玉米种植改变了引黄灌区盐渍化土壤细菌多样性与功能

李凤霞, 黄业芸, 王长军, 沈靖丽, 孙娇, 张永宏, 吴霞, 郭鑫年

李凤霞, 黄业芸, 王长军, 沈靖丽, 孙娇, 张永宏, 吴霞, 郭鑫年. 玉米种植改变了引黄灌区盐渍化土壤细菌多样性与功能[J]. 中国生态农业学报 (中英文), 2024, 32(6): 986−996. DOI: 10.12357/cjea.20230575
引用本文: 李凤霞, 黄业芸, 王长军, 沈靖丽, 孙娇, 张永宏, 吴霞, 郭鑫年. 玉米种植改变了引黄灌区盐渍化土壤细菌多样性与功能[J]. 中国生态农业学报 (中英文), 2024, 32(6): 986−996. DOI: 10.12357/cjea.20230575
LI F X, HUANG Y Y, WANG Z J, SHEN J L, SUN J, ZHANG Y H, WU X, GUO X N. Corn cultivation alters bacterial diversity and function in salinized soils of the Diversionary Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(6): 986−996. DOI: 10.12357/cjea.20230575
Citation: LI F X, HUANG Y Y, WANG Z J, SHEN J L, SUN J, ZHANG Y H, WU X, GUO X N. Corn cultivation alters bacterial diversity and function in salinized soils of the Diversionary Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2024, 32(6): 986−996. DOI: 10.12357/cjea.20230575

玉米种植改变了引黄灌区盐渍化土壤细菌多样性与功能

基金项目: 宁夏回族自治区重点研发计划项目(2022BEG02005)、宁夏回族自治区农业高质量发展和生态保护科技创新示范项目(NGSB-2021-15)、宁夏回族自治区青年拔尖人才培养工程人选(2020055)、国家重点研发计划项目(2021YFD1900605-05)、宁夏自然科学基金项目(2020AAC03302, 2022AAC03457)和国家自然科学基金项目(41661066)资助
详细信息
    通讯作者:

    李凤霞, 主要从事土壤微生物及盐碱地改良等方面研究。E-mail: lifengxia1211@sina.com

  • 中图分类号: S154.3

Corn cultivation alters bacterial diversity and function in salinized soils of the Diversionary Yellow River Irrigation Area

Funds: This study was supported by the Key R&D Plan Project of Ningxia Hui Autonomous Region (2022BEG02005), the High Quality Agricultural Development and Ecological Protection Technology Innovation Demonstration Project of Ningxia Hui Autonomous Region (NGSB-2021-15), the Youth Top Talent Training Project Candidate of Ningxia Hui Autonomous Region (2020055), the National Key Research and Development Project of China (2021YFD1900605-05), the Natural Science Foundation of Ningxia (2020AAC03302, 2022AAC03457), and the National Natural Science Foundation of China (41661066).
More Information
  • 摘要:

    为了明确植物修复对盐渍化土壤细菌群落结构及多样性的影响, 本文对宁夏引黄灌区盐渍化土壤玉米种植地根际和非根际土壤以及荒地土壤细菌多样性、群落结构及功能、细菌群落与环境因子之间的相关关系等进行研究。结果表明: 玉米种植能够增加盐渍化土壤细菌物种数(OTU, Operational Taxonomic Unit)和多样性, 各土壤细菌总物种数和特有物种数(OTU)从高到低依次为: 非根际土壤>根际土壤>荒地土壤; 土壤细菌多样性(即ACE指数、Chao1指数、Simpson指数与Shannon指数)由大到小均依次为: 根际土壤>非根际土壤 >荒地土壤, 3种土壤细菌多样性之间差异不显著。玉米种植改变了盐渍化土壤细菌群落结构和功能多样性, 玉米种植显著提高了变形菌门(Proteobacteria)与放线菌门(Actinobacteria)两种优势菌门的相对丰度; 丛毛单胞菌属(Comamonadaceae)、丝状菌属(Hyphomircobiales)和根瘤菌属(Rhizobiaceae)为3种土壤组间差异贡献最大的物种; 玉米种植增加了盐渍化土壤中细菌参与新陈代谢功能与遗传信息处理功能物种的相对丰度, 且有效磷、全磷、速效氮、全盐和pH是影响二级功能相对丰度的重要因子。玉米种植后其根际和非根际土壤细菌群落在生态位上与荒地之间存在明显分异。种植玉米修复盐渍化土壤能够改变土壤细菌群落结构、功能和多样性, 对改善盐渍化土壤微环境, 促进盐渍化土壤微生物功能发挥和盐渍化土壤种植结构优化具有重要意义。

