华北山前平原区厚包气带次降水入渗补给定量估算

刘美英, 高雅, 张俊芝, 沈彦俊, 吴林, 李明良, 闵雷雷

刘美英, 高雅, 张俊芝, 沈彦俊, 吴林, 李明良, 闵雷雷. 华北山前平原区厚包气带次降水入渗补给定量估算[J]. 中国生态农业学报 (中英文), 2024, 32(3): 446−455. DOI: 10.12357/cjea.20230498
引用本文: 刘美英, 高雅, 张俊芝, 沈彦俊, 吴林, 李明良, 闵雷雷. 华北山前平原区厚包气带次降水入渗补给定量估算[J]. 中国生态农业学报 (中英文), 2024, 32(3): 446−455. DOI: 10.12357/cjea.20230498
LIU M Y, GAO Y, ZHANG J Z, SHEN Y J, WU L, LI M L, MIN L L. Quantitative estimation of sub-precipitation infiltration recharge of the thick vadose zone in the piedmont region of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2024, 32(3): 446−455. DOI: 10.12357/cjea.20230498
Citation: LIU M Y, GAO Y, ZHANG J Z, SHEN Y J, WU L, LI M L, MIN L L. Quantitative estimation of sub-precipitation infiltration recharge of the thick vadose zone in the piedmont region of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2024, 32(3): 446−455. DOI: 10.12357/cjea.20230498

华北山前平原区厚包气带次降水入渗补给定量估算

基金项目: 河北省创新能力提升计划项目(225A4201D)、国家自然科学基金项目(41930865, 41877169)和河北省水利科技计划项目资助
详细信息
    作者简介:

    刘美英, 研究方向为土壤水文。E-mail: myliu@sjziam.ac.cn

    通讯作者:

    李明良, 研究方向为水文水资源, E-mail: limingliang188@163.com

    闵雷雷, 研究方向为农田关键带水文过程, E-mail: llmin@sjziam.ac.cn

  • 中图分类号: S27

Quantitative estimation of sub-precipitation infiltration recharge of the thick vadose zone in the piedmont region of the North China Plain

Funds: The study was supported by the Project for Innovative Capacity Improvement in Hebei Province (225A4201D), the National Natural Science Foundation of China (41930865, 41877169), and Project for Water Resources Science and Technology of Hebei Province.
More Information
  • 摘要:

    降水入渗补给定量估算对于区域水资源评价具有重要作用。在干旱半干旱地区, 年降水入渗补给量通常取决于年内几次集中的降水特性。因而, 开展次降水入渗补给机理研究, 建立次降水入渗补给量估算方法, 有望提高干旱半干旱地区入渗补给量评估的科学性和准确性。本文以华北山前平原地下水深埋区为例, 利用中国科学院栾城农业生态系统试验站和河北冉庄水资源实验站实测的土壤含水量、土壤水势、地下水补给量和降水量等长序列资料校准Hydrus-1D模型, 模拟日降水入渗补给过程, 构建具有物理意义的次降水入渗补给事件划分标准, 深入研究华北山前平原地下水深埋条件下次降水入渗补给机理, 定量估算次降水入渗补给量, 建立次降水入渗补给量和次降水量间的定量关系。研究结果表明: 次降水入渗补给量具有较大的变异性, 次降水入渗补给量与次降水量或次总有效水量(次降水量+前期200 cm土壤储水量)呈显著相关关系(P<0.01), 决定系数(R2)达0.801~0.962; 但次降水入渗补给系数与次降水量无显著相关关系, 这是由于次降水入渗补给系数不能反映降水前期土壤水分条件对补给的影响。因此, 在地下水深埋区, 不建议利用次降水入渗补给系数来估算次降水入渗补给量。本研究结果对区域地下水资源评价具有重要理论意义。

     

    Abstract:

