不同稻虾模式对硫酸盐还原菌群落结构及多样性的影响

黎衍亮, 邱秀文, 江玉梅, 倪才英, 肖罗长, 梁以豪, 刘鑫

黎衍亮, 邱秀文, 江玉梅, 倪才英, 肖罗长, 梁以豪, 刘鑫. 不同稻虾模式对硫酸盐还原菌群落结构及多样性的影响[J]. 中国生态农业学报 (中英文), 2024, 32(4): 559−570. DOI: 10.12357/cjea.20230538
引用本文: 黎衍亮, 邱秀文, 江玉梅, 倪才英, 肖罗长, 梁以豪, 刘鑫. 不同稻虾模式对硫酸盐还原菌群落结构及多样性的影响[J]. 中国生态农业学报 (中英文), 2024, 32(4): 559−570. DOI: 10.12357/cjea.20230538
LI Y L, QIU X W, JIANG Y M, NI C Y, XIAO L C, LIANG Y H, LIU X. Effects of different rice-crayfish models on community structure and diversity of sulfate-reducing bacteria[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 559−570. DOI: 10.12357/cjea.20230538
Citation: LI Y L, QIU X W, JIANG Y M, NI C Y, XIAO L C, LIANG Y H, LIU X. Effects of different rice-crayfish models on community structure and diversity of sulfate-reducing bacteria[J]. Chinese Journal of Eco-Agriculture, 2024, 32(4): 559−570. DOI: 10.12357/cjea.20230538

不同稻虾模式对硫酸盐还原菌群落结构及多样性的影响

基金项目: 国家自然科学基金项目(42167006)和江西省现代农业产业技术体系建设专项(JXARS-12-环境控制)资助
详细信息
    作者简介:

    黎衍亮, 主要研究方向为环境生态学。E-mall: liyanliang97@163.com

    通讯作者:

    倪才英, 主要研究方向为土壤重金属污染行为与健康评价。E-mall: ncy1919@126.com

  • 中图分类号: S154

Effects of different rice-crayfish models on community structure and diversity of sulfate-reducing bacteria

Funds: This study was supported by the National Natural Science Foundation of China (42167006) and Jiangxi Province Modern Agricultural Industrial Technology System Construction Project (JXARS-12-Environmental Control).
More Information
  • 摘要:

    硫酸盐还原菌(SRB)作为一种土壤中普遍存在的微生物, 在生物地球化学循环中发挥关键作用。本研究以常规水稻单作模式为对照(CK), 无环沟式稻虾(水稻和克氏原螯虾)共作模式(RS0)、有环沟式稻虾轮作模式(RS1)与有环沟式稻虾共作模式(RS2)为研究对象, 采用16S rDNA高通量测序技术, 探究不同稻虾模式对土壤硫酸盐还原菌(SRB)群落结构及多样性的影响。结果表明: 与CK相比, 3种稻虾模式均显著降低了水稻成熟期土壤氧化还原电位(Eh)和硫化物、硫酸盐、全硫含量, 提高了pH和有机质、速效钾、碱解氮含量, 其中RS0提升效果最为显著; 3种稻虾模式SRB群落结构存在差异: RS1、RS2和RS0处理的δ-变形菌纲相对丰度比CK分别下降46.00%、63.61%和51.94%, 而α-变形菌纲则分别提高402.52%、441.01%和584.17%。3种稻虾模式硫酸盐还原菌Observed_species指数、Shannon指数和Simpson指数与CK相比均显著提高, 但不同稻虾模式间丰富度及多样性没有显著差异。RDA分析表明, 速效钾、Eh、有机质、有效磷、碱解氮、硫酸盐、硫化物、全硫和pH是影响稻田土壤SRB群落结构的影响因子, 其中全硫和硫化物是主要因子。综上, 稻虾模式能维持或者提高稻田土壤养分状况和SRB群落丰富度及多样性, 改善稻田土壤SRB群落结构, 结果可为稻虾种养土壤生态健康及稻田综合种养土壤微生物研究提供参考和支撑。

     

    Abstract:

    The rice-crayfish integrated farming model, an ecological agricultural system, combines rice cultivation with the co-culture or rotation of crayfish (Procambarus clarkii), forming a mutually beneficial symbiosis. Sulfate-reducing bacteria (SRB) are widespread soil microbes that are pivotal in driving biogeochemical cycles. Researches on SRB is mainly centered on traditional rice fields, with comparatively few studies addressing their role in innovative rice-crayfish composite ecological agriculture systems. This study compared traditional rice monoculture (CK) with three distinct rice-crayfish systems: integrated rice-crayfish system without ring groove (RS0), integrated rice-crayfish rotation system with ring grooves (RS1), and integrated rice-crayfish system with ring grooves (RS2). Using 16S rDNA high-throughput sequencing technology, this study explored the effect of different rice-crayfish models on the community structure and diversity of soil SRB. Compared to the traditional rice monoculture, all three rice-crayfish models significantly decreased the soil oxidation-reduction potential (Eh) and contents of sulfide, sulfate, and total sulfur at the rice maturity stage. There was also a significantly increase in soil pH, and contents of organic matter, available potassium and nitrogen, with the most significant improvement observed in the RS0 model. This study revealed distinct SRB community structures across the three rice-crayfish models. Compared to the traditional rice monoculture, the δ-Proteobacteria class exhibited a decrease in relative abundance by 46.00%, 63.61%, and 51.94% in the RS1, RS2, and RS0 models, respectively, while the α-Proteobacteria class showed a substantial increase of 402.52%, 441.01%, and 584.17%, respectively. The Observed_species index, Shannon index, and Simpson index for SRB in all three rice-crayfish models were significantly higher than those in the CK, but there were no significant differences in richness and diversity among different rice-crayfish models. Redundancy analysis (RDA) revealed that factors such as available potassium, Eh, organic matter, available phosphorus, available nitrogen, sulfate, sulfide, total sulfur, and pH influenced the SRB community structure of rice field soil, with total sulfur and sulfide being the primary factors. In summary, the rice-crayfish model demonstrated the capacity to either maintain or improve the nutrient status, richness, and diversity of SRB communities in paddy soil, thereby effectively enhancing the structure of the SRB community in paddy fields. These findings offer valuable insights for supporting research on soil ecological health and soil microbiology of integrated rice-crayfish farming systems.

     

  • 图  1   不同稻虾模式与传统水稻单作田间试验布局图

    Figure  1.   Layout of different rice-crayfish models and traditional rice in the field experiment

    图  2   不同稻虾模式和传统水稻单作土壤aprA基因维恩图

    Figure  2.   Microbial Venn diagram of aprA gene in soil samples of different rice-crayfish models and traditional monoculture of rice fields

    图  3   不同稻虾模式和传统水稻单作稻田土壤理化因子与硫酸盐还原菌群落Alpha多样性指数的相关性

    Figure  3.   Correlation between soil physicochemical factors and Alpha diversity index of soil sulfate-reducing bacteria communities in different rice-crayfish models and traditional monoculture rice fields

    图  4   不同稻虾模式和传统水稻单作土壤硫酸盐还原菌LEfSe分析

    Figure  4.   LAD Effect Size (LEfSe) analysis of sulfate-reducing bacteria in soil under different rice-crayfish and traditional monoculture rice fields

    图  5   稻田土壤理化因子与硫酸盐还原菌群落组成(门水平)的RDA分析

    Figure  5.   RDA analysis of paddy soil physicochemical factors and sulfate-reducing bacteria community composition at phylum level

    图  6   稻田土壤理化因子与硫酸盐还原菌群落优势属的相关性

    Figure  6.   Correlation of paddy soil physicochemical factors with dominant genuses of sulfate-reducing bacteria community

    表  1   不同稻虾模式和传统水稻单作稻田土壤理化性质

    Table  1   Physical and chemical properties of paddy soil under different rice-crayfish models and traditional monoculture of rice fields

