Study on the influence mechanism of digital economy development on agricultural climate resilienceBased on the analysis of regulatory effects and spatial spillover effects
-
摘要:
数字经济已成为重塑经济结构、重组生产资源、协调人与自然关系的核心要素。数字经济具有创新性强、覆盖面广、复制容易等优势, 能够迅速渗透到农业生产、经营、产业发展等各个领域。数字经济的快速发展为农业部门应对气候冲击提供了新的思路。本文基于2011—2020年我国30个省(自治区、直辖市, 不包括香港、澳门、台湾和西藏)的面板数据, 使用熵值法对数字经济发展水平和农业气候韧性进行测算, 分析了数字经济对农业气候韧性的影响, 并考察了财政支农和农业保险对该作用机制的调节效应。此外, 还通过构建空间计量模型探析了数字经济发展对农业气候韧性的空间溢出效应。结果表明: 我国农业气候韧性总体呈上升趋势, 但数值偏低, 仍存在较大的上升空间; 东部地区的农业气候韧性指数高于中部、西部以及东北部地区; 数字经济对农业气候韧性具有显著的促进作用, 且存在区域差异, 其中数字经济对东部地区农业气候韧性的促进作用最佳, 对中西部地区影响不显著, 对东北地区农业气候韧性具有抑制作用; 财政支农和农业保险强化了数字经济对农业气候韧性的影响; 数字经济对农业气候韧性的影响具有显著正向的空间溢出效应, 通过对动态空间杜宾模型进行分解发现短期效应要优于长期效应。本文为减缓和适应气候变化, 提升农业气候韧性提供了理论基础与政策依据。
Abstract:The digital economy is a fundamental element in reshaping economic structures, optimizing resource allocation, and harmonizing the relationship between humans and nature. The digital economy has advantages such as strong innovation, wide coverage, and easy replication, and can quickly penetrate into various fields such as agricultural production, management, and industrial development. The rapid advancement of the digital economy has introduced new strategies for the agricultural sector to cope with climate shocks. This study utilized panel data from 30 provinces (autonomous regions and municipalities, not including Hong Kong, Macao, Taiwan and Xizang of China) in China from 2011 to 2020. Employing the entropy method, we measured the development levels of the digital economy and agricultural climate resilience. We then analyzed the impact of the digital economy on agricultural climate resilience and examine the regulatory effects of financial support for agriculture and agricultural insurance. Additionally, a spatial econometric model was constructed to explore the spatial spillover effects of digital economic development on agricultural climate resilience. The findings revealed that the overall agricultural climate resilience in China was increasing, albeit from a relatively low base, indicating significant room for improvement. The agricultural climate resilience index was highest in the eastern region, followed by the central, western, and northeastern regions. The digital economy significantly enhanced agricultural climate resilience, with notable regional differences. Specifically, the digital economy showed significant positive impact in the eastern region, no significant effect in the central and western regions, and significant negative impact in the northeastern region. Furthermore, financial support for agriculture and agricultural insurance amplified the positive effects of the digital economy on agricultural climate resilience. The influence of the digital economy on agricultural climate resilience exhibited a significant positive spatial spillover effect. We found that short-term effects surpass long-term effects via decomposing the dynamic spatial Durbin model. This study provides a theoretical and policy foundation for mitigating and adapting to climate change and enhancing agricultural climate resilience.
