Rice nitrogen footprint and prediction of emission reduction potential in the Erhai Lake Basin
-
摘要: 协同环境保护和粮食安全对于流域农业高质量发展具有重要意义。水稻是我国第一大粮食作物, 在高原湖泊流域内广泛种植, 然而以往对全流域水稻氮的研究往往忽视了排放因子的空间异质性, 且通过田间综合技术优化对水稻增产与减排潜力的影响尚不清楚。本研究以洱海流域为典型案例, 基于洱海全域农户调研数据, 运用生命周期评价与随机森林模型方法系统评估流域水稻生产氮足迹; 并基于西南地区田间试验预测该流域水稻生产的减排潜力。结果表明: 洱海流域水稻平均产量为8598.5 kg∙hm−2, 平均氮肥投入量为222.0 kg(N)∙hm−2, 主要以洱海北部和西部区域较高。平均活性氮损失为55.1 kg(N)∙hm−2, 其中氧化亚氮(N2O)排放、氨(NH3)挥发、氮径流和氮淋洗占比分别为0.8%、61.3%、15.1%和22.9%; 从空间分布特征来看, 洱海北部和西部具有较高的环境风险。结合区域水稻种植面积, 流域水稻活性氮损失为440.0 t。通过随机森林模型预测, 洱海流域水稻种植可减少22.9%的活性氮损失, 同时增加21.1%的产量。该研究可为探索高原湖泊流域内水稻绿色生产可持续氮素管理提供依据。Abstract: Collaborative environmental protection and food security are of great significance for high-quality agricultural development in lake basins. Rice, the primary grain crop in China, is widely planted in lake basins. However, previous studies on nitrogen (N) in rice across basins often ignored the spatial heterogeneity of emission factors and impact of field-integrated technological optimization on rice yield increases, while emission reductions remain unclear. This study aimed to clarify the current status and reduction potential of N fertilizer of rice planting system in the Erhai Basin using survey data from 194 households and 322 literature sources on reactive nitrogen loss. Life cycle assessment and random forest models were employed for comprehensive evaluation. The emission reduction and increased production potential of this basin were predicted based on 836 site-year field experiments conducted in the southwest region. Results displayed that average rice yield was 8598.5 kg·hm−2, with an average N fertilizer input of 222.0 kg(N)∙hm−2. The types of N fertilizer used included chemical and organic sources, with an average application of 95.6 kg(N)∙hm−2 for chemical N and 126.4 kg(N)∙hm−2 for organic N, in which the organic N accounted for 56.9% of total N fertilizer application. The regions with high N input and surplus areas were mainly located in the north, including Zibihu, Dengchuan, Fengyu, and Yousuo towns, as well as in the western part, including Shangguan, Xizhou, Wanqiao, Yinqiao towns, and Haidong Town in the eastern part. The average N losses was 55.1 kg(N)∙hm−2, with nitrous oxide emissions, ammonia volatilization, surface N runoff, and N leaching accounted for 0.8%, 61.3%, 15.1% and 22.9%, respectively. The spatial distribution characteristics indicated a higher environmental risk in the northern and western part. Combined with the rice-planting region area, the total N loss was 440.0 t in the Erhai Lake Basin. The random forest model predicted that the rice production system could reduce reactive N losses by 22.9% while increasing rice yield by 21.1%. Compared to traditional farming, optimized technology can reduce N input by 428.5 t and reduce N losses by 105.6 t. By implementing optimized technology, the rice planting system in the Erhai Lake Basin could achieve increased yield, and reduced emissions. The study results provide a good reference for the green and high-quality development of plateau lake basins agriculture.