    处理
    Treatment
    pH 氧化还原电位
    Oxidation-reduction
    potential (mV)
    有效磷
    Available P
    (mg·kg−1)
    速效钾
    Available K
    (mg·kg−1)
    碱解氮
    Available N
    (mg·kg−1)
    有机质
    Organic matter
    (g·kg−1)
    硫化物
    Sulfide
    (mg·kg−1)
    硫酸盐
    Sulfate
    (mg·kg−1)
    全硫
    Total sulfur
    (g·kg−1)
    RS1 4.27±0.04c 440.57±6.20c 18.75±2.19bc 129.26±7.72b 117.95±2.28b 23.26±1.13b 0.31±0.02c 5273±220b 0.22±0.02b
    RS2 4.68±0.12b 448.30±5.41c 20.70±3.67b 129.99±1.36b 129.88±4.97a 22.97±3.50b 0.50±0.02b 4443±205c 0.16±0.02c
    RS0 4.82±0.03a 473.97±15.65b 27.35±0.60a 168.21±4.72a 126.72±3.13a 31.88±0.81a 0.52±0.01b 5303±211b 0.11±0.02d
    CK 4.09±0.02d 505.67±12.02a 15.18±0.55c 97.04±3.44c 102.79±6.39c 18.39±1.21c 1.82±0.09a 6533±311a 0.64±0.03a
      RS0、RS1、RS2和CK分别表示无环沟式稻虾共作模式、有环沟式稻虾轮作模式、有环沟式稻虾共作模式和传统水稻单作模式。表中同列不同小写字母表示处理间差异显著(P<0.05)。RS0, RS1, RS2 and CK represent the integrated rice-crayfish system without ring groove, integrated rice-crayfish rotation system with ring groove, integrated rice-crayfish system with ring groove, and traditional rice monoculture system, respectively. Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05).
    下载: 导出CSV

    表  2   不同稻虾模式和传统水稻单作土壤硫酸盐还原菌群落的Alpha多样性指数

    Table  2   Alpha diversity indexes of soil sulfate-reducing bacteria communities under different rice-crayfish models and traditional monoculture of rice fields

    处理
    Treatment
    覆盖率指数
    Goods_coverage index
    Chao1指数
    Chao1 index
    Observed_species指数
    Observed_species index
    PD_whole_tree指数
    PD_whole_tree index
    Shannon指数
    Shannon index
    Simpson指数
    Simpson index
    RS1 1.00±0.01a 4144.72±592.30a 3480.93±445.37a 286.30±159.62a 8.67±0.18a 0.99±0.00a
    RS2 1.00±0.01a 4088.99±585.93a 3487.67±321.10a 238.21±96.62a 8.84±0.25a 0.99±0.00a
    RS0 1.00±0.01a 3886.10±846.44a 3281.00±652.19a 288.95±184.42a 8.57±0.21a 0.99±0.01a
    CK 1.00±0.00a 2948.12±440.58a 2304.63±386.48b 155.84±70.34a 7.10±0.37b 0.97±0.01b
      RS0、RS1、RS2和CK分别表示无环沟式稻虾共作模式、有环沟式稻虾轮作模式、有环沟式稻虾共作模式和传统水稻单作模式。表中同列不同小写字母表示处理间差异显著(P<0.05)。RS0, RS1, RS2 and CK represent the integrated rice-crayfish system without ring groove, integrated rice-crayfish rotation system with ring groove, integrated rice-crayfish system with ring groove, and traditional rice monoculture system, respectively. Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05).
    下载: 导出CSV

    表  3   不同稻虾模式和传统水稻单作硫酸盐还原菌群落组成(纲水平)

    Table  3   Composition of soil sulfate-reducing bacteria at class level in different rice-crayfish models and traditional monoculture of rice

    菌纲 ClassRS1RS2RS0CK
    γ-变形菌纲 Gammaproteobacteria33.05±1.90ab35.40±4.24a31.68±3.78ab27.77±1.71b
    β-变形菌纲 Betaproteobacteria20.60±0.81a21.84±2.40a21.11±2.32a19.49±1.44a
    δ-变形菌纲 Deltaproteobacteria13.37±0.74b9.01±1.66b11.90±3.82b24.76±1.42a
    α-变形菌纲 Alphaproteobacteria13.97±1.99a15.04±0.91a19.02±7.28a2.78±0.64b
    梭菌纲 Clostridia4.62±0.73a2.99±1.23b3.00±0.71b1.05±0.17c
    绿菌纲 Chlorobia1.88±1.13a1.95±0.21a2.28±1.31a1.34±0.96a
    其他纲 Others0.04±0.01a<0.01d0.02±0.01b<0.01c
    未知纲 Unidentified12.46±2.69b13.76±2.73b10.99±2.75b22.81±1.99a
    RS0、RS1、RS2和CK分别表示无环沟式稻虾共作模式、有环沟式稻虾轮作模式、有环沟式稻虾共作模式和传统水稻单作模式。表中同行不同小写字母表示处理间差异显著(P<0.05)。RS0, RS1, RS2 and CK represent the integrated rice-crayfish system without ring groove, integrated rice-crayfish rotation system with ring groove, integrated rice-crayfish system with ring groove, and traditional rice monoculture system, respectively. Different lowercase letters in the same line indicate significant differences among treatments (P<0.05).
    下载: 导出CSV
  • [1] “十三五”中国稻渔综合种养产业发展报告[J]. 中国水产, 2022(1): 43–52

