中国农业减污降碳协同效应及其影响机制研究

刘爽, 刘畅

刘爽, 刘畅. 中国农业减污降碳协同效应及其影响机制研究[J]. 中国生态农业学报 (中英文), 2024, 32(7): 1109−1121. DOI: 10.12357/cjea.20230605
引用本文: 刘爽, 刘畅. 中国农业减污降碳协同效应及其影响机制研究[J]. 中国生态农业学报 (中英文), 2024, 32(7): 1109−1121. DOI: 10.12357/cjea.20230605
LIU S, LIU C. Synergistic effect of agricultural pollution reduction and carbon reduction and its influence mechanism in China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(7): 1109−1121. DOI: 10.12357/cjea.20230605
Citation: LIU S, LIU C. Synergistic effect of agricultural pollution reduction and carbon reduction and its influence mechanism in China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(7): 1109−1121. DOI: 10.12357/cjea.20230605

中国农业减污降碳协同效应及其影响机制研究

基金项目: 2023年度黑龙江省哲学社会科学研究规划项目(23JYC273)资助
详细信息
    作者简介:

    刘爽, 研究方向为农业生态经济。E-mail: 2740237205@qq.com

    通讯作者:

    刘畅, 研究方向为农业经营主体、企业管理、数字经济。E-mail: 389203678@qq.com

  • 中图分类号: F323.7

Synergistic effect of agricultural pollution reduction and carbon reduction and its influence mechanism in China

Funds: This study was supported by the Philosophy and Social Science Research Planning Project of Heilongjiang Province in 2023 (23JYC273).
More Information
  • 摘要:

    农业面源污染与农业碳排放是中国农业面临的重要环境问题。现有研究忽视了农业面源污染治理与农业碳减排之间的协同关系, 未探索农业减污降碳协同效应及其影响机制, 影响农业可持续发展。为此, 本文借鉴现有成果, 提出农业减污降碳协同效应概念, 基于2007—2021年中国30省份面板数据, 利用双固定效应回归模型、调节效应模型对农业减污降碳协同效应及其影响机制进行实证分析, 并讨论地区异质性。结果表明: 1)农业减污降碳协同效应存在, 农业面源污染与农业碳排放存在显著的协同关系, 当农业面源污染减少时农业碳排放也将显著减少, 该结果进行稳健性检验和处置内生性后依然成立; 2)农业化学物资消费结构对农业减污降碳协同效应产生显著负向调节作用, 农业化学物资使用效率与农业种植结构产生显著正向调节作用, 农业投资规模产生负向调节作用但不显著; 3)北方地区农业减污降碳协同效应比南方地区更为显著, 农业化学物资消费结构与农业化学物资使用效率对北方地区农业减污降碳协同效应产生显著负向调节作用, 农业种植结构对北方地区和南方地区农业减污降碳协同效应产生显著正向调节作用。因此, 农业降污减碳协同效应存在。

     

    Abstract:

    Agricultural non-point source pollution and carbon emissions pose significant environmental challenges for China’s agricultural sector. Previous studies have overlooked the synergistic relationship between controlling agricultural non-point source pollution and reducing carbon emissions. They also failed to investigate the combined effect of reducing agricultural pollution and carbon emissions as well as the mechanisms that influence this effect. This oversight has had an impact on the sustainable development of agriculture. This study empirically examined the synergistic effect of reducing agricultural pollution and carbon emissions using panel data collected from 30 Chinese provinces from 2007 to 2021. This study utilized a dual-fixed effect regression model and regulatory effect model to analyze the influencing mechanism of this synergistic effect. In addition, this study explored the regional heterogeneity of this phenomenon. The results show that: 1) a synergistic effect on agricultural pollution reduction and carbon reduction and a significant synergistic relationship between agricultural nonpoint source pollution and agricultural carbon emissions exist. When agricultural non-point source pollution is reduced, agricultural carbon emissions will also be significantly reduced, and this result is still valid after robustness test and endogeneity treatment; 2) the consumption structure of agricultural chemical materials have a significant negative adjustment effect on the synergistic effect of agricultural pollution reduction and carbon reduction, the use efficiency of agricultural chemical materials has a significant positive adjustment effect on agricultural planting structure, and the agricultural investment scale has a negative adjustment effect but not significant; 3) the northern agricultural pollution reduction carbon synergistic effect is more significant than that of the southern region, agricultural chemical materials consumption structure and use efficiency of agricultural chemical materials of the northern agricultural pollution reduction carbon reduction synergistic effect produce significant negative regulation effect, agricultural planting structure has a significant positive regulating effect on the synergistic effect of agricultural pollution reduction, and carbon reduction in both northern and southern regions. Therefore, this paper presents several recommendations. 1) In the context of agricultural environmental pollution control, it is crucial to prioritize the issue of agricultural chemical materials and implement strategies to minimize their irrational usage. 2) Upholding the grain production threshold and fostering large-scale environmentally sustainable grain production is imperative. 3) Increasing investment in the agricultural sector and providing guidance for modernizing agricultural practices is imperative. 4) Implementing differentiated agricultural development strategies. Compared with other studies, the marginal contributions of this study are as follows: 1) it proposes the concept of the synergistic effect of agricultural pollution reduction and carbon reduction, analyzes the specific synergistic effect of agricultural pollution reduction and carbon reduction, and discusses the possibility of a synergistic solution between agricultural non-point source pollution and agricultural carbon emissions; 2) the mechanism of the synergistic effect of agricultural pollution reduction and carbon reduction is further discussed; 3) the synergistic effects of agricultural pollution and carbon reduction in different regions and their influencing mechanisms were analyzed.