-
-
[1] BANDUMULA N. Rice production in Asia: Key to global food security[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2018, 88(4): 1323−1328 doi: 10.1007/s40011-017-0867-7
[2] YEOM J M, JEONG S, DEO R C, et al. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite[J]. GIScience & Remote Sensing, 2021, 58(1): 1−27
[3] 周锡跃, 徐春春, 李凤博, 等. 世界水稻产业发展现状、趋势及对我国的启示[J]. 农业现代化研究, 2010, 31(5): 525−528 doi: 10.3969/j.issn.1000-0275.2010.05.003 ZHOU X Y, XU C C, LI F B, et al. Status quo and trends of world’s rice industry development and its enlightenment to China[J]. Research of Agricultural Modernization, 2010, 31(5): 525−528 doi: 10.3969/j.issn.1000-0275.2010.05.003
[4] CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555: 363−366 doi: 10.1038/nature25785
[5] 张满利. 水稻氮肥施用方法及现状[J]. 中国农业信息, 2015(24): 12−14 doi: 10.3969/j.issn.1672-0423.2015.12.005 ZHANG M L. Application methods and present situation of nitrogen fertilizer in rice[J]. China Agriculture Information, 2015(24): 12−14 doi: 10.3969/j.issn.1672-0423.2015.12.005
[6] JI N N, WANG S R, ZHANG L. Characteristics of dissolved organic phosphorus inputs to freshwater lakes: a case study of Lake Erhai, southwest China[J]. Science of the Total Environment, 2017, 601/602: 1544−1555 doi: 10.1016/j.scitotenv.2017.05.265
[7] 申哲, 韩天富, 黄晶, 等. 中国水稻相对产量差时空变异及其对氮肥的响应[J]. 植物营养与肥料学报, 2023, 29(5): 789−801 doi: 10.11674/zwyf.2022480 SHEN Z, HAN T F, HUANG J, et al. Spatio-temporal variation of relative yield gap of rice and its response to nitrogen fertilizer in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 789−801 doi: 10.11674/zwyf.2022480
[8] 段四喜, 杨泽, 李艳兰, 等. 洱海流域农业面源污染研究进展[J]. 生态与农村环境学报, 2021, 37(3): 279−286 DUAN S X, YANG Z, LI Y L, et al. Progress of agricultural non-point source pollution in Erhai Lake Basin: A review[J]. Journal of Ecology and Rural Environment, 2021, 37(3): 279−286
[9] 高蓉, 韩焕豪, 崔远来, 等. 降雨量对洱海流域稻季氮磷湿沉降通量及浓度的影响[J]. 农业工程学报, 2018, 34(22): 191−198 doi: 10.11975/j.issn.1002-6819.2018.22.024 GAO R, HAN H H, CUI Y L, et al. Effect of precipitation on wet deposition flux and content of nitrogen and phosphorus in Erhai lake basin in rice season[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 191−198 doi: 10.11975/j.issn.1002-6819.2018.22.024
[10] 何张伟, 梁燕, 杨艳, 等. 洱海流域水稻产业转型发展与思考[J]. 中国种业, 2021(11): 47−49 doi: 10.3969/j.issn.1671-895X.2021.11.014 HE Z W, LIANG Y, YANG Y, et al. Transformation, development and thinking of rice industry in Erhai River Basin[J]. China Seed Industry, 2021(11): 47−49 doi: 10.3969/j.issn.1671-895X.2021.11.014
[11] 姜海斌, 张克强, 沈仕洲, 等. 洱海流域减氮施肥条件下水稻产量和土壤剖面氮磷变化特征[J]. 植物营养与肥料学报, 2022, 28(1): 23−32 doi: 10.11674/zwyf.2021282 JIANG H B, ZHANG K Q, SHEN S Z, et al. Rice yield and nitrogen and phosphorus changes in soil profile under different fertilization strategies in Erhai Lake Basin, Yunnan[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 23−32 doi: 10.11674/zwyf.2021282
[12] 吴凡, 张克强, 谢坤, 等. 洱海流域典型农区不同施肥处理下稻田氨挥发变化特征[J]. 农业环境科学学报, 2019, 38(8): 1735−1742 doi: 10.11654/jaes.2018-1621 WU F, ZHANG K Q, XIE K, et al. Characteristics of ammonia volatilization from rice paddy fields under different fertilization treatments in typical agricultural areas of Erhai Basin[J]. Journal of Agro-Environment Science, 2019, 38(8): 1735−1742 doi: 10.11654/jaes.2018-1621
[13] 姚金玲, 郭海刚, 倪喜云, 等. 洱海流域不同轮作与施肥方式对农田氮磷径流损失的影响[J]. 农业资源与环境学报, 2019, 36(5): 600−613 YAO J L, GUO H G, NI X Y, et al. Influence of different crop rotations and fertilization methods on nitrogen and phosphorus runoff losses in Erhai Lake Basin, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 600−613
[14] 杨怀钦, 杨友仁, 倪喜云, 等. 洱海流域农田地表径流监测及作物种植结构调整初探[J]. 农业环境与发展, 2012, 29(3): 109−110 YANG H Q, YANG Y R, NI X Y, et al. Preliminary study on farmland surface runoff monitoring and crop planting structure adjustment in Erhai Lake Basin[J]. Agro-Environment & Development, 2012, 29(3): 109−110