    Report on the development of rice and fishery integrated breeding industry in China during the 13th Five-Year Plan[J]. China Fisheries, 2022(1): 43–52

    [2] 于秀娟, 郝向举, 党子乔, 等. 中国稻渔综合种养产业发展报告(2023)[J]. 中国水产, 2023(8): 19−26

    YU X J, HAO X J, DANG Z Q, et al. Report on the development of rice and fishery integrated breeding industry in China (2023)[J]. China Fisheries, 2023(8): 19−26

    [3] 佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68

    SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68

    [4] 李文博, 刘少君, 叶新新, 等. 稻田综合种养模式对土壤生态系统的影响研究进展[J]. 生态与农村环境学报, 2021, 37(10): 1292−1300

    LI W B, LIU S J, YE X X, et al. Effects of the co-culture of rice and aquatic animals on soil eco-system: a review[J]. Journal of Ecology and Rural Environment, 2021, 37(10): 1292−1300

    [5] 佘晨兴, 王静, 仝川. 湿地土壤硫酸盐还原菌的分子检测及其与植物的相互作用[J]. 湿地科学, 2015, 13(2): 223−232

    SHE C X, WANG J, TONG C. Molecular detection of sulfate-reducing bacteria and their interaction with plants in soils of wetlands[J]. Wetland Science, 2015, 13(2): 223−232

    [6] 陈俊松, 杨渐, 蒋宏忱. 湖泊硫循环微生物研究进展[J]. 微生物学报, 2020, 60(6): 1177−1191

    CHEN J S, YANG J, JIANG H C. Research progress on microbes involved in lacustrine sulfur cycling[J]. Acta Microbiologica Sinica, 2020, 60(6): 1177−1191

    [7]

    AOKI M, KAKIUCHI R, YAMAGUCHI T, et al. Phylogenetic diversity of aprA genes in subseafloor sediments on the northwestern Pacific margin off Japan[J]. Microbes and Environments, 2015, 30(3): 276−280 doi: 10.1264/jsme2.ME15023

    [8] 刘新展, 贺纪正, 张丽梅. 水稻土中硫酸盐还原微生物研究进展[J]. 生态学报, 2009, 29(8): 4455−4463 doi: 10.3321/j.issn:1000-0933.2009.08.053

    LIU X Z, HE J Z, ZHANG L M. The sulfate-reducing bacteria and surfer cycle in paddy soil[J]. Acta Ecologica Sinica, 2009, 29(8): 4455−4463 doi: 10.3321/j.issn:1000-0933.2009.08.053

    [9] 邹松保, 高强, 程海华, 等. 罗氏沼虾(Macrobrachium rosenbergii)养殖池塘沉积物中细菌、硫酸盐还原菌和硫氧化菌的垂直分布特征[J]. 微生物学报, 2022, 62(7): 2719−2734

    ZOU S B, GAO Q, CHENG H H, et al. Vertical distribution of bacterial, sulfate-reducing and sulfur-oxidizing bacterial communities in sediment cores from freshwater prawn (Macro brachium rosenbergii) aquaculture pond[J]. Acta Microbiologica Sinica, 2022, 62(7): 2719−2734

    [10]

    KULP T R, HOEFT S E, MILLER L G, et al. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California[J]. Applied and Environmental Microbiology, 2006, 72(10): 6514−6526 doi: 10.1128/AEM.01066-06

    [11] 张玉, 米铁柱, 甄毓, 等. 海洋沉积物中硫酸盐还原菌和硫氧化菌群落分析方法的比较[J]. 环境科学, 2018, 39(1): 438−449

    ZHANG Y, MI T Z, ZHEN Y, et al. Analysis of sulfate-reducing and sulfur-oxidizing prokaryote community structures in marine sediments with different sequencing technologies[J]. Environmental Science, 2018, 39(1): 438−449

    [12] 赵宇华, 叶央芳, 刘学东. 硫酸盐还原菌及其影响因子[J]. 环境污染与防治, 1997, 19(5): 41−43

    ZHAO Y H, YE Y F, LIU X D. Sulfate-reducing bacteria and its influencing factors[J]. Environmental Pollution & Control, 1997, 19(5): 41−43

