/j.issn.1000-6850.2013-2513 LOU J, LIU Y, LI Y. Review of high-throughput sequencing techniques in studies of soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(15): 256−260 doi: 10.11924/j.issn.1000-6850.2013-2513
[15] 郑燕, 贾仲君. 新一代高通量测序与稳定性同位素示踪DNA/RNA技术研究稻田红壤甲烷氧化的微生物过程[J]. 微生物学报, 2013, 53(2): 173−184 ZHENG Y, JIA Z J. Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils[J]. Acta Microbiologica Sinica, 2013, 53(2): 173−184
[16] 陈庆荣, 王成己, 陈曦, 等. 施用烟秆生物黑炭对红壤性稻田根际土壤微生物的影响[J]. 福建农业学报, 2016, 31(2): 184−188 CHEN Q R, WANG C J, CHEN X, et al. Effect of tobacco stalk-derived biochar on microbes in rhizosphere soil at red paddy fields[J]. Fujian Journal of Agricultural Sciences, 2016, 31(2): 184−188
[17] 张芳, 林绍艳, 徐颖洁. 水稻连作对江苏地区稻田土细菌微生物多样性的影响[J]. 山东农业大学学报(自然科学版), 2014, 45(2): 161−165 ZHANG F, LIN S Y, XU Y J. The effect of continuous cropping rice on diversity of soil bacteria microbial in Jiangsu Province[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2014, 45(2): 161−165
[18] SONG Y N, SU J, WU M J, et al. Effect of Hvsusiba2 transgenic rice on soil bacterial community and functional gene in paddy field in Fujian Province China[J]. Journal of Agricultural and Crop Research, 2021, 9(5): 112−120
[19] CAPORASO J G, BITTINGER K, BUSHMAN F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266−267 doi: 10.1093/bioinformatics/btp636
[20] LOZUPONE C, KNIGHT R. UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005, 71(12): 8228−8235 doi: 10.1128/AEM.71.12.8228-8235.2005
[21] 单贞. 异源表达Hvsusiba2籼稻“明恢86”稻田甲烷减排研究[D]. 福州: 福建农林大学, 2017 SHAN Z. Study on mitigating methane in paddy fields of Indica rice “Minghui86” with heterologous expression of Hvsusiba2[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017
[22] FLORES S, SAXENA D, STOTZKY G. Transgenic Bt plants decompose less in soil than non-Bt plants[J]. Soil Biology and Biochemistry, 2005, 37(6): 1073−1082 doi: 10.1016/j.soilbio.2004.11.006
[23] POERSCHMANN J, GATHMANN A, AUGUSTIN J, et al. Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize — Characterization of lignin patterns[J]. Journal of Environmental Quality, 2005, 34(5): 1508−1518 doi: 10.2134/jeq2005.0070
[24] POERSCHMANN J, RAUSCHEN S, LANGER U, et al. Molecular level lignin patterns of genetically modified Bt-maize MON88017 and three conventional varieties using tetramethylammonium hydroxide (TMAH)-induced thermochemolysis[J]. Journal of Agricultural and Food Chemistry, 2008, 56(24): 11906−11913 doi: 10.1021/jf8023694
[25] POERSCHMANN J, RAUSCHEN S, LANGER U, et al. Fatty acid patterns of genetically modified Cry3Bb1 expressing Bt-maize MON88017 and its near-isogenic line[J]. Journal of Agricultural and Food Chemistry, 2009, 57(1): 127−132 doi: 10.1021/jf803009u
[26] 曾千春, 周开达, 朱祯, 等. 中国水稻杂种优势利用现状[J]. 中国水稻科学, 2000, 14(4): 243−246 doi: 10.3321/j.issn:1001-7216.2000.04.012 ZENG Q C, ZHOU K D, ZHU Z, et al. Current status in the use of hybrid rice heterosis in China[J]. Chinese Journal of Rice Science, 2000, 14(4): 243−246 doi: 10.3321/j.issn:1001-7216.2000.04.012
[27] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001
[28] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64: 807−838 doi: 10.1146/annurev-arplant-050312-120106
[29] MASOERO F, MOSCHINI M, ROSSI F, et al. Nutritive value-mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (cry1A(b)) grown in Northern Italy[J]. Maydica, 1999, 44: 205−209
[30] SONG Y N, CHEN Z J, WU M J, et al. Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice[J]. Journal of Integrative Agriculture, 2021, 20(6): 1674−1686 doi: 10.1016/S2095-3119(20)63271-3