-
表 1 农业气候韧性评价指标体系
Table 1 Evaluation index system of agricultural climate resilience
一级指标
First-level index二级指标
Second-level
index三级指标
Third-level
index指标说明
Index interpretation指标属性
Index attribute抵抗力
Resistance内在稳定性
Intrinsic stability农村人均可支配收入
Per capita disposable income in rural area各省农村人均可支配收入
Rural per capita disposable income in each province正向
Positive农村信息化水平
Rural informatization level行政村宽带网络覆盖率
Broadband network coverage rate in administrative villages正向
Positive森林覆盖率
Forest coverage rate各省森林覆盖率
Forest coverage rate in each province正向
Positive农业气象观测站点个数
Number of agrometeorological observation stations各省农业气象观测业务站点个数
Number of agrometeorological observation stations in each province正向
Positive有效灌溉率
Effective irrigation rate有效灌溉面积/耕地面积
Effective irrigated area / cultivated land area正向
Positive农业成灾率
Agricultural disaster rate成灾面积/受灾面积
Disaster-affected area / affected area负向
Negative产供鲁棒性
Robustness of production and supply第一产业占比
Proportion of primary industry第一产业增加值占地区生产总值比重
Contribution of added value of the primary industry accounts to the regional GDP正向
Positive人均农林牧渔业增加值
Per capita added value of agriculture, forestry, animal husbandry and fishery农林牧渔业增加值/农林牧渔业从业人员数
Added value of agriculture, forestry, animal husbandry and fishery / number of employees of agriculture, forestry, animal husbandry and fishery正向
Positive农产品加工比值
Agricultural product processing ratio农产品加工营业收入/农林牧渔业总产值
Processing and business income of agricultural products / total output value of agriculture, forestry, animal husbandry and fishery正向
Positive适应力
Adaptability可持续性
Sustainability农业人力资本存量
Agricultural human capital stock各省人力资本存量
Provincial human capital stock正向
Positive农药使用强度
Pesticide intensity农药使用量/耕地面积
Pesticide usage / cultivated land area负向
Negative化肥使用强度
Strength of fertilizer use化肥施用量/耕地面积
Fertilizer application amount / cultivated land area负向
Negative农村人均用电量
Per capita electricity consumption in rural area农村居民用电量/农村人口
Electricity consumption of rural residents / rural population正向
Positive可恢复性
Restorability复种指数
Multiple-crop index农作物播种面积/耕地面积
Crop sown area / cultivated land area正向
Positive水土协调度
Soil and water coordination水土流失治理面积/辖区面积
Soil erosion control area / jurisdiction area正向
Positive重构力
Reconstructive power多样协作性
Diversified collaboration农业生产合作化程度
Degree of cooperation in agricultural production农村每万人拥有农民专业合作社数量
Number of specialized farmer cooperatives for every 10 000 rural people正向
Positive单位播种面积农林牧渔服务业产值
Output value of agriculture, forestry, animal husbandry and fishery service industry per unit sown area农林牧渔服务业产值/农作物播种面积
Output value of agriculture, forestry, animal husbandry and fishery service industry / sown area of crops正向
Positive单位面积农机总动力
Agricultural machinery total power per unit area农业机械总动力/耕地面积
Total power of agricultural machinery / cultivated land area正向
Positive科技进步性
Technological progress农业固定资产投资
Investment in agricultural fixed assets农村住户固定资产投向农业
Fixed assets of rural households invested in agriculture正向
Positive人均农业科研支出
Per capita expenditure on agricultural scientific research农业科研支出/农村人口数