    The quantitative estimation of recharge by precipitation infiltration plays an important role in the evaluation of regional water resources. In arid and semi-arid areas, the annual amount of recharge by precipitation infiltration usually depends on the characteristics of several concentrated precipitation events. Therefore, research on the mechanism of sub-precipitation infiltration recharge (sub-recharge) and the establishment of an estimation method of the amount of sub-recharge can improve the scientific and accurate evaluation of annual infiltration recharge in arid and semi-arid areas. This study investigated the sub-recharge mechanism using the piedmont region of the North China Plain as an example. Large amounts of soil water content, soil matric potential, recharge flux to groundwater, and precipitation of the Luancheng Agro-Ecosystem Experimental Station, Chinese Academy of Sciences (LC Station), and Ranzhuang Water Resources Experiment Station, Hebei Province (RZ Station) were used. Firstly, the depth of potential recharge occurrence, that is, the zero-flux plane based on the change characteristics of the soil water potential gradient, was determined; and the patterns of precipitation infiltration recharge were analyzed. The depths of potential recharge were determined to be 2 m at the LC Station and 3 m at the RZ Station. The difference in the potential recharge occurrence depths between the two stations was mainly caused by the total water input and soil texture. Secondly, the Hydrus-1D model was calibrated and validated using the long-term soil water content, soil matric potential, and recharge flux to groundwater. Calibration results showed that the model simulated the aforementioned processes well. Daily recharge amounts in 1992–2016 were simulated using the well-calibrated and validated Hydrus-1D model. Sub-recharge classification criteria with physical significance based on the daily recharge amounts were established, that is, the criterion for two precipitation events was no precipitation for seven consecutive days. Sub-precipitation events with irrigation inputs or no more than evapotranspiration were excluded. Sixty-seven and sixty-nine sub-precipitation events in 1992–2016 were separated at the LC and RZ stations, respectively. The average number of sub-precipitation events was no more than three per year. The sub-recharge amounts showed significant variability. In LC Station, the sub-recharge amounts were 0.1−421.7 mm, with an average of 22.2 mm and a standard deviation of 57.7 mm. In RZ Station, the sub-recharge amounts were 0.4−261.9 mm, with an average of 32.0 mm and a standard deviation of 65.1 mm. Finally, the relationship between the sub-recharge amount (sub-recharge coefficient) and the sub-precipitation amount (or total effective sub-water input, i.e., the sub-precipitation amount and water storage in the 0−200 cm soil profile) was quantitatively analyzed. There was a significant correlation (P<0.01) between the sub-recharge and sub-precipitation amounts (or total effective sub-water input), with a determination coefficient (R2) ranging from 0.801 to 0.962. However, there was no significant correlation between the sub-recharge coefficient and the sub-precipitation amount (or total effective sub-water input). This is because the sub-recharge coefficient cannot reflect the impact of the previous water storage in the soil profile on the recharge amount. The results of this study are theoretically significant for the evaluation of regional groundwater resources.

     

  • 图  1   栾城站和冉庄站位置 (a)及栾城站土壤水分要素观测竖井 (b)和冉庄站地中蒸渗仪(c)示意图

    Figure  1.   Locations of Luancheng Station and Ranzhuang Station (a), schematics of soil water item observation instrumentation in Luancheng Station (b) and lysimeter in Ranzhuang Station (c)

    图  2   栾城站(a, b, c)和冉庄站(d, e, f)土壤水势梯度随深度变化(正值代表水分向下运动)

    Figure  2.   Variations of the total soil water potential gradients along depth in Luancheng Station (a, b, c) and Ranzhuang Station (d, e, f) (positive values represent the downward movement of soil water)

    图  3   栾城站(a)和冉庄站(b)土壤层年平均水分通量随深度变化

    Figure  3.   Variations of average annual recharge fluxes along depths in Luancheng Station (a) and Ranzhuang Station (b)

    图  4   基于Hydrus-1D模型模拟的栾城站(a)和冉庄站(b)不同深度地下水补给过程

    Figure  4.   Recharge process at different depths in Luancheng Station (a) and Ranzhuang Station (b) simulated by Hydrus-1D model

    图  5   栾城站(a, b)和冉庄站(c, d)次降水量和次总有效水量(次降水量+前期200 cm土壤储水量)与次降水入渗补给量的关系

    Figure  5.   The relationship between sub-precipitation amount and total effective sub-water input (sub-precipitation amount and previous soil water storage in 200 cm soil profile), and sub-precipitation infiltration recharge amount in Luancheng station (a, b) and Ranzhuang station (c, d)