     

  • 图  1   农业面源污染与农业碳排放关系示意图

    Figure  1.   Schematic diagram of the relationship between agricultural non-point source pollution and agricultural carbon emission

    图  2   2007—2021年农业面源污染与农业碳排放演变过程

    Figure  2.   Evolution process of agricultural non-point source pollution and agricultural carbon emissions from 2007 to 2021

    图  3   农业减污降碳效应影响机制示意图

    Figure  3.   Schematic diagram of the influence mechanism of synergistic effect of agricultural pollution reduction and carbon reduction

    表  1   农业减污降碳协同效应变量

    Table  1   Variables of synergies effect of agricultural pollution reduction and carbon reduction

    变量类型
    Type of variable
    变量名称
    Variable name
    测量方法
    Measuring method
    均值
    Mean
    标准差
    Standard deviation
    被解释变量
    Explained variable
    农业碳排放
    Agricultural carbon emissions
    (t)
    农业生产产生的CO2、CH4、N2O之和
    Sum of CO2, CH4 and N2O produced by agricultural production
    2.21E+07 1.56E+07
    解释变量
    Explanatory variable
    农业面源污染
    Agricultural non-point source pollution
    (t)
    化肥污染量、农药污染量、农膜残留量总和
    Total amount of chemical fertilizer pollution, pesticide pollution and agricultural film residues
    1.25E+06 9.50E+05
    调节变量
    Regulated variable
    农业化学物资消费结构
    Consumption structure of agricultural chemicals
    化肥施用量/(化肥施用量+农药使用量+农膜
    使用量)
    Fertilizer application amount / (chemical fertilizer application amount + pesticide use amount + agricultural film use amount)
    0.92 0.04
    农业种植结构
    Agricultural planting structure
    粮食播种面积/农作物播种面积
    Grain sown area / crop sown area
    0.65 0.14
    农业化学物资使用效率
    Use efficiency of agricultural chemical materials
    (×108 ¥∙t−1)
    农业产值/(化肥施用量+农药使用量+农膜使用量)
    Agricultural output value / (fertilizer application amount + pesticide use amount + agricultural film use amount)
    5.44E−04 1.96E−04
    农业投资规模
    Scale of agricultural investment
    (×108 ¥)
    农林水事务支出
    Expenditure on agriculture, forestry and water conservancy affairs
    458.76 296.19
    控制变量
    Controlled variable
    农业产值
    Agricultural output value
    (×108 ¥)
    农业产值(不变价)
    Agricultural output value (unconstant price)
    984.68 731.91
    农业聚集水平
    Agricultural aggregation level
    (地区农业产值/全国农业产值)/(地区生产总值/全国生产总值)
    (Regional agricultural output value / national agricultural output value) / (regional GDP / national GDP)
    1.21 0.70
    地区产业结构
    Regional industrial structure
    第一产业增加值/地区生产总值
    Added value of the primary industry / regional GDP
    0.10 0.05
    创新与技术发展水平
    Innovation and technology
    development level
    国内专利申请授权数
    Number of granted domestic patent applications
    52 996.78 94 564.67
    生态环境规制
    Regulation of ecological environment
    环保节能支出/财政预算总支出
    Expenditure on environmental protection and energy conservation / total fiscal budget expenditure
    0.03 0.01
    受灾率
    Disaster rate
    农业受灾面积/农作物总播种面积
    Agricultural affected area / total sown area of crops
    0.20 0.33
    下载: 导出CSV