     

    Abstract:

    Soil salinity is one of the global environmental problems affecting agroecosystems and sustainable development of agriculture. Bacteria are involved in nutrient cycling processes such as soil carbon, nitrogen and phosphorus, and play a crucial role in soil ecosystem stability and soil fertility maintenance. In order to clarify the influence of plant restoration on the structure and diversity of bacterial communities in salinized soils, we took salinized soils in the Yellow River Irrigation Area of Ningxia as samples, and used high-throughput macro-genome microbial sequencing technology to carry out comparative studies on the diversity of bacteria in the maize rhizosphere soil (CR), maize non-rhizosphere soil (C), and wasteland (H), analyze the characteristics of bacterial diversity and changes in community structure and function among the selected three soils, and reveal the correlation between microorganisms and soil environmental factors. The changes of diversity, structure and function of bacteria communities in the selected three soil types were analyzed, and the correlation between diversity of bacteria communities and soil environmental factors were revealed. The results showed that bacteria detected in 12 soil samples from maize rhizosphere (CR), maize non-rhizosphere (C), and wasteland (H) belonged to 50 phylums, 67 classes, 153 orders, 350 families, 1111 genera and 4455 species. The soil bacteria richness and diversity in maize rhizosphere soil (CR) and maize non-rhizosphere soil (C) were more complex than that in the salinized wasteland, and ACE index, Chao1 index, Shannon index and Simpson index of the soil bacteria were in the following descending order: CR>C>H. At phylum level, compared with wasteland, the relative abundance of Proteobacteria and Actinobacteria in the maize rhizosphere soil (CR) and maize non-rhizosphere soil (C) increased by 4.53% and 3.33%, 3.97% and 5.73%, respectively. At genus level, compared with wasteland, the relative abundance of Nocardioides, Idiomarina, Arthrobacter and Pseud Arthrobacter in the maize rhizosphere soil (CR) and maize non-rhizosphere soil (C) increased. Comamonadaceae, Hyphomircobiales and Rhizobiaceae were the species with the greatest contribution of inter-group differences. Compared with wasteland (H), significant divergence in ecological niche was observed in the maize rhizosphere soil (CR) and maize non-rhizosphere soil (C). Maize planting could enhance the metabolic capacity of soil bacterial communities, and the relative abundance of maize rhizosphere soil (CR), and maize non-rhizosphere soil (C) bacteria involved in metabolic functions increased by 1.44% and 0.56%, respectively. Soil effective phosphorus (AP), total phosphorus (TP), effective nitrogen (AN), total salts (TS), and pH showed large impacts on the relative abundance in the level 3 functions. In conclusion, planting maize to repair salinized soil can change the structure and functional diversity of soil bacterial communities, which is of great significance in improving the microenvironment of salinized soil and promoting the microbial function of salinized soil and the sustainable use of land.