    图  6   栾城站(a, b)和冉庄站(c, d)次降水量和次总有效水量(次降水量+前期200 cm土壤储水量)与次降水入渗补给系数的关系

    Figure  6.   The relationship between sub-precipitation amount and total effective sub-water input (sub-precipitation amount and previous soil water storage in 200 cm soil profile), and sub-precipitation infiltration recharge coefficient in Luancheng station (a, b) and Ranzhuang station (c, d)

  • [1] 周琳, 汪林. 供水格局变化下海河平原区浅层地下水动态响应分析[J]. 科技视界, 2015(18): 61−62

    ZHOU L, WANG L. Dynamic response analysis of shallow groundwater in Haihe Plain under the change of water supply pattern[J]. Science & Technology Vision, 2015(18): 61−62

    [2] 陈建峰. 降雨入渗补给系数变化规律研究[J]. 地下水, 2022, 44(2): 169−171

    CHEN J F. Study on variation law of rainfall infiltration recharge coefficient[J]. Ground Water, 2022, 44(2): 169−171

    [3] 郭会荣, 靳孟贵, 齐登红, 等. 基于地中渗透仪的入渗补给方式分析[J]. 水文地质工程地质, 2007, 34(4): 107−111, 115 doi: 10.3969/j.issn.1000-3665.2007.04.025

    GUO H R, JIN M G, QI D H, et al. Characterization of groundwater recharge processes based on large lysimeters[J]. Hydrogeology & Engineering Geology, 2007, 34(4): 107−111, 115 doi: 10.3969/j.issn.1000-3665.2007.04.025

    [4]

    CHENG Y B, ZHAN H B, YANG W B, et al. Is annual recharge coefficient a valid concept in arid and semi-arid regions?[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5031−5042 doi: 10.5194/hess-21-5031-2017

    [5] 范继汤. 确定次降雨入渗补给时段和补给量的研究[J]. 江苏水利, 2001(2): 31−32 doi: 10.3969/j.issn.1007-7839.2001.02.016

    FAN J T. Study on determining the recharge period and quantity of sub-precipitation infiltration[J]. Jiangsu Water Resources, 2001(2): 31−32 doi: 10.3969/j.issn.1007-7839.2001.02.016

    [6] 高正夏. 新疆玛河流域平原区次降雨入渗补给系数变化规律研究[J]. 资源环境与工程, 2014, 28(4): 582−586

    GAO Z X. Change rule of sub-rainfall infiltration coefficient in Xinjiang Manas River Basin Plain[J]. Resources Environment & Engineering, 2014, 28(4): 582−586

    [7] 史良胜, 蔡树英, 杨金忠. 次降雨入渗补给系数空间变异性研究及模拟[J]. 水利学报, 2007, 38(1): 79−85 doi: 10.3321/j.issn:0559-9350.2007.01.012

    SHI L S, CAI S Y, YANG J Z. Study on spatial variability of subrainfall infiltration coefficient and simulation of the stochastic field[J]. Journal of Hydraulic Engineering, 2007, 38(1): 79−85 doi: 10.3321/j.issn:0559-9350.2007.01.012

    [8] 刘廷玺, 朝伦巴根, 马龙, 等. 通辽地区次降雨入渗补给系数和地下水位埋深及次降雨量关系的分析与研究[J]. 内蒙古农业大学学报(自然科学版), 2002, 23(2): 40−43

    LIU T X, CHAOLUNBAGEN, MA L, et al. Study and analysis on relationship between subrainfall infiltration coefficients, groundwater depth and subrainfall in Tongliao area[J]. Journal of Inner Mongolia Agricultural University, 2002, 23(2): 40−43

    [9] 齐登红. 系统响应分析在降水入渗补给计算中的应用[J]. 地质科技情报, 2006, 25(6): 82−86

    QI D H. System response analysis method to calculate precipitation infiltration recharge[J]. Geological Science and Technology Information, 2006, 25(6): 82−86

    [10] 吴继敏, 郑建青, 高正夏, 等. 次降雨入渗补给系数的模型研究[J]. 河海大学学报(自然科学版), 1999, 27(6): 7−11

    WU J M, ZHENG J Q, GAO Z X, et al. Model estimation of sub-coefficient of recharge by rainfall infiltration[J]. Journal of Hohai University (Natural Sciences), 1999, 27(6): 7−11