    表  2   农业减污降碳协同效应估计

    Table  2   Estimates of synergies effect of agricultural pollution reduction and carbon reduction

    农业碳排放 Agricultural carbon emissions
    模型(1)
    Model (1)
    模型(2)
    Model (2)
    模型(3)
    Model (3)
    模型(4)
    Model (4)
    模型(5)
    Model (5)
    模型(6)
    Model (6)
    模型(7)
    Model (7)
    农业面源污染
    Agricultural non-point source pollution
    0.62***
    (0.05)
    0.77***
    (0.04)
    0.73***
    (0.05)
    1.01***
    (0.12)
    0.63***
    (0.04)
    0.62***
    (0.05)
    0.58***
    (0.05)
    农业化学物资消费结构
    Consumption structure of agricultural chemicals
    −0.04*
    (0.03)
    −0.07***
    (0.02)
    −0.04
    (0.05)
    −0.04*
    (0.02)
    −0.05**
    (0.03)
    −0.05**
    (0.03)
    农业种植结构
    Agricultural planting structure
    0.07***
    (0.02)
    0.03
    (0.02)
    −0.01
    (0.04)
    0.07***
    (0.02)
    0.07***
    (0.02)
    0.08***
    (0.02)
    农业化学物资使用效率
    Use efficiency of agricultural chemical materials
    −0.07***
    (0.02)
    −0.07***
    (0.02)
    −0.28***
    (0.08)
    −0.06***
    (0.02)
    −0.07***
    (0.02)
    −0.06***
    (0.02)
    农业投资规模
    Scale of agricultural investment
    0.09***
    (0.02)
    0.03**
    (0.01)
    0.25***
    (0.06)
    0.09***
    (0.01)
    0.09***
    (0.02)
    0.10***
    (0.02)
    控制变量
    Controlled variable
    Yes No No Yes Yes Yes Yes
    常数
    Constant
    0.29***
    (0.03)
    0.21***
    (0.01)
    0.27***
    (0.03)
    0.20***
    (0.05)
    0.29***
    (0.03)
    0.31***
    (0.03)
    0.31***
    (0.03)
    观测值
    Observations
    450 450 450 450 450 435 420
    R2 0.61 0.55 0.57 0.76 0.61 0.61 0.58
    地区固定效应
    Regional fixed effect
    Yes Yes Yes No Yes Yes Yes
    时间固定效应
    Time fixed effect
    Yes Yes Yes No No Yes Yes
    地区数量
    Number of area
    30 30 30 30 29 30
      ***、**和*分别表示1%、5%和10%的显著性水平, 括号内为标准误差。***, ** and * indicate significance levels of 1%, 5% and 10%, respectively, with standard errors in parentheses.
    下载: 导出CSV

    表  3   工具变量模型估计结果

    Table  3   The instrumental variable model estimation results

    农业面源污染
    Agricultural widespread pollution
    农业碳排放
    Agricultural carbon emissions
    农业面源污染滞后一期(工具变量)
    Agricultural non-point source pollution lag phase one (tool variable)
    0.98***
    (0.02)
    0.57***
    (0.05)
    控制变量 Controlled variable Yes Yes
    地区固定效应 Regional fixed effect Yes Yes
    时间固定效应 Time fixed effect Yes Yes
    下载: 导出CSV

    表  4   农业减污降碳协同效应影响机制分析结果

    Table  4   Results of synergistic mechanism of agricultural pollution reduction and carbon reduction