    [13] 贾丽娟, 王广军, 夏耘, 等. 不同地区稻虾综合种养系统的微生物群落结构分析[J]. 水产学报, 2023, 47(6): 75−86

    JIA L J, WANG G J, XIA Y, et al. Analysis of microbial community structure in rice-crayfish integrated culture system of three different areas[J]. Journal of Fisheries of China, 2023, 47(6): 75−86

    [14] 赖政, 肖力婷, 赖胜, 等. 稻虾种养新模式对稻田土壤肥力和微生物群落结构的影响[J/OL]. 土壤学报: 1–12 [2023-09-11]. http://kns.cnki.net/kcms/detail/32.1119.P.20220928.1454.002.html

    LAI Z, XIAO L T, LAI S, et al. Effects of a new rice-shrimp farming model on soil fertility and microbial community structure in paddy field[J/OL]. Acta Pedologica Sinica: 1−12. [2023-09-11]. http://kns.cnki.net/kcms/detail/32. 1 1 1 9.P.20220928.1454.002.html

    [15] 朱杰, 刘海, 吴邦魁, 等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报, 2018, 26(9): 1324−1332

    ZHU J, LIU H, WU B K, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1324−1332

    [16] 王蓉, 朱杰, 金涛, 等. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征[J]. 植物营养与肥料学报, 2019, 25(11): 1887−1899 doi: 10.11674/zwyf.18414

    WANG R, ZHU J, JIN T, et al. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice-crayfish symbiosis farming system[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1887−1899 doi: 10.11674/zwyf.18414

    [17] 陶先法, 李冰, 喻召雄, 等. 稻虾共生模式对水稻结实期根系分泌物及微生物的影响[J]. 水产学报, 2022, 46(11): 2122−2133

    TAO X F, LI B, YU Z X, et al. Effects of rice-crayfish integrated model on root exudates and microorganisms of rice during grain filling[J]. Journal of Fisheries of China, 2022, 46(11): 2122−2133

    [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000

    [19] 刘宇, 曹锦滔, 陈佳琪, 等. 稻田生态种养对土壤性质影响研究进展[J]. 环境生态学, 2021, 3(12): 34−37

    LIU Y, CAO J T, CHEN J Q, et al. Progress on effects of ecological planting and rearing on soil properties in rice fields[J]. Environmental Ecology, 2021, 3(12): 34−37

    [20] 胡敏, 向永生, 鲁剑巍. 石灰用量对酸性土壤pH值及有效养分含量的影响[J]. 中国土壤与肥料, 2017(4): 72−77 doi: 10.11838/sfsc.20170411

    HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils[J]. Soils and Fertilizers Sciences in China, 2017(4): 72−77 doi: 10.11838/sfsc.20170411

    [21] 张晓龙, 杨倩楠, 李祥东, 等. 不同稻田生态种养模式对土壤理化性质及综合肥力的影响[J]. 福建农业学报, 2023, 38(2): 202−209

    ZHANG X L, YANG Q N, LI X D, et al. Effects of crop/animal co-cultivations on physiochemical properties and fertility of rice paddy soil[J]. Fujian Journal of Agricultural Sciences, 2023, 38(2): 202−209

    [22] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000

    HUANG C Y. Soil Science[M]. Beijing: China Agriculture Press, 2000

    [23] 张智浩, 邓毅书, 聂强, 等. 白菜健康株与根肿病患病株的土壤微生物群落和功能差异[J]. 中国生态农业学报(中英文), 2023, 31(4): 530−542

    ZHANG Z H, DENG Y S, NIE Q, et al. Differences in soil microbial community and function between healthy and clubroot diseased plants of Chinese cabbage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 530−542

    [24]

    BOSSIO D A, FLECK J A, SCOW K M, et al. Alteration of soil microbial communities and water quality in restored wetlands[J]. Soil Biology and Biochemistry, 2006, 38(6): 1223−1233 doi: 10.1016/j.soilbio.2005.09.027

    [25] 林惠荣, 施积炎, 傅晓萍, 等. 硫对铅污染水稻土微生物活性及群落结构的影响[J]. 应用生态学报, 2010, 21(7): 1829–1834

    LIN H R, SHI J Y, FU X P, et al. Effects of sulfur on microbial activity and community structure in a lead-polluted paddy soil[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1829–1834

    [26] 周天然, 狄军贞. 硫酸盐还原菌的生长因子分析及脱硫性能研究[J/OL]. 工业水处理: 1−14. [2023-09-18]. https://doi.org/10.19965/j.cnki.iwt.2023-0160