Agricultural scientific research expenditure / rural population number正向
Positive表 2 数字经济发展水平评价指标体系
Table 2 Evaluation index system of the developmental level of digital economy
一级指标
First-level index二级指标
Second-level index指标含义
Index interpretation指标属性
Index attribute数字经济发展水平
Developmental level of digital economy互联网普及率
Internet penetration rate每百人互联网用户数
Number of internet users per 100 people正向
Positive互联网相关从业人数
Number of internet-related employees每万人计算机服务和软件从业人员数
Number of computer services and software employees per 10 000 people正向
Positive互联网相关产出
Internet-related output人均电信业务总量
Total telecom business per capita正向
Positive移动互联网用户数
Number of mobile internet users每百人移动电话用户数
Number of mobile phones users per 100 people正向
Positive数字金融普惠发展
Inclusive development of digital finance中国数字普惠金融指数
The China Digital Financial Inclusion Index正向
Positive表 3 数字经济发展对农业气候韧性影响的相关变量描述性统计结果(n=300)
Table 3 Descriptive statistical results of variables related to the impact of digital economy development on agricultural climate resilience (n=300)
变量类型
Variable type变量名称
Variable name平均值
Average value标准差
Standard deviation最小值
Minimum value最大值
Maximum value被解释变量
Explained variable农业气候韧性
Agricultural climate resilience (ACR)0.177 0.079 0.111 0.575 核心解释变量
Core explanatory variable数字经济发展水平
Development level of digital economy (Dig)0.373 0.174 0.077 0.982 调节变量
Regulated variable财政支农
Financial support for agriculture (AF)0.547 0.270 0.092 1.339 农业保险密度
Agricultural insurance density (AID)0.011 0.012 0.0003 0.092 控制变量
Controlled variable城镇化率
Urbanization rate (UR)0.590 0.122 0.35 0.896 土地流转率
Land transfer rate (TF)0.318 0.164 0.034 0.911 农业劳动生产率
Agricultural labor productivity (ALP)5.116 2.521 1.015 16.812 公路通达度
Road accessibility (Road)0.945 0.505 0.089 2.205 表 4 2011—2020年我国30个省(自治区、直辖市, 不包括香港、澳门、台湾和西藏)农业气候韧性分布格局中心及标准差椭圆参数
Table 4 Center and standard deviation elliptical parameters of the distribution pattern of agricultural climate resilience in 30 provinces (autonomous regions and municipalities, not including Hong Kong, Macao, Taiwan and Xizang of China) of China from 2011 to 2020
年份
YearX轴标准差
Standard deviation of X axis (km)Y轴标准差
Standard deviation of Y axis (km)方向角
Direction angle (°)重心移动距离
Center moving distance (km)2011 1008.452 1129.774 39.886 — 2014 986.031 1129.845 33.359 25.148 2017 973.294 1121.383 28.576 17.888 2020 956.261 1123.759 24.650 20.616 表 5 数字经济对农业气候韧性的基准回归结果
Table 5 Benchmark regression results of digital economy on agricultural climate resilience
变量
VariableACR 模型1 Model 1 模型2 Model 2 模型3 Model 3 模型4 Model 4 模型5 Model 5 Dig 0.224*** (0.023) 0.047** (0.024) 0.137*** (0.019) 0.625*** (0.0616) 0.351*** (0.066) UR 0.421*** (0.036) −0.345*** (0.067) 0.162*** (0.041) −0.387*** (0.087) TF 0.087*** (0.026) 0.003 (0.021) 0.096*** (0.024) −0.026 (0.028) ALP −0.004*** (0.002) 0.004*** (0.001) −0.003** (0.002) 0.005*** (0.001) Road 0.010 (0.007) 0.024 (0.018) 0.007 (0.006) 0.024 (0.017) Constant 0.094*** (0.010) −0.103*** (0.015) 0.544*** (0.047) −0.024 (0.016) 0.505*** (0.085) Year FE No No No Yes Yes Province FE No No Yes No Yes N 300 300 300 300 300 R2 0.241 0.637 0.952 0.737 0.957 ***: P<0.01; **: P<0.05; *: P<0.1; 括号内为稳健的标准误。