    农业碳排放 Agricultural carbon emissions
    模型(1)
    Model (1)
    模型(2)
    Model (2)
    模型(3)
    Model (3)
    模型(4)
    Model (4)
    模型(5)
    Model (5)
    模型(6)
    Model (6)
    农业面源污染
    Agricultural non-point source pollution
    2.86*** 0.80*** 37.52*** 2.76*** 2.86*** 2.47***
    (0.83) (0.08) (2.60) (0.80) (0.85) (0.82)
    农业化学物资消费结构
    Consumption structure of agricultural chemicals
    −0.29*** −0.24*** −1.45*** −0.29*** −0.29*** −0.31***
    (0.05) (0.04) (0.11) (0.05) (0.05) (0.05)
    农业种植结构
    Agricultural planting structure
    0.12*** 0.11*** 0.03 0.12*** 0.12*** 0.14***
    (0.03) (0.02) (0.03) (0.02) (0.03) (0.03)
    农业化学物资使用效率
    Use efficiency of agricultural chemical materials
    1.22** −0.07* 21.16*** 1.15** 1.22** 1.01**
    (0.49) (0.04) (1.53) (0.47) (0.50) (0.49)
    农业投资规模
    Scale of agricultural investment
    0.08*** 0.06*** 0.24*** 0.07*** 0.08*** 0.09***
    (0.02) (0.02) (0.05) (0.01) (0.02) (0.02)
    农业化学物资消费结构×农业面源污染
    Consumption structure of agricultural chemicals ×
    agricultural non-point source pollution
    −0.27*** −0.23*** −1.08*** −0.27*** −0.27*** −0.29***
    (0.04) (0.04) (0.09) (0.04) (0.05) (0.04)
    农业种植结构×农业面源污染
    Agricultural planting structure×agricultural
    non-point source pollution
    0.07*** 0.06*** 0.04 0.06*** 0.07*** 0.08***
    (0.02) (0.02) (0.05) (0.02) (0.02) (0.02)
    农业化学物资使用效率×农业面源污染
    Use efficiency of agricultural chemical materials ×
    agricultural non-point source pollution
    1.28** −0.05 22.13*** 1.22** 1.28** 1.05**
    (0.51) (0.04) (1.58) (0.49) (0.52) (0.50)
    农业投资规模×农业面源污染
    Scale of agricultural investment × agricultural
    non-point source pollution
    −0.04 −0.04 −0.44*** −0.03 −0.04 −0.03
    (0.02) (0.02) (0.07) (0.02) (0.03) (0.03)
    控制变量
    Controlled variable
    Yes No Yes Yes Yes Yes
    常数
    Constant
    −0.75 0.43*** −19.38*** −0.70 −0.75 −0.52
    (0.46) (0.05) (1.41) (0.44) (0.47) (0.46)
    观测值
    Observations
    450 450 450 450 435 420
    R2 0.64 0.61 0.85 0.64 0.62 0.63
    地区固定效应
    Regional fixed effect
    Yes Yes No Yes Yes Yes
    时间固定效应
    Time fixed effect
    Yes Yes No No Yes Yes
    地区数量
    Number of area
    30 30 30 30 30
    下载: 导出CSV

    表  5   农业降污减碳协同效应影响机制的异质性结果

    Table  5   Heterogeneity results of the synergistic mechanisms of pollution reduction and carbon reduction in agriculture

    农业碳排放 Agricultural carbon emissions
    模型(1)
    Model (1)
    模型(2)
    Model (2)
    模型(3)
    Model (3)
    模型(4)
    Model (4)
    农业面源污染
    Agricultural non-point source pollution
    0.95*** −0.76 0.32*** 3.30*
    (0.04) (0.64) (0.11) (1.98)
    农业化学物资消费结构
    Consumption structure of agricultural chemicals
    −0.09*** −0.16*** 0.22*** 0.21*
    (0.02) (0.03) (0.07) (0.12)
    农业种植结构
    Agricultural planting structure
    −0.01 −0.01 0.22*** 0.22***
    (0.02) (0.02) (0.05) (0.05)
    农业化学物资使用效率
    Use efficiency of agricultural chemical materials
    −0.04* −1.06*** −0.09** 1.58
    (0.02) (0.38) (0.04) (1.18)
    农业投资规模
    Scale of agricultural investment
    −0.02 −0.03* 0.02 0.07**
    (0.02) (0.02) (0.03) (0.03)
    农业化学物资消费结构×农业面源污染
    Consumption structure of agricultural chemicals × agricultural non-point source pollution
    −0.13*** 0.18
    (0.03) (0.11)
    农业种植结构×农业面源污染
    Agricultural planting structure × agricultural non-point source pollution
    0.03* 0.23***
    (0.02) (0.04)
    农业化学物资使用效率×农业面源污染
    Use efficiency of agricultural chemical materials × agricultural non-point source pollution
    −1.09*** 1.80
    (0.39) (1.19)
    农业投资规模×农业面源污染
    Scale of agricultural investment × agricultural non-point source pollution
    0.03 −0.03
    (0.02) (0.05)
    控制变量
    Controlled variable
    Yes Yes Yes Yes
    常数
    Constant
    0.12*** 1.21*** 0.14 −1.74
    (0.02) (0.35) (0.09) (1.06)
    观测值
    Observations
    225 225 225 225
    R2 0.91 0.92 0.53 0.61
    地区固定效应
    Regional fixed effect
    Yes Yes Yes Yes
    时间固定效应
    Time fixed effect
    Yes Yes Yes Yes
    地区数量
    Number of area
    15 15 15 15
    地区
    Region
    北方地区 Northern region 南方地区 Southern region
    下载: 导出CSV
  • [1] 吉雪强, 李卓群, 张跃松. 农地流转对农业碳排放的影响及空间特性[J]. 资源科学, 2023, 45(1): 77−90 doi: 10.18402/resci.2023.01.06