    [11] 肖航, 燕青, 李洋, 等. 短时强降雨下平原区域浅层地下水入渗补给规律研究[J]. 环境监测管理与技术, 2021, 33(6): 24−28

    XIAO H, YAN Q, LI Y, et al. Study on recharge low of shallow groundwater infiltration in plain area under short-term heavy rainfall[J]. The Administration and Technique of Environmental Monitoring, 2021, 33(6): 24−28

    [12] 宾予莲, 齐登红. 降雨入渗补给浅层地下水过程探讨[J]. 河南水利与南水北调, 2010(6): 40−42

    BIN Y L, QI D H. Discussion on recharge process of shallow groundwater by rainfall infiltration[J]. Henan Water Resources & South-to-North Water Diversion, 2010(6): 40−42

    [13] 陈崇希. 滞后补给权函数−降雨补给潜水滞后性处理方法[J]. 水文地质工程地质, 1998, 25(6): 22−24

    CHEN C X. Weight function method of hysteresis recharge the solved method on the precipitation delay recharge to the watertable[J]. Hydrogeology and Engineering Geology, 1998, 25(6): 22−24

    [14] 樊福来, 郭翔云. 地下水深埋区降雨入渗补给过程分析[J]. 海河水利, 1996(1): 34−37

    FAN F L, GUO X Y. Analysis of recharge process of rainfall infiltration in deep groundwater area[J]. Haihe Water Resources, 1996(1): 34−37

    [15] 李晓春, 樊福来. 地下水深埋区降雨入渗补给问题的探讨[J]. 河北水利科技, 1995(2): 27−31

    LI X C, FAN F L. Discussion on recharge of rainfall infiltration in deep groundwater area[J]. South-to-North Water Transfers and Water Science & Technology, 1995(2): 27−31

    [16] 李雪峰, 李亚峰, 樊福来. 降水入渗补给过程的实验研究[J]. 南水北调与水利科技, 2004, 2(3): 33−35 doi: 10.3969/j.issn.1672-1683.2004.03.011

    LI X F, LI Y F, FAN F L. Experimental research on the process of rainfall infiltration feeding[J]. South-to-North Water Tromsfersomd and Water Science & Technology, 2004, 2(3): 33−35 doi: 10.3969/j.issn.1672-1683.2004.03.011

    [17] 王绍强. 对降水入渗系数影响因素的探讨及潜水区域均衡计算法[J]. 勘察科学技术, 1988(1): 29−34

    WANG S Q. Discussion on influencing factors of precipitation infiltration coefficient and equilibrium calculation method of diving area[J]. Site Investigation Science and Technology, 1988(1): 29−34

    [18] 王政友. 降水入渗补给地下水滞后时间分析探讨[J]. 水文, 2011, 31(2): 42−45

    WANG Z Y. Discussion on lag time of rainfall penetration recharge to groundwater[J]. Journal of China Hydrology, 2011, 31(2): 42−45

    [19] 张光辉, 殷夏, 张洪平, 等. 零通量面方法的改进[J]. 水利学报, 1992, 23(1): 36−42

    ZHANG G H, YIN X, ZHANG H P, et al. Improvement of zero flux surface method[J]. Journal of Hydraulic Engineering, 1992, 23(1): 36−42

    [20] 周旻, 靳孟贵, 魏秀琴, 等. 利用地中渗透仪观测资料进行降雨入渗补给规律分析[J]. 地质科技情报, 2002, 21(1): 37−40

    ZHOU M, JIN M G, WEI X Q, et al. Analysis of precipitation recharge using observed data of lysimeter[J]. Geological Science and Technology Information, 2002, 21(1): 37−40

    [21] 李娜, 任理, 唐泽军. 降雨入渗条件下厚包气带土壤水流通量的模拟与分析[J]. 农业工程学报, 2013, 29(12): 94−100

    LI N, REN L, TANG Z J. Modeling and analyzing water flow in a thick unsaturated zone during precipitation and infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 94−100

    [22] 刘廷玺, 朱仲元, 马龙, 等. 通辽地区次降雨入渗补给系数的分析确定[J]. 内蒙古农业大学学报(自然科学版), 2002, 23(2): 34−39