     

  • 图  1   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(C)细菌群落OTUs

    Figure  1.   Bacterial community OTUs in wasteland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (C)

    图  2   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(C)细菌群落α多样性指数

    Figure  2.   Alpha diversity indices of bacterial communities of wastland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (C)

    图  3   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(C)细菌群落组成的NMDS分析

    Figure  3.   NMDS analysis of bacterial community composition of wastland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (C)

    图  4   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(R)细菌群落门水平(左)与属水平(右)的相对丰度

    Figure  4.   Relative abundances of bacterial communities at phylum (left) and genus (right) levels of wastland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (R)

    图  5   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(C)细菌群落门水平与属水平的LEfSe分析

    Figure  5.   LEfSe analysis of bacterial communities at phylum and genus levels of wastland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (C)

    图  6   土壤细菌群落门水平与土壤理化因子的RDA分析

    Figure  6.   RDA analysis of soil bacterial communities at the phylum level in relation to soil physico-chemical factors

    图  7   荒地土壤(H)与玉米根际土壤(CR)和非根际土壤(C)细菌KEGG一级功能(左)与二级功能(右)上的相对丰度

    Figure  7.   Relative abundances of LEfSe analysis of level 1 (left) and level 2 (right) functions of KEGG in soil bacteria of wastland soil (H) and maize rhizosphere soil (CR) and non-rhizosphere soil (C)

    图  8   土壤细菌KEGG一级功能与二级功能的LEfSe分析

    Figure  8.   LEfSe analysis of level 1 and level 2 functions of KEGG in soil bacteria

    图  9   土壤细菌KEGG一级功能与土壤理化因子的RDA分析

    Figure  9.   RDA analysis of level 1 functions of soil bacterial KEGG with soil physico-chemical factors

  • [1]

    QIU L P, KONG W B, ZHU H S, et al. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem[J]. Science of the Total Environment, 2022, 831: 154944 doi: 10.1016/j.scitotenv.2022.154944

    [2]

    OMUTO C T, VARGAS R R, EI MOBARAK A M, et al. Mapping of Salt-Affected Soils: Lesson 4—Spatial Modelling of Salt-affected Soils[M]. 2020, Rome, FAO

    [3] 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565−5577

    WANG Q Z, LIU Q, GAO Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37(16): 5565−5577

    [4]

    QADIR M, QUILLÉROU E, NANGIA V, et al. Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014, 38(4): 282−295 doi: 10.1111/1477-8947.12054

    [5]

    SAHAB S, SUHANI I, SRIVASTAVA V, et al. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies[J]. Science of the Total Environment, 2021, 764: 144164 doi: 10.1016/j.scitotenv.2020.144164

    [6]

    MONTANARLLA L, CHUDE V, YAGI K, et al. Status of the World’s Soil Resources: Main Report[M]. 2015

    [7]

    VARGAS R, PANKOVA E I, BALYUK S A, et al. The handbook for saline soil management. Eurasian soil partnership implementation plan[J]. Arid Land Research and Management, 2018, DOI: 10.1080/15324982.2018.1459955

    [8]

    LIU S L, MAIMAITIAILI B, JOERGENSEN R G, et al. Response of soil microorganisms after converting a saline desert to arable land in central Asia[J]. Applied Soil Ecology, 2016, 98: 1−7 doi: 10.1016/j.apsoil.2015.08.024

    [9] 李鑫, 张会慧, 岳冰冰, 等. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响[J]. 应用生态学报, 2012, 23(7): 1825−1831

    LI X, ZHANG H H, YUE B B, et al. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1825−1831

    [10]

    WEI Z H, VAN LE Q, PENG W X, et al. A review on phytoremediation of contaminants in air, water and soil[J]. Journal of Hazardous Materials, 2021, 403: 123658 doi: 10.1016/j.jhazmat.2020.123658

    [11]

    LITALIEN A, ZEEB B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Science of the Total Environment, 2020, 698: 134235 doi: 10.1016/j.scitotenv.2019.134235

    [12] 杨盼, 翟亚萍, 赵祥, 等. 丛枝菌根真菌和根瘤菌互作对苜蓿根际土壤细菌群落结构的影响及PICRUSt功能预测分析[J]. 微生物学通报, 2020, 47(11): 3868−3879

    YANG P, ZHAI Y P, ZHAO X, et al. Effect of interaction between arbuscular mycorrhizal fungi and Rhizobium on Medicago sativa rhizosphere soil bacterial community structure and PICRUSt functional prediction[J]. Microbiology China, 2020, 47(11): 3868−3879