ACR和Dig分别代表农业气候韧性和数字经济发展水平; UR、TF、ALP和Road分别代表城镇化率、土地流转率、农业劳动生产率和公路通达度; Constant、Year FE、Province FE、N和R2分别代表常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR and Dig represent resilience of agricultural climate and level of digital economy development, respectively; UR, TF, ALP, and Road represent urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively; Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively. 表 6 数字经济发展对农业气候韧性影响的稳健性检验结果
Table 6 Robustness test results of the impact of digital economy development on agricultural climate resilience
项目
ProjectACR 模型1 Model 1 模型2 Model 2 Dig 0.348*** (−0.083) LEDE 0.142*** (−0.022) UR −0.336*** (−0.086) −0.489** (−0.194) TF −0.057** (−0.026) −0.074* (−0.042) ALP 0.004*** (−0.001) 0.002 (−0.002) Road 0.025 (−0.017) 0.037 (−0.028) Constant 0.569*** (−0.074) 0.596*** (−0.181) Year FE Yes Yes Province FE Yes Yes R2 0.959 0.963 ***: P<0.01; **: P<0.05; *: P<0.1。括号内为稳健的标准误。ACR、Dig和LEDE分别表示农业气候韧性、数字经济发展水平和替换衡量指标重新测算的数字经济发展水平; UR、TF、ALP和Road分别表示城镇化率、土地流转率、农业劳动生产率和公路通达度; Constant、Year FE、Province FE和R2分别代表常量、时间固定效应、省份固定效应和拟合优度。模型1指替换解释变量, 模型2指缩短时间跨度。Data in parentheses is the robust standard error. ACR, Dig, and LEDE represent resilience of agricultural climate, level of digital economy development, and level of digital economy development recalculated by replacing measurement indicators, respectively. UR, TF, ALP, and Road represent urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively. Constant, Year FE, Province FE, and R2 represent constant, time fixed effect, province fixed effect, and goodness of fit, respectively. Model 1 refers to replace explanatory variables, and Model 2 refers to shorten the time span. 表 7 数字经济发展对农业气候韧性影响的区域异质性回归结果
Table 7 Regional heterogeneity regression results of the impact of digital economy development on agricultural climate resilience
变量
VariableACR 东部
East中部
Middle西部
West东北部
NortheastDig 0.577*** (−0.206) 0.072 (−0.097) −0.015 (−0.078) −0.641** (−0.221) Constant 0.126 (−0.277) 0.214*** (−0.047) 0.280*** (−0.060) −0.253 (−0.381) Controls Yes Yes Yes Yes Year FE Yes Yes Yes Yes Province FE Yes Yes Yes Yes N 100 60 120 30 R2 0.952 0.987 0.881 0.876 ***: P<0.01; **: P<0.05。括号内为稳健的标准误。ACR表示农业气候韧性; Dig表示数字经济发展水平; Controls表示上文提到的一系列控制变量; Constant、Year FE、Province FE、N和R2分别表示常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR represents agricultural cliamte resilience. Dig represents digital economy development level. Controls represent a series of control variables mentioned earlier. Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively. 表 8 财政支农和农业保险的调节效应分析结果
Table 8 Analysis results of the regulation effect of financial support for agriculture and agricultural insurance
变量