[15] 崔荣阳, 刘宏斌, 毛昆明, 等. 洱海流域稻鸭共作对稻田温室气体排放和水稻产量的影响[J]. 环境科学学报, 2019, 39(7): 2306−2314 CUI R Y, LIU H B, MAO K M, et al. Effects of rice-duck mutualism on greenhouse gas emissions and rice yields from paddy fields in Erhai Basin[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2306−2314
[16] TANG Q X, REN T Z, WILKO S, et al. Study on environmental risk and economic benefits of rotation systems in farmland of Erhai Lake Basin[J]. Journal of Integrative Agriculture, 2012, 11(6): 1038−1047 doi: 10.1016/S2095-3119(12)60096-3
[17] 黄继元. 基于DNDC模型的洱海流域稻田氮素损失模拟研究[D]. 哈尔滨: 东北农业大学, 2020 HUANG J Y. A simulation study on nitrogen loss in paddy fields of Erhai Basin based on DNDC model[D]. Harbin: Northeast Agricultural University, 2020
[18] ZOU T T, MENG F L, ZHOU J C, et al. Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China[J]. Agricultural Systems, 2023, 211: 103745 doi: 10.1016/j.agsy.2023.103745
[19] ZHANG J P, ZHI M M. Effects of basin nutrient discharge variations coupled with climate change on water quality in Lake Erhai, China[J]. Environmental Science and Pollution Research, 2020, 27(35): 43700−43710 doi: 10.1007/s11356-020-09179-0
[20] XUE J F, PU C, LIU S L, et al. Carbon and nitrogen footprint of double rice production in Southern China[J]. Ecological Indicators, 2016, 64: 249−257 doi: 10.1016/j.ecolind.2016.01.001
[21] 张福锁, 陈新平, 陈清, 等. 中国主要作物施肥指南[M]. 北京: 中国农业大学出版社, 2009: 84–87 ZHANG F S, CHEN X P, CHEN Q. Guide to Fertilization of Main Crops in China[M]. Beijing: China Agricultural University Press, 2009: 84–87
[22] 李书田, 刘荣乐, 陕红. 我国主要畜禽粪便养分含量及变化分析[J]. 农业环境科学学报, 2009, 28(1): 179−184 doi: 10.3321/j.issn:1672-2043.2009.01.033 LI S T, LIU R L, SHAN H. Nutrient contents in main animal manures in China[J]. Journal of Agro-Environment Science, 2009, 28(1): 179−184 doi: 10.3321/j.issn:1672-2043.2009.01.033
[23] 巨晓棠, 张翀. 论合理施氮的原则和指标[J]. 土壤学报, 2021, 58(1): 1−13 doi: 10.11766/trxb202006220322 JU X T, ZHANG C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2021, 58(1): 1−13 doi: 10.11766/trxb202006220322
[24] CUI Z L, WANG G L, YUE S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environmental Science & Technology, 2014, 48(10): 5780−5787
[25] ZHANG C, JU X T, POWLSON D, et al. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China[J]. Environmental Science & Technology, 2019, 53(12): 6678−6687
[26] WANG X Z, LIU B, WU G, et al. Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment[J]. Agricultural Systems, 2018, 167: 186−194 doi: 10.1016/j.agsy.2018.09.013
[27] 陈婧. 基于统计模型的中国南方稻区适宜施氮量及氮素损失估算[D]. 南京: 南京农业大学, 2011 CHEN J. Quantifying optimum nitrogen rates and nitrogen losses for rice production in southern China based on statistical model[D]. Nanjing: Nanjing Agricultural University, 2011
[28] 黄晶, 刘立生, 马常宝, 等. 近30年中国稻区氮素平衡及氮肥偏生产力的时空变化[J]. 植物营养与肥料学报, 2020, 26(6): 987−998 doi: 10.11674/zwyf.19410 HUANG J, LIU L S, MA C B, et al. Spatial-temporal variation of nitrogen balance and partial factor productivity of nitrogen in rice region of China over the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 987−998 doi: 10.11674/zwyf.19410
[29] LIU L Y, LI H Y, ZHU S H, et al. The response of agronomic characters and rice yield to organic fertilization in subtropical China: A three-level meta-analysis[J]. Field Crops Research, 2021, 263: 108049 doi: 10.1016/j.fcr.2020.108049
[30] 方克明, 沈慧芳, 双巧云, 等. 水稻化肥使用量增长问题与零增长对策[J]. 中国农学通报, 2016, 32(27): 200−204 doi: 10.11924/j.issn.1000-6850.casb16040153 FANG K M, SHEN H F, SHUANG Q Y, et al. Problem of fertilizer application increase in rice and countermeasures of “zero increase”[J]. Chinese Agricultural Science Bulletin, 2016, 32(27): 200−204 doi: 10.11924/j.issn.1000-6850.casb16040153
[31] DING W, XU X, ZHANG J, et al. Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China[J]. Environmental Pollution, 2021, 290(8): 118091