    JI X Q, LI Z Q, ZHANG Y S. Influence of rural land transfer on agricultural carbon emissions and its spatial characteristics[J]. Resources Science, 2023, 45(1): 77−90 doi: 10.18402/resci.2023.01.06

    [2] 赵敏娟, 石锐, 姚柳杨. 中国农业碳中和目标分析与实现路径[J]. 农业经济问题, 2022, 43(9): 24−34

    ZHAO M J, SHI R, YAO L Y. Analysis on the goals and paths of carbon neutral agriculture in China[J]. Issues in Agricultural Economy, 2022, 43(9): 24−34

    [3] 丘雯文, 钟涨宝, 原春辉, 等. 中国农业面源污染排放的空间差异及其动态演变[J]. 中国农业大学学报, 2018, 23(1): 152−163

    QIU W W, ZHONG Z B, YUAN C H, et al. Spatial differences and dynamic evolution of agricultural non-point source pollution in China[J]. Journal of China Agricultural University, 2018, 23(1): 152−163

    [4] 马军旗, 乐章. 中国农业面源污染的空间差异与影响因素分析[J]. 农业现代化研究, 2021, 42(6): 1137−1145

    MA J Q, YUE Z. The analysis of the spatial difference and its influencing factors of agricultural non-point source pollution in China[J]. Research of Agricultural Modernization, 2021, 42(6): 1137−1145

    [5] 陈晓红, 张嘉敏, 唐湘博. 中国工业减污降碳协同效应及其影响机制[J]. 资源科学, 2022, 44(12): 2387−2398

    CHEN X H, ZHANG J M, TANG X B. Synergistic effect of industrial air pollution and carbon emission reduction in China and influencing mechanism[J]. Resources Science, 2022, 44(12): 2387−2398

    [6] 谭琦璐, 郭敏晓. 城市能源消费侧减污降碳协同分类施策路径−基于我国102个地级市数据的聚类分析[J]. 中国环境科学, 2023, 43(S1): 336−346

    TAN Q L, GUO M X. Collaborative classification policy path of pollution reduction and carbon reduction on urban energy consumption side—cluster analysis based on the data of 102 prefecture-level cities in China[J]. China Environmental Science, 2023, 43(S1): 336−346

    [7] 梁流涛, 曲福田, 冯淑怡. 经济发展与农业面源污染: 分解模型与实证研究[J]. 长江流域资源与环境, 2013, 22(10): 1369−1374

    LIANG L T, QU F T, FENG S Y. Economic development and agricultural non-point source pollution: decomposition model and empirical analysis[J]. Resources and Environment in the Yangtze Basin, 2013, 22(10): 1369−1374

    [8] 耿言虎, 夏涛. 农业面源污染的“类点源化治理”[J]. 南京工业大学学报(社会科学版), 2021, 20(6): 73−84, 112

    GENG Y H, XIA T. “Quasi Point Source Governance” of agricultural non-point source pollution[J]. Journal of Nanjing Tech University (Social Science Edition), 2021, 20(6): 73−84, 112

    [9] 葛继红, 周曙东. 农业面源污染的经济影响因素分析−基于1978—2009年的江苏省数据[J]. 中国农村经济, 2011(5): 72−81

    GE J H, ZHOU S D. Analysis on the economic influencing factors of agricultural non-point source pollution—Based on the data of Jiangsu Province from 1978 to 2009[J]. Chinese Rural Economy, 2011(5): 72−81