VariableACR 模型1 Model 1 模型2 Model 2 Dig 0.322*** (4.72) 0.175** (2.00) AF −0.082*** (−2.66) Dig×AF 0.078** (2.05) AID −0.168 (−0.84) Dig×AID 0.549** (2.19) Constant 0.483*** (0.086) 0.389*** (−0.090) Controls Yes Yes Year FE Yes Yes Province FE Yes Yes N 300 300 R2 0.957 0.958 ***: P<0.01; **: P<0.05。括号内为稳健的标准误。ACR、Dig、AF、AID分别表示农业气候韧性、数字经济发展水平、财政支农和农业保险密度; Controls表示上文提到的一系列控制变量; Constant、Year FE、Province FE、N和R2分别表示常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR, Dig, AF, and AID represent agricultural climate resilience, digital economy development level, financial support for agriculture, and agricultural insurance density, respectively. Controls represent a series of control variables mentioned earlier. Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively. 表 9 农业气候韧性和数字经济的全局空间自相关检验结果
Table 9 Results of the global spatial autocorrelation test of agricultural climate resilience and digital economy development level
年份
Year农业气候韧性 Agricultural climate resilience 数字经济发展水平 Digital economy development level Moran’s I Z值 Z value P值 P value Moran’s I Z值 Z value P值 P value 2011 0.112 4.492 0.000 0.221 5.439 0.000 2012 0.129 4.693 0.000 0.222 5.500 0.000 2013 0.146 5.009 0.000 0.221 5.455 0.000 2014 0.165 5.102 0.000 0.207 5.279 0.000 2015 0.186 5.372 0.000 0.194 5.015 0.000 2016 0.182 5.362 0.000 0.202 5.249 0.000 2017 0.187 5.330 0.000 0.187 4.876 0.000 2018 0.191 5.316 0.000 0.175 4.534 0.000 2019 0.195 5.114 0.000 0.172 4.475 0.000 2020 0.182 5.076 0.000 0.163 4.314 0.000 表 10 数字经济发展对农业气候韧性效应的空间计量模型检验结果
Table 10 Spatial econometric model test results of the impact of digital economy development on agricultural climate resilience
检验类型 Inspection type 检验方法 Method of calibration 统计量值 Statistical value P值 P value LM检验 LM checkout LM-error检验 LM-error test 15.565 0.000 稳健的LM-error检验 Robust LM-error test 54.449 0.000 LM-lag检验 LM-lag test 0.010 0.918 稳健的LM-lag检验 Robust LM-lag test 38.894 0.000 Wald检验 Wald checkout SDM退化为SEM SDM degenerates into SEM 38.060 0.000 SDM退化为SAR SDM degenerates into SAR 34.290 0.000 Hausman检验 Hausman-Test 固定效应和随机效应检验 Fixed and random effects tests 20.460 0.040 LR检验 LR checkout SDM模型退化为SEM模型 SDM model degenerates into SEM model 38.160 0.000 SDM模型退化为SAR模型 SDM model degenerates into SAR model 30.350 0.000 表 11 数字经济发展对农业气候韧性效应的动态空间杜宾回归结果
Table 11 Dynamic spatial Durbin regression results of the impact of digital economy development on agricultural climate resilience
变量 Variable Main Wx Dig 0.338** (2.370) 1.296*** (2.640) L.ACR −3.688*** (−3.520) UR −0.365* (−1.801) −0.926 (−0.962) TF 0.051 (1.393) 0.665*** (3.542) ALP 0.005** (2.131) −0.012 (1.220) Road 0.032* (1.940) −0.012 (−0.141) Spatial rho 0.437** (2.441) Variance sigma2_e 0.0001*** (3.851) N 300 R2 0.458 ***: P<0.01; **: P<0.05; *: P<0.1。括号内为t值。Dig、L.ACR、UR、TF、ALP、Road分别代表数字经济发展水平、农业气候韧性滞后一期、城镇化率、土地流转率、农业劳动生产率和公路通达度, Main和Wx分别代表变量对本地区的影响系数和变量对其他地区的空间溢出系数, Spatial rho和Variance sigma2_e分别代表空间效应特异误差和个体效应特异误差, N和R2分别代表样本量和拟合优度。Data in parentheses is t value. Dig, L.ACR, UR, TF, ALP, and Road represent digital economic development level, lag of one period in agricultural climate resilience, urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively. Main and Wx represent coefficient of influence of variables on the local region and the spatial spillover coefficient of variables on other regions, respectively. Spatial rho and Variance sigma2_e represent spatial effect specific error and individual effect specific error, respectively. N and R2 represent sample size and goodness of fit, respectively. 表 12 数字经济对农业气候韧性效应的空间计量结果分解