    ZHOU T R, DI J Z. Growth factor analysis and desulfurization performance of sulfate-reducing bacteria[J/OL]. Industrial Water Treatment: 1−14. [2023-09-18]. https://doi.org/10.19965/j.cnki.iwt.2023-0160

    [27]

    KUSHKEVYCH I, DORDEVIĆ D, VÍTĚZOVÁ M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria[J]. Open Medicine, 2019, 14(1): 66−74 doi: 10.1515/med-2019-0010

    [28]

    CISSE S. Use of biopolymer entrapped sulfate-reducing bacteria and metal nanoparticles for effective aqueous sulfate removal[D]. Fargo, ND, USA: North Dakota State University, 2013: 66–75

    [29]

    LIU D, FAN Q G, PAPINEAU D, et al. Precipitation of protodolomite facilitated by sulfate-reducing bacteria: the role of capsule extracellular polymeric substances[J]. Chemical Geology, 2020, 533: 119415 doi: 10.1016/j.chemgeo.2019.119415

    [30] 刘晓丹, 黄毅, 王永花, 等. 西藏尼洋河沉积物中微生物群落结构特征分析[J]. 环境科学, 2020, 41(7): 3249−3256

    LIU X D, HUANG Y, WANG Y H, et al. Structural characteristics of microbial communities in the sediments of the Niyang River in Tibet[J]. Environmental Science, 2020, 41(7): 3249−3256

    [31] 谭雪, 董智, 张丽苗, 等. 三峡库区消落带落羽杉人工林土壤细菌群落结构多样性及动态变化[J]. 环境科学, 2023, 44(3): 1748−1757

    TAN X, DONG Z, ZHANG L M, et al. Structural diversity and its temporal variation in the soil bacterial community under plantations of Taxodium distichum in the riparian zone of the Three Gorges Reservoir area[J]. Environmental Science, 2023, 44(3): 1748−1757

    [32]

    CHAUDHRY V, REHMAN A, MISHRA A, et al. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments[J]. Microbial Ecology, 2012, 64(2): 450−460 doi: 10.1007/s00248-012-0025-y

    [33]

    SCHNAARS V, WÖHLBRAND L, SCHEVE S, et al. Proteogenomic insights into the physiology of marine, sulfate-reducing, filamentous Desulfonema limicola and Desulfonema magnum[J]. Microbial Physiology, 2021, 31(1): 1−20 doi: 10.1159/000512018

    [34]

    IMHOFF J F, SULING J, PETRI R. Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochro matium, Isochromatium, Marichromatium, Thiococcus, Thioha locapsa and Thermochromatium[J]. International Journal of Systematic Bacteriology, 1998, 48(4): 1129−1143 doi: 10.1099/00207713-48-4-1129

    [35]

    SATTLEY W M, SWINGLEY W D, BURCHELL B M, et al. Complete genome of the thermophilic purple sulfur bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae[J]. Photosynthesis Research, 2022, 151(1): 125−142 doi: 10.1007/s11120-021-00870-y

    [36]

    KISHI R, IMANISHI M, KOBAYASHI M, et al. Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermo chromatium tepidum[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2021, 1862(1): 148307 doi: 10.1016/j.bbabio.2020.148307

    [37]

    MURPHY C L, BIGGERSTAFF J, EICHHORN A, et al. Genomic characterization of three novel Desulfobacterota classes expand the metabolic and phylogenetic diversity of the phylum[J]. Environmental Microbiology, 2021, 23(8): 4326−4343 doi: 10.1111/1462-2920.15614

    [38]

    TAKETANI R G, YOSHIURA C A, DIAS A C F, et al. Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove[J]. Antonie Van Leeuwenhoek, 2010, 97(4): 401−411 doi: 10.1007/s10482-010-9422-8

    [39]

    ZHANG S Y, DENG Y, FU S D, et al. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: insight into microbial community[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110908 doi: 10.1016/j.ecoenv.2020.110908

    [40] 王海丽, 杨季芳. 象山港海域硫酸盐还原菌的时空分布及其影响因素[J]. 生态学杂志, 2011, 30(12): 2857−2862

    WANG H L, YANG J F. Spatiotemporal distribution of sulfate-reducing bacteria in Xiangshan Bay and related affecting factors[J]. Chinese Journal of Ecology, 2011, 30(12): 2857−2862

图(6)  /  表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  25
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 录用日期:  2023-11-27
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回