    [10] 金书秦, 武岩. 农业面源是水体污染的首要原因吗? −基于淮河流域数据的检验[J]. 中国农村经济, 2014(9): 71−81

    JIN S Q, WU Y. Is agricultural non-point source the primary cause of water pollution?—Based on the test of Huaihe River Basin data[J]. Chinese Rural Economy, 2014(9): 71−81

    [11] 秦天, 彭珏, 邓宗兵, 等. 环境分权、环境规制对农业面源污染的影响[J]. 中国人口·资源与环境, 2021, 31(2): 61−70

    QIN T, PENG J, DENG Z B, et al. Environmental decentralization, environmental regulation and agricultural non-point source pollution[J]. China Population, Resources and Environment, 2021, 31(2): 61−70

    [12] 陈俊聪, 王怀明. 农业保险与农业面源污染: 影响因素及其度量−基于联立方程组模型的情景模拟[J]. 上海财经大学学报, 2015, 17(5): 34−43, 56

    CHEN J C, WANG H M. Agricultural insurance and agricultural non-point source pollution: influencing factors and their measurement—Scenario simulation based on simultaneous equations model[J]. Journal of Shanghai University of Finance and Economics, 2015, 17(5): 34−43, 56

    [13] 李海鹏, 张俊飚. 中国农业面源污染与经济发展关系的实证研究[J]. 长江流域资源与环境, 2009, 18(6): 585−590

    LI H P, ZHANG J B. An empirical test on the “EKC” relationship between the agricultural non-point source pollution and economic development in China[J]. Resources and Environment in the Yangtze Basin, 2009, 18(6): 585−590

    [14] 李秀芬, 朱金兆, 顾晓君, 等. 农业面源污染现状与防治进展[J]. 中国人口·资源与环境, 2010, 20(4): 81−84

    LI X F, ZHU J Z, GU X J, et al. Current situation and control of agricultural non-point source pollution[J]. China Population, Resources and Environment, 2010, 20(4): 81−84

    [15] 姜松, 周洁, 邱爽. 适度规模经营是否能抑制农业面源污染−基于动态门槛面板模型的实证[J]. 农业技术经济, 2021(7): 33−48

    JIANG S, ZHOU J, QIU S. Can appropriate scale operation restrain agricultural non-point source pollution?—Empirical study based on dynamic threshold panel model[J]. Journal of Agrotechnical Economics, 2021(7): 33−48

    [16] 马进. 农业面源污染的经济影响因素研究−基于贸易开放视角[J]. 东岳论丛, 2023, 44(6): 83−94

    MA J. Study on economic influencing factors of agricultural non-point source pollution—Based on the perspective of trade openness[J]. Dongyue Tribune, 2023, 44(6): 83−94

    [17] 于骥, 蒲实, 周灵. 四川省农业面源污染与农业增长的实证分析[J]. 农村经济, 2016(9): 56−60

    YU J, PU S, ZHOU L. Empirical analysis of agricultural non-point source pollution and agricultural growth in Sichuan Province[J]. Rural Economy, 2016(9): 56−60

    [18] 尚杰, 石锐, 张滨. 农业面源污染与农业经济增长关系的演化特征与动态解析[J]. 农村经济, 2019(9): 132−139

    SHANG J, SHI R, ZHANG B. Evolutionary characteristics and dynamic analysis of the relationship between agricultural non-point source pollution and agricultural economic growth[J]. Rural Economy, 2019(9): 132−139

    [19] 杨骞, 王弘儒, 秦文晋. 中国农业面源污染的地区差异及分布动态: 2001—2015[J]. 山东财经大学学报, 2017, 29(5): 1−13

    YANG Q, WANG H R, QIN W J. Regional disparity and distributional dynamics of China agricultural NPS: from 2001 to 2015[J]. Journal of Shandong University of Finance and Economics, 2017, 29(5): 1−13

    [20] 丘雯文, 钟涨宝, 李兆亮, 等. 中国农业面源污染排放格局的时空特征[J]. 中国农业资源与区划, 2019, 40(1): 26−34

    QIU W W, ZHONG Z B, LI Z L, et al. Spatial-temporal variations of agricultural non-point source pollution in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(1): 26−34