    [13]

    XU Z K, SHAO T Y, LV Z X, et al. The mechanisms of improving coastal saline soils by planting rice[J]. Science of the Total Environment, 2020, 703: 135529 doi: 10.1016/j.scitotenv.2019.135529

    [14]

    WANG X G, SUN R B, TIAN Y P, et al. Long-term phytoremediation of coastal saline soil reveals plant species-specific patterns of microbial community recruitment[J]. Msystems, 2020, 5(2): e00741−e00719

    [15]

    PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11: 789−799 doi: 10.1038/nrmicro3109

    [16] 范富, 张庆国, 马玉露, 等. 不同植物条件下盐碱地土壤微生物研究[J]. 内蒙古民族大学学报(自然科学版), 2017, 32(4): 336−341

    FAN F, ZHANG Q G, MA Y L, et al. Effects of planting conditions on soil microbes in alkaline saline soil[J]. Journal of Inner Mongolia Minzu University (Natural Sciences), 2017, 32(4): 336−341

    [17] 林耀奔, 杨建辉, 叶艳妹. 盐碱地不同土地利用方式下土壤细菌群落结构多样性差异分析[J]. 环境科学学报, 2019, 39(4): 1266−1273

    LIN Y B, YANG J H, YE Y M. Analysis on diversity of soil bacterial community under different land use patterns in saline-alkali land[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1266−1273

    [18] 秦媛. 盐碱地植物共生微生物资源及功能初步研究[D]. 北京: 中国林业科学研究院, 2017

    QIN Y. Plant-associated microbiota from saline areas and its potential phytobeneficial effects[D]. Beijing: Chinese Academy of Forestry, 2017

    [19] 李岩, 杨晓东, 秦璐, 等. 两种盐生植物根际土壤细菌多样性和群落结构[J]. 生态学报, 2018, 38(9): 3118−3131

    LI Y, YANG X D, QIN L, et al. The bacterial diversity and community structures in rhizosphere soil of two halophytes, Lycium ruthenicum and Kalidiumcapsicum[J]. Acta Ecologica Sinica, 2018, 38(9): 3118−3131

    [20] 赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析[J]. 环境科学, 2020, 41(3): 1449−1455

    ZHAO J, XIE H J, ZHANG J. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta[J]. Environmental Science, 2020, 41(3): 1449−1455

    [21]

    LI F X, GUO Y Z, WANG Z J, et al. Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land[J]. International Journal of Phytoremediation, 2022, 24(5): 507−517 doi: 10.1080/15226514.2021.1955240

    [22] 李凤霞, 王长军, 肖国举, 等. 生物有机肥对宁夏盐碱地土壤理化性质及微生物的影响[J]. 宁夏农林科技, 2021, 62(7): 18−22

    LI F X, WANG Z J, XIAO G J, et al. Effects of bio-organic fertilizer on soil physical and chemical properties and microorganism in saline alkali soil of Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(7): 18−22

    [23] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000

    [24]

    LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31: 814−821 doi: 10.1038/nbt.2676

    [25]

    DELGADO-BAQUERIZO M, REICH P B, TRIVEDI C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology & Evolution, 2020, 4: 210−220

    [26]

    ZHANG C, NIE S, LIANG J, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016, 557/558: 785−790 doi: 10.1016/j.scitotenv.2016.01.170

    [27]

    SCHMIDT J E, KENT A D, BRISSON V L, et al. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling[J]. Microbiome, 2019, 7(1): 146 doi: 10.1186/s40168-019-0756-9

    [28]

    ZHENG W, XUE D M, LI X Z, et al. The responses and adaptations of microbial communities to salinity in farmland soils: a molecular ecological network analysis[J]. Applied Soil Ecology, 2017, 120: 239−246 doi: 10.1016/j.apsoil.2017.08.019

    [29]

    ZHENG Y F, XU Z C, LIU H D, et al. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation[J]. Microbiology Spectrum, 2021, 9(2): e0076721 doi: 10.1128/Spectrum.00767-21

    [30]