Table 12 Decomposition of the spatial measurement results of effect of digital economy on agricultural climate resilience
变量
Variable短期效应 Short-term effect 长期效应 Long-term effect 直接效应
Direct effect间接效应
Indirect effect总效应
Total effect直接效应
Direct effect间接效应
Indirect effect总效应
Total effectDig 0.302** (2.27) 0.860** (2.20) 1.162*** (2.89) 0.473 (0.12) −0.153 (−0.04) 0.319*** (3.00) UR −0.317 (−1.58) −0.563 (−0.87) −0.880 (−1.52) −1.450 (−0.05) 1.198 (0.04) −0.252 (−1.49) TF 0.032 (0.90) 0.473*** (3.41) 0.506*** (3.83) −0.113 (−0.02) 0.252 (0.04) 0.139*** (4.00) ALP 0.005** (2.07) 0.008 (1.03) 0.012* (1.68) 0.013 (0.05) −0.010 (−0.04) 0.003* (1.74) Road 0.033* (1.92) −0.022 (−0.36) 0.012 (0.22) 0.092 (0.05) −0.088 (−0.05) 0.003 (0.24) ***: P<0.01; **: P<0.05; *: P<0.1。括号内为t值。Dig、UR、TF、ALP和Road分别代表数字经济发展水平、城镇化率、土地流转率、农业劳动生产率和公路通达度。Data in parentheses is t value. Dig, UR, TF, ALP, and Road represent digital economic development level, urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively. -
[1] AINUDDIN S, ROUTRAY J K. Earthquake hazards and community resilience in Baluchistan[J]. Natural Hazards, 2012, 63(2): 909−937 doi: 10.1007/s11069-012-0201-x
[2] MARTIN R, SUNLEY P, GARDINER B, et al. How regions react to recessions: resilience and the role of economic structure[J]. Regional Studies, 2016, 50(4): 561−585 doi: 10.1080/00343404.2015.1136410
[3] 隋建利, 李悦欣, 刘金全. 中国经济韧性的时空敛散与异质分化特征−基于马尔科夫区制转移混频动态因子模型的识别[J]. 管理世界, 2024, 40(3): 16−36, 73, 37 doi: 10.3969/j.issn.1002-5502.2024.03.002 SUI J L, LI Y X, LIU J Q. The spatiotemporal convergence and divergence, heterogeneous differentiation characteristics of economic resilience in China: identification based on a Markov switching mixed-frequency dynamic factor model[J]. Journal of Management World, 2024, 40(3): 16−36, 73, 37 doi: 10.3969/j.issn.1002-5502.2024.03.002
[4] 应超, 李加林, 刘永超, 等. 东海海岸带县域城市韧性演化及影响因素[J]. 地理学报, 2024, 79(2): 462−483 doi: 10.11821/dlxb202402011 YING C, LI J L, LIU Y C, et al. The spatiotemporal evolution and influencing factors of resilience of county-level cities in the East China Sea coastal zone based on “background-operation-efficiency”[J]. Acta Geographica Sinica, 2024, 79(2): 462−483 doi: 10.11821/dlxb202402011
[5] 杨仙湖, 姚媛媛, 张瑜瑜, 等. 气候韧性研究可视化分析: 基于CiteSpace和VOSviewer[J]. 科学观察, 2024, 19(1): 31−38 YANG X H, YAO Y Y, ZHANG Y Y, et al. Visual analysis of climate resilience studies: based on CiteSpace and VOSviewer[J]. Science Focus, 2024, 19(1): 31−38
[6] 马文林, 郭丽平, 王海婷, 等. 社区生态系统气候韧性概念及评估研究[J]. 生态经济, 2023, 39(3): 177−183 MA W L, GUO L P, WANG H T, et al. Concept and assessment of climate resilience in community ecosystem[J]. Ecological Economy, 2023, 39(3): 177−183
[7] 汤云凯, 邓汉慧. 数字经济对共同富裕的影响效果及作用机制检验[J]. 统计与决策, 2023, 39(18): 11−15 TANG Y K, DENG H H. Test of effect and mechanism of digital economy on common affluence[J]. Statistics & Decision, 2023, 39(18): 11−15