    [21]

    YI X S, LIN D X, LI J H, et al. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China[J]. Environmental Science and Pollution Research, 2021, 28: 40075–40087

    [22] 夏秋, 李丹, 周宏. 农户兼业对农业面源污染的影响研究[J]. 中国人口·资源与环境, 2018, 28(12): 131−138

    XIA Q, LI D, ZHOU H. Study on the influence of farmers’ concurrent business behavior on agricultural non-point source pollution[J]. China Population, Resources and Environment, 2018, 28(12): 131−138

    [23] 张可, 聂阳剑. 水环境政策对农业增长与面源污染影响的实证分析[J]. 统计与决策, 2017(14): 118−121

    ZHANG K, NIE Y J. Empirical analysis of the influence of water environment policy on agricultural growth and non-point source pollution[J]. Statistics & Decision, 2017(14): 118−121

    [24] 龙云, 任力. 农地流转对农业面源污染的影响−基于农户行为视角[J]. 经济学家, 2016(8): 81−87

    LONG Y, REN L. The impact of farmland circulation on agricultural non-point source pollution—From the perspective of farmers’ behavior[J]. Economist, 2016(8): 81−87

    [25]

    LIN Q H, CHENG Q, ZHONG J F, et al. Can digital financial inclusion help reduce agricultural non-point source pollution? —an empirical analysis from China[J]. Frontiers in Environmental Science, 2022, 10: 1074992 doi: 10.3389/fenvs.2022.1074992

    [26] 何艳秋, 戴小文. 中国农业碳排放驱动因素的时空特征研究[J]. 资源科学, 2016, 38(9): 1780−1790

    HE Y Q, DAI X W. Phase characteristics and regional differences in agriculture carbon emissions in China[J]. Resources Science, 2016, 38(9): 1780−1790

    [27] 陈银娥, 陈薇. 农业机械化、产业升级与农业碳排放关系研究−基于动态面板数据模型的经验分析[J]. 农业技术经济, 2018(5): 122−133

    CHEN Y E, CHEN W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission—The empirical research based on dynamic panel data model[J]. Journal of Agrotechnical Economics, 2018(5): 122−133

    [28] 田云, 张银岭. 中国农业碳排放减排成效评估、目标重构与路径优化研究[J]. 干旱区资源与环境, 2019, 33(12): 1−7

    TIAN Y, ZHANG Y L. Research on effectiveness evaluation, target reconstruction and path optimization of agricultural carbon emission reduction in China[J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 1−7

    [29] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127

    TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104−127

    [30] 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596−608

    XIA S Y, ZHAO Y, XU X, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997−2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596−608

    [31]

    WEN S B, HU Y X, LIU H M. Measurement and spatial-temporal characteristics of agricultural carbon emission in China: an internal structural perspective[J]. Agriculture, 2022, 12(11): 1749 doi: 10.3390/agriculture12111749

    [32] 章胜勇, 尹朝静, 贺亚亚, 等. 中国农业碳排放的空间分异与动态演进−基于空间和非参数估计方法的实证研究[J]. 中国环境科学, 2020, 40(3): 1356−1363 doi: 10.3969/j.issn.1000-6923.2020.03.046

    ZHANG S Y, YIN C J, HE Y Y, et al. Spatial differentiation and dynamic evolution of agricultural carbon emission in China—Empirical research based on spatial and non-parametric estimation methods[J]. China Environmental Science, 2020, 40(3): 1356−1363 doi: 10.3969/j.issn.1000-6923.2020.03.046

    [33] 何艳秋, 陈柔, 吴昊玥, 等. 中国农业碳排放空间格局及影响因素动态研究[J]. 中国生态农业学报, 2018, 26(9): 1269−1282

    HE Y Q, CHEN R, WU H Y, et al. Spatial dynamics of agricultural carbon emissions in China and the related driving factors[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1269−1282

    [34] 杨钧. 农业技术进步对农业碳排放的影响−中国省级数据的检验[J]. 软科学, 2013, 27(10): 116−120

    YANG J. The effects of technological advances on agricultural carbon emission—Evidence from Chinese provincial data[J]. Soft Science, 2013, 27(10): 116−120

    [35] 贺青, 张虎, 张俊飚. 农业产业聚集对农业碳排放的非线性影响[J]. 统计与决策, 2021, 37(9): 75−78

    HE Q, ZHANG H, ZHANG J B. Nonlinear effects of agricultural industrial agglomeration on agricultural carbon emissions[J]. Statistics & Decision, 2021, 37(9): 75−78

    [36] 童伟伟, 李玉霖, 张董敏. 农业服务化能降低中国农业碳排放强度吗?[J]. 中国农业资源与区划, 2023: 1–13 (2023-08-04). https://kns.cnki.net/kcms/detail/11.3513.S.20230803.1339.002.html.