    LIU T X, ZHU Z Y, MA L, et al. Analysis and determination of subrainfall infiltration coefficients in Tongliao Area[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2002, 23(2): 34−39

    [23] 杨晓俊. 蒸渗计法降水入渗补给系数变化规律分析[J]. 水资源与水工程学报, 2009, 20(1): 150−152

    YANG X J. Analysis on change rule of the precipitation infiltration compensating coefficient by lysimeter[J]. Journal of Water Resources and Water Engineering, 2009, 20(1): 150−152

    [24]

    LIU M Y, MIN L L, WU L, et al. Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain[J]. The Science of the Total Environment, 2022, 825: 153894 doi: 10.1016/j.scitotenv.2022.153894

    [25]

    ZHANG Y C, LEI H M, ZHAO W G, et al. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain[J]. Agricultural Water Management, 2018, 198: 53−64 doi: 10.1016/j.agwat.2017.12.027

    [26] 张兆吉, 费宇红, 陈宗宇. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009: 471

    ZHANG Z J, FEI Y H, CHEN Z Y. Investigation and Evaluation on Sustainable Utilization of Groundwater in North China Plain[M]. Beijing: Geological Publishing House, 2009: 471

    [27]

    MIN L L, SHEN Y J, PEI H W, et al. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain[J]. Journal of Hydrology, 2018, 559: 510−522 doi: 10.1016/j.jhydrol.2018.02.037

    [28]

    ZHANG Y C, QI Y Q, SHEN Y J, et al. Mapping the agricultural land use of the North China Plain in 2002 and 2012[J]. Journal of Geographical Sciences, 2019, 29(6): 909−921 doi: 10.1007/s11442-019-1636-8

    [29]

    ŠIŮNEK J, ŠEJNA M, SAITO H, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media[R]. California: Department of Environmental Sciences, University of California Riverside, 2012, 304 (2021-09). http://pc-progress.com/Downloads/Pgm_Hydrus1D/HYDRUS1D-4.15.pdf

    [30]

    MIN L L, SHEN Y J, PEI H W. Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain[J]. Journal of Hydrology, 2015, 527: 305−315 doi: 10.1016/j.jhydrol.2015.04.064

    [31] 刘昌明. 土壤-植物-大气系统水分运行的界面过程研究[J]. 地理学报, 1997, 52(4): 366−373

    LIU C M. Study on interface processes of water cycle in soil plant atmosphere continuum[J]. Acta Geographica Sinica, 1997, 52(4): 366−373

    [32] 杨建锋, 李宝庆, 李运生, 等. 浅地下水埋深区潜水对SPAC系统作用初步研究[J]. 水利学报, 1999, 30(7): 27−32

    YANG J F, LI B Q, LI Y S, et al. Preliminary studies on groundwater effects on SPAC system in shallow groundwater field[J]. Journal of Hydraulic Engineering, 1999, 30(7): 27−32

    [33]

    WU J Q, ZHANG R D, YANG J Z. Analysis of rainfall-recharge relationships[J]. Journal of Hydrology, 1996, 177(1/2): 143−160

    [34] 钱静, 王旭升, 陈添斐. 滞后补给权函数与包气带的关系[J]. 水文地质工程地质, 2013, 40(3): 1−5, 11

    QIAN J, WANG X S, CHEN T F. Relationship between weight function of delayed recharge and properties of vadose zone[J]. Hydrogeology & Engineering Geology, 2013, 40(3): 1−5, 11

    [35] 李云峰. 降雨补给潜水的滞后分配[J]. 勘察科学技术, 1997(3): 22−25, 21

    LI Y F. Lagging distribution of precipitation recharge to phreatic water[J]. Site Investigation Science and Technology, 1997(3): 22−25, 21

    [36]

    PEI H W, MIN L L, QI Y Q, et al. Impacts of varied irrigation on field water budegts and crop yields in the North China Plain: rainfed vs. irrigated double cropping system[J]. Agricultural Water Management, 2017, 190: 42−54 doi: 10.1016/j.agwat.2017.05.007

  • 其他相关附件

图(6)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  9
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 录用日期:  2023-10-18
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-03-18

目录

    /

    返回文章
    返回