[8] 张毅, 王军. 数字经济对资源错配的影响研究: 作用机理与经验证据[J]. 当代经济管理, 2023, 45(11): 32−45 ZHANG Y, WANG J. Research on the impact of digital economy on resource misallocation: mechanism and empirical evidence[J]. Contemporary Economic Management, 2023, 45(11): 32−45
[9] 李清华, 何爱平. 数字经济对区域经济协调发展的影响效应及作用机制研究[J]. 经济问题探索, 2022(8): 1−13 LI Q H, HE A P. Research on the effect and mechanism of digital economy on the coordinated development of regional economy[J]. Inquiry into Economic Issues, 2022(8): 1−13
[10] 汤渌洋, 鲁邦克, 邢茂源, 等. 中国数字经济发展水平测度及动态演变分析[J]. 数理统计与管理, 2023, 42(5): 869−882 TANG L Y, LU B K, XING M Y, et al. The measurement and analysis of the development of China’s digital economy and dynamic evolution[J]. Journal of Applied Statistics and Management, 2023, 42(5): 869−882
[11] 李春娥, 吴黎军, 韩岳峰. 中国省域数字经济发展水平综合测度与分析[J]. 统计与决策, 2023, 39(14): 17−21 LI C E, WU L J, HAN Y F. Comprehensive measurement and analysis of China’s provincial digital economy development level[J]. Statistics & Decision, 2023, 39(14): 17−21
[12] 李明亮, 陈德慧, 余国新. 数字普惠金融赋能粮食体系韧性−基于空间溢出效应视角分析[J/OL]. 中国农业资源与区划, 2024: 1–13 (2023-07-22). http://kns.cnki.net/kcms/detail/11.3513.s.20230608.1515.036.html LI M L, CHEN D H, YU G X. Digital inclusive finance empowers food system resilience: based on the perspective of spatial spillover effect[J/OL]. Agricultural Resources and Regionalization in China, 2024: 1–13 (2023-07-22). http://kns.cnki.net/kcms/detail/11.3513.s.20230608.1515.036.html
[13] 罗慧, 刘杰, 王丽, 等. 西北气候暖湿化的农业经济影响评估: 以宁夏为例[J]. 气候变化研究进展, 2023, 19(3): 293−304 LUO H, LIU J, WANG L, et al. Impact assessment of climate warming and wetting on agricultural economy in Northwest China: a case study of Ningxia[J]. Climate Change Research, 2023, 19(3): 293−304
[14] 顾倩. 气候变化下的农业适应性行为研究[J]. 农业灾害研究, 2022, 12(11): 79−81 doi: 10.3969/j.issn.2095-3305.2022.11.026 GU Q. Research on agricultural adaptive behavior under climate change[J]. Journal of Agricultural Catastrophology, 2022, 12(11): 79−81 doi: 10.3969/j.issn.2095-3305.2022.11.026
[15] 陶爱萍, 张珍. 数字经济对服务贸易发展的影响−基于国家层面面板数据的实证研究[J]. 华东经济管理, 2022, 36(5): 1−14 TAO A P, ZHANG Z. The impact of digital economy on the development of trade in services: empirical research based on panel data at the national level[J]. East China Economic Management, 2022, 36(5): 1−14
[16] 王玉聪. 数字经济发展能否提升城市经济韧性[J]. 合作经济与科技, 2023(16): 34−36 doi: 10.3969/j.issn.1672-190X.2023.16.012 WANG Y C. Can the development of digital economy enhance the resilience of urban economy?[J]. Co-Operative Economy & Science, 2023(16): 34−36 doi: 10.3969/j.issn.1672-190X.2023.16.012
[17] LYU Y W, WANG W Q, WU Y, et al. How does digital economy affect green total factor productivity? Evidence from China[J]. Science of the Total Environment, 2023, 857: 159428 doi: 10.1016/j.scitotenv.2022.159428
[18] 张勋, 万广华, 张佳佳, 等. 数字经济、普惠金融与包容性增长[J]. 经济研究, 2019, 54(8): 71−86 ZHANG X, WAN G H, ZHANG J J, et al. Digital economy, financial inclusion, and inclusive growth[J]. Economic Research Journal, 2019, 54(8): 71−86