    TONG W W, LI Y L, ZHANG D M. Can servitization of agriculture reduce China’s agricultural carbon emissions intensity?[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023: 1–13 (2023-08-04). https://kns.cnki.net/kcms/detail/11.3513.S.20230803.1339.002.html.

    [37] 陈宇斌, 王森, 陆杉. 农产品贸易对农业碳排放的影响−兼议数字乡村发展的门槛效应[J]. 华中农业大学学报(社会科学版), 2022(6): 45−57

    CHEN Y B, WANG S, LU S. The impact of agricultural products trade on agricultural carbon emissions—The threshold effect of digital rural development[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(6): 45−57

    [38] 张金鑫, 王红玲. 环境规制、农业技术创新与农业碳排放[J]. 湖北大学学报(哲学社会科学版), 2020, 47(4): 147−156

    ZHANG J X, WANG H L. Analysis on environmental planning, agricultural technological innovation and agricultural carbon emission[J]. Journal of Hubei University (Philosophy and Social Science), 2020, 47(4): 147−156

    [39]

    HAKEN H. Synergetics: An Introduction Nonequilibrium Phase Transitions and Self- Organization in Physics, Chemistry and Biology[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977

    [40] 郑佳佳, 孙星, 张牧吟, 等. 温室气体减排与大气污染控制的协同效应−国内外研究综述[J]. 生态经济, 2015, 31(11): 133−137

    ZHENG J J, SUN X, ZHANG M Y, et al. Review of researches on the synergistic effect of GHGs mitigation and air pollution control at home and abroad[J]. Ecological Economy, 2015, 31(11): 133−137

    [41] 周丽, 夏玉辉, 陈文颖. 中国低碳发展目标及协同效益研究综述[J]. 中国人口·资源与环境, 2020, 30(7): 10−17

    ZHOU L, XIA Y H, CHEN W Y. Review of low carbon development targets and relative co-benefits in China[J]. China Population, Resources and Environment, 2020, 30(7): 10−17

    [42] 唐湘博, 张野, 曹利珍, 等. 中国减污降碳协同效应的时空特征及其影响机制分析[J]. 环境科学研究, 2022, 35(10): 2252−2263

    TANG X B, ZHANG Y, CAO L Z, et al. Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J]. Research of Environmental Sciences, 2022, 35(10): 2252−2263

    [43] 易兰, 赵万里, 杨历. 大气污染与气候变化协同治理机制创新[J]. 科研管理, 2020, 41(10): 134−144

    YI L, ZHAO W L, YANG L. Innovation of collaborative governance mechanism on air pollution and climate change control[J]. Science Research Management, 2020, 41(10): 134−144

    [44] 尚杰, 吉雪强, 陈玺名. 中国城镇化对农业生态效率的影响−基于中国13个粮食主产区2009—2018年面板数据[J]. 中国生态农业学报(中英文), 2020, 28(8): 1265−1276

    SHANG J, JI X Q, CHEN X M. Study on the impact of China’s urbanization on agricultural ecological efficiency: based on panel data of 13 major grain-producing regions in China from 2009 to 2018[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1265−1276

    [45] 王宝义, 张卫国. 中国农业生态效率的省际差异和影响因素−基于1996—2015年31个省份的面板数据分析[J]. 中国农村经济, 2018(1): 46−62

    WANG B Y, ZHANG W G. Cross-provincial differences in determinants of agricultural eco-efficiency in China: an analysis based on panel data from 31 provinces in 1996−2015[J]. Chinese Rural Economy, 2018(1): 46−62

    [46] 侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360−367

    HOU M Y, ZHANG L, WANG Z W, et al. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360−367

图(3)  /  表(5)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  28
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 录用日期:  2024-03-02
  • 网络出版日期:  2024-03-10
  • 刊出日期:  2024-07-17

目录

    /

    返回文章
    返回