    BU C F, WU S F, YANG Y S, et al. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts[J]. PLoS One, 2014, 9(3): e90049 doi: 10.1371/journal.pone.0090049

    [31] 路嘉丽, 沈光, 王琼, 等. 树种差异对哈尔滨市土壤理化性质影响及造林启示[J]. 植物研究, 2016, 36(4): 549−555

    LU J L, SHEN G, WANG Q, et al. Effect of urban tree species on soil physicochemical properties in Harbin, Northeastern China, and afforestation implications[J]. Bulletin of Botanical Research, 2016, 36(4): 549−555

    [32]

    FONTÚRBEL M T, BARREIRO A, VEGA J A, et al. Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities[J]. Geoderma, 2012, 191: 51−60 doi: 10.1016/j.geoderma.2012.01.037

    [33]

    PHILIPPOT L, SPOR A, HÉNAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. The ISME Journal, 2013, 7(8): 1609−1619 doi: 10.1038/ismej.2013.34

    [34] 刘坤和, 薛玉琴, 竹兰萍, 等. 嘉陵江滨岸带不同土地利用类型对土壤细菌群落多样性的影响[J]. 环境科学, 2022, 43(3): 1620−1629

    LIU K H, XUE Y Q, ZHU L P, et al. Effect of different land use types on the diversity of soil bacterial community in the coastal zone of Jialing River[J]. Environmental Science, 2022, 43(3): 1620−1629

    [35]

    LIANG Y T, XIAO X, NUCCIO E E, et al. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes[J]. Environmental Microbiology, 2020, 22(4): 1327−1340 doi: 10.1111/1462-2920.14945

    [36] 刘晓华, 魏天兴. 高通量测序分析黄土高原退耕还林区土壤细菌群落特征[J]. 环境科学, 2021, 42(9): 4489−4499

    LIU X H, WEI T X. High-throughput sequencing analysis of soil bacterial community in the grain for green project areas of the Loess Plateau[J]. Environmental Science, 2021, 42(9): 4489−4499

    [37] 汤鸣强, 吴承燕, 何爱明, 等. 化学农药对三沙湾滩涂土壤细菌多样性及其功能的影响[J]. 农业环境科学学报, 2023, 42(11): 2483−2493

    TANG M Q, WU C Y, HE A M, et al. Effects of agrochemicals on soil bacterial diversity and functions in the coastal tidal-flat area of Sansha Bay[J]. Journal of Agro-Environment Science, 2023, 42(11): 2483−2493

    [38] 闫冰, 付嘉琦, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析[J]. 环境科学, 2021, 42(8): 3875−3885

    YAN B, FU J Q, XIA S, et al. Diversity and PICRUSt2-based predicted functional analysis of bacterial communities during the start-up of ANAMMOX[J]. Environmental Science, 2021, 42(8): 3875−3885

    [39] 厉桂香, 马克明. 北京东灵山树线处土壤细菌的PICRUSt基因预测分析[J]. 生态学报, 2018, 38(6): 2180−2186

    LI G X, MA K M. PICRUSt-based predicted metagenomic analysis of treeline soil bacteria on Mount Dongling, Beijing[J]. Acta Ecologica Sinica, 2018, 38(6): 2180−2186

    [40] 马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54−67

    MA X, LUO Z Z, ZHANG Y Q, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 54−67

    [41]

    RAHMAN M S, QUADIR Q F, RAHMAN A, et al. Screening and characterization of phosphorus solubilizing bacteria and their effect on rice seedlings[J]. Research in Agriculture Livestock and Fisheries, 2015, 1(1): 27−35 doi: 10.3329/ralf.v1i1.22353

    [42]

    ZHANG Y Z, XU J, RIERA N, et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome[J]. Microbiome, 2017, 5(1): 1−17 doi: 10.1186/s40168-017-0304-4

    [43]

    TRIVEDI P, LEACH J E, TRINGE S G, et al. Author Correction: plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2021, 19: 72

图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-28
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-06-09

目录

    /

    返回文章
    返回