[32] HUANG W B, WU F Q, ZHANG Z G, et al. The nitrogen footprint and reactive nitrogen reduction potential of cotton production in China[J]. Journal of Cleaner Production, 2023, 402: 136808 doi: 10.1016/j.jclepro.2023.136808
[33] XIAO Y S, PENG F T, ZHANG Y F, et al. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production[J]. Journal of Cleaner Production, 2019, 234: 258−274 doi: 10.1016/j.jclepro.2019.06.219
[34] HAUGLUSTAINE D A, BALKANSKI Y, SCHULZ M. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 11031−11063 doi: 10.5194/acp-14-11031-2014
[35] 王桂良, 崔振岭, 陈新平, 等. 南方稻田活性氮损失途径及其影响因素[J]. 应用生态学报, 2015, 26(8): 2337−2345 WANG G L, CUI Z L, CHEN X P, et al. Reactive nitrogen loss pathways and their effective factors in paddy field in southern China[J]. Chinese Journal of Applied Ecology, 2015, 26(8): 2337−2345
[36] 才硕, 时红, 时元智, 等. 种植方式变化下双季稻田氮素平衡及环境效应研究进展[J]. 安徽农业科学, 2020, 48(17): 1−3, 7 doi: 10.3969/j.issn.0517-6611.2020.17.001 CAI S, SHI H, SHI Y Z, et al. Research progress on nitrogen balance and environmental impact under the change planting patterns in double-cropping paddy fields[J]. Journal of Anhui Agricultural Sciences, 2020, 48(17): 1−3, 7 doi: 10.3969/j.issn.0517-6611.2020.17.001
[37] 周平遥, 张震, 王华, 等. 不同深施肥方式对稻田氨挥发及水稻产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441 ZHOU P Y, ZHANG Z, WANG H, et al. Effects of deep fertilization methods on ammonia volatilization and rice yield in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441
[38] FU Y Q, ZHONG X H, ZENG J H, et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China[J]. Journal of Integrative Agriculture, 2021, 20(2): 565−580 doi: 10.1016/S2095-3119(20)63380-9
[39] 杨林章, 施卫明, 薛利红, 等. 农村面源污染治理的“4R” 理论与工程实践−总体思路与“4R” 治理技术[J]. 农业环境科学学报, 2013, 32(1): 1−8 doi: 10.11654/jaes.2013.01.001 YANG L Z, SHI W M, XUE L H, et al. Reduce-retain-reuse-restore technology for the controlling the agricultural non-point source pollution in countryside in China: General countermeasures and technologies[J]. Journal of Agro-Environment Science, 2013, 32(1): 1−8 doi: 10.11654/jaes.2013.01.001
[40] QIAO J, YANG L Z, YAN T M, et al. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake Area[J]. Agriculture, Ecosystems & Environment, 2012, 146(1): 103–112
[41] CHEN X P, CUI Z L, VITOUSEK P M, et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399−6404
[42] ZHANG F S, CUI Z L, FAN M S, et al. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 2011, 40(4): 1051−1057 doi: 10.2134/jeq2010.0292
[43] CUI Z L, YUE S C, WANG G L, et al. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China[J]. Global Change Biology, 2013, 19(8): 2467−2477 doi: 10.1111/gcb.12213
[44] 王西娜, 王朝辉, 李华, 等. 旱地土壤中残留肥料氮的动向及作物有效性[J]. 土壤学报, 2016, 53(5): 1202−1212 doi: 10.11766/trxb201604180641 WANG X N, WANG Z H, LI H, et al. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil[J]. Acta Pedologica Sinica, 2016, 53(5): 1202−1212 doi: 10.11766/trxb201604180641
[45] 卢中辉, 余斌, 张辉, 等. 洱海流域农业面源污染与水环境变化的关联分析[J]. 华中师范大学学报(自然科学版), 2017, 51(2): 215−223 LU Z H, YU B, ZHANG H, et al. Correlation analysis of agricultural non-point source pollution and water environment change in Erhai Lake watershed[J]. Journal of Central China Normal University (Natural Sciences), 2017, 51(2): 215−223
[46] ZHANG F, LIU F B, MA X, et al. Greenhouse gas emissions from vegetables production in China[J]. Journal of Cleaner Production, 2021, 317: 128449 doi: 10.1016/j.jclepro.2021.128449
[47] CAI S Y, ZHAO X, PITTELKOW C M, et al. Optimal nitrogen rate strategy for sustainable rice production in China[J]. Nature, 2023, 615: 73−79 doi: 10.1038/s41586-022-05678-x
[48] YAO Z S, GUO H J, WANG Y, et al. A global meta-analysis of yield-scaled N2O emissions and its mitigation efforts for maize, wheat, and rice[J]. Global Change Biology, 2024, 30(2): e17177 doi: 10.1111/gcb.17177