[19] 赵巍, 徐筱雯. 数字经济对农业经济韧性的影响效应与作用机制[J]. 华南农业大学学报(社会科学版), 2023, 22(2): 87−96 ZHAO W, XU X W. Effect and mechanism of digital economy on the resilience of agricultural economy[J]. Journal of South China Agricultural University (Social Science Edition), 2023, 22(2): 87−96
[20] 赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展− 来自中国城市的经验证据[J]. 管理世界, 2020, 36(10): 65−76 doi: 10.3969/j.issn.1002-5502.2020.10.006 ZHAO T, ZHANG Z, LIANG S K. Digital economy, entrepreneurship, and high-quality economic development: empirical evidence from urban China[J]. Management World, 2020, 36(10): 65−76 doi: 10.3969/j.issn.1002-5502.2020.10.006
[21] 王晓润, 李娟, 刘熙. 我国农业保险对农业碳排放的影响研究[J]. 云南农业大学学报(社会科学), 2023, 17(4): 86−94 doi: 10.12371/j.ynau(s).202303072 WANG X R, LI J, LIU X. Research on the impact of agricultural insurance on agricultural carbon emissions in China[J]. Journal of Yunnan Agricultural University (Social Science), 2023, 17(4): 86−94 doi: 10.12371/j.ynau(s).202303072
[22] 欧阳鹏, 姜霞. 农业生产性服务何以提高农业绿色全要素生产率?[J]. 西部经济管理论坛, 2024, 35(2): 23−34 OUYANG P, JIANG X. How can agricultural productivity service improve agricultural green total factor productivity?[J]. West Forum on Economy and Management, 2024, 35(2): 23−34
[23] 谢祎泠, 刘志雄. 农地流转对农业数字经济发展的影响[J]. 湖南农业大学学报(社会科学版), 2024, 25(2): 22−29 XIE Y L, LIU Z X. Research on the impact of farmland transfer on the development of agricultural digital economy[J]. Journal of Hunan Agricultural University (Social Sciences), 2024, 25(2): 22−29
[24] 甘林针, 钱龙, 钟钰. 成效不彰VS行之有效: 粮食安全省长责任制促进了粮食生产吗?[J]. 经济评论, 2024(2): 22−35 GAN L Z, QIAN L, ZHONG Y. Ineffective vs. effective: has the governor’s responsibility system for food security promoted food production?[J]. Economic Review, 2024(2): 22−35
[25] 朱华, 余茂辉. 县域经济高质量发展水平的统计评价−以湖北省为例[J]. 统计与决策, 2024, 40(8): 132−137 ZHU H, YU M H. Statistical evaluation of high-quality development level of county economy—Taking Hubei Province as an example[J]. Statistics & Decision, 2024, 40(8): 132−137
[26] 柏培文, 杨志才. 中国二元经济的要素错配与收入分配格局[J]. 经济学(季刊), 2019, 18(2): 639−660 BAI P W, YANG Z C. Misallocation of China’s dual economic and income distribution[J]. China Economic Quarterly, 2019, 18(2): 639−660
[27] 陈钊, 陆铭, 金煜. 中国人力资本和教育发展的区域差异: 对于面板数据的估算[J]. 世界经济, 2004, 27(12): 25−31, 77 CHEN Z, LU M, JIN Y. Regional differences of human capitals and education development in China: an estimation of the panel data[J]. World Economy, 2004, 27(12): 25−31, 77
[28] 王香艳, 李金叶. 数字经济是否有效促进了节能和碳减排?[J]. 中国人口·资源与环境, 2022, 32(11): 83−95 doi: 10.12062/cpre.20221022 WANG X Y, LI J Y. Did the digital economy effectively promote energy conservation and CO2 reduction?[J]. China Population, Resources and Environment, 2022, 32(11): 83−95 doi: 10.12062/cpre.20221022
[29] 张刚, 张文佳. 数字经济赋能乡村产业振兴机制与实践路径研究[J]. 商展经济, 2023(12): 34−37 ZHANG G, ZHANG W J. Research on the mechanism and practical paths of rural industrial revitalization boosted by the digital economy[J]. Trade Fair Economy, 2023(12): 34−37
[30] 高志刚, 丁梦雅. 数字经济、碳排放强度与资源型城市高质量发展[J]. 甘肃社会科学, 2024(2): 184–195 GAO Z G, DING M Y. Digital economy, carbon emission intensity, and high-quality development of resource-based cities[J]. Gansu Social Sciences, 2024(2): 184–195