数字经济发展对农业气候韧性的影响机制研究基于调节效应和空间溢出效应分析

陈卫洪, 于晴

陈卫洪, 于晴. 数字经济发展对农业气候韧性的影响机制研究−基于调节效应和空间溢出效应分析[J]. 中国生态农业学报 (中英文), 2024, 32(6): 944−956. DOI: 10.12357/cjea.20240145
引用本文: 陈卫洪, 于晴. 数字经济发展对农业气候韧性的影响机制研究−基于调节效应和空间溢出效应分析[J]. 中国生态农业学报 (中英文), 2024, 32(6): 944−956. DOI: 10.12357/cjea.20240145
CHEN W H, YU Q. Study on the influence mechanism of digital economy development on agricultural climate resilience−Based on the analysis of regulatory effects and spatial spillover effects[J]. Chinese Journal of Eco-Agriculture, 2024, 32(6): 944−956. DOI: 10.12357/cjea.20240145
Citation: CHEN W H, YU Q. Study on the influence mechanism of digital economy development on agricultural climate resilience−Based on the analysis of regulatory effects and spatial spillover effects[J]. Chinese Journal of Eco-Agriculture, 2024, 32(6): 944−956. DOI: 10.12357/cjea.20240145

数字经济发展对农业气候韧性的影响机制研究基于调节效应和空间溢出效应分析

基金项目: 国家社会科学基金项目(BGX230346)、教育部新农科研究与改革实践项目(2020347)、贵州省科技平台及人才团队计划项目(黔科合平台人才[2017]5647)和贵州省教育厅人文社会科学研究项目(2024RW321)资助
详细信息
    作者简介:

    陈卫洪, 研究方向为农林经济理论与政策、气候变化与低碳经济和资源环境与区域发展、数字经济、农业大数据。E-mail: 15136482431@163.com

    通讯作者:

    于晴, 研究方向为农村与区域发展、气候变化与低碳经济。E-mail: 1220638927@qq.com

  • 中图分类号: F323; X43

Study on the influence mechanism of digital economy development on agricultural climate resilienceBased on the analysis of regulatory effects and spatial spillover effects

Funds: This study was supported by the National Social Science Foundation of China (BGX230346), the New Agricultural Research and Reform Practice Project of Ministry of Education of China (2020347), Guizhou Science and Technology Platform and Talent Team Project (Guizhou Science Platform Talents [2017] 5647), and the Humanities and Social Science Project of Department of Education of Guizhou Province (2024RW321).
More Information
  • 摘要:

    数字经济已成为重塑经济结构、重组生产资源、协调人与自然关系的核心要素。数字经济具有创新性强、覆盖面广、复制容易等优势, 能够迅速渗透到农业生产、经营、产业发展等各个领域。数字经济的快速发展为农业部门应对气候冲击提供了新的思路。本文基于2011—2020年我国30个省(自治区、直辖市, 不包括香港、澳门、台湾和西藏)的面板数据, 使用熵值法对数字经济发展水平和农业气候韧性进行测算, 分析了数字经济对农业气候韧性的影响, 并考察了财政支农和农业保险对该作用机制的调节效应。此外, 还通过构建空间计量模型探析了数字经济发展对农业气候韧性的空间溢出效应。结果表明: 我国农业气候韧性总体呈上升趋势, 但数值偏低, 仍存在较大的上升空间; 东部地区的农业气候韧性指数高于中部、西部以及东北部地区; 数字经济对农业气候韧性具有显著的促进作用, 且存在区域差异, 其中数字经济对东部地区农业气候韧性的促进作用最佳, 对中西部地区影响不显著, 对东北地区农业气候韧性具有抑制作用; 财政支农和农业保险强化了数字经济对农业气候韧性的影响; 数字经济对农业气候韧性的影响具有显著正向的空间溢出效应, 通过对动态空间杜宾模型进行分解发现短期效应要优于长期效应。本文为减缓和适应气候变化, 提升农业气候韧性提供了理论基础与政策依据。

     

    Abstract:

    The digital economy is a fundamental element in reshaping economic structures, optimizing resource allocation, and harmonizing the relationship between humans and nature. The digital economy has advantages such as strong innovation, wide coverage, and easy replication, and can quickly penetrate into various fields such as agricultural production, management, and industrial development. The rapid advancement of the digital economy has introduced new strategies for the agricultural sector to cope with climate shocks. This study utilized panel data from 30 provinces (autonomous regions and municipalities, not including Hong Kong, Macao, Taiwan and Xizang of China) in China from 2011 to 2020. Employing the entropy method, we measured the development levels of the digital economy and agricultural climate resilience. We then analyzed the impact of the digital economy on agricultural climate resilience and examine the regulatory effects of financial support for agriculture and agricultural insurance. Additionally, a spatial econometric model was constructed to explore the spatial spillover effects of digital economic development on agricultural climate resilience. The findings revealed that the overall agricultural climate resilience in China was increasing, albeit from a relatively low base, indicating significant room for improvement. The agricultural climate resilience index was highest in the eastern region, followed by the central, western, and northeastern regions. The digital economy significantly enhanced agricultural climate resilience, with notable regional differences. Specifically, the digital economy showed significant positive impact in the eastern region, no significant effect in the central and western regions, and significant negative impact in the northeastern region. Furthermore, financial support for agriculture and agricultural insurance amplified the positive effects of the digital economy on agricultural climate resilience. The influence of the digital economy on agricultural climate resilience exhibited a significant positive spatial spillover effect. We found that short-term effects surpass long-term effects via decomposing the dynamic spatial Durbin model. This study provides a theoretical and policy foundation for mitigating and adapting to climate change and enhancing agricultural climate resilience.

     

  • 图  1   2011—2020年中国及各地区农业气候韧性均值变化趋势

    Figure  1.   Change trend of agricultural climate resilience of China and different regions from 2011 to 2020

    图  2   我国30个省份(自治区、直辖市, 不包括香港、澳门、台湾和西藏)农业气候韧性重心迁移轨迹

    Figure  2.   Migration track of agricultural climate resilience center of gravity in 30 provinces (autonomous regions and municipalities, not including Hong Kong, Macao, Taiwan and Xizang of China) of China

    表  1   农业气候韧性评价指标体系

    Table  1   Evaluation index system of agricultural climate resilience

    一级指标
    First-level index
    二级指标
    Second-level
    index
    三级指标
    Third-level
    index
    指标说明
    Index interpretation
    指标属性
    Index attribute
    抵抗力
    Resistance
    内在稳定性
    Intrinsic stability
    农村人均可支配收入
    Per capita disposable income in rural area
    各省农村人均可支配收入
    Rural per capita disposable income in each province
    正向
    Positive
    农村信息化水平
    Rural informatization level
    行政村宽带网络覆盖率
    Broadband network coverage rate in administrative villages
    正向
    Positive
    森林覆盖率
    Forest coverage rate
    各省森林覆盖率
    Forest coverage rate in each province
    正向
    Positive
    农业气象观测站点个数
    Number of agrometeorological observation stations
    各省农业气象观测业务站点个数
    Number of agrometeorological observation stations in each province
    正向
    Positive
    有效灌溉率
    Effective irrigation rate
    有效灌溉面积/耕地面积
    Effective irrigated area / cultivated land area
    正向
    Positive
    农业成灾率
    Agricultural disaster rate
    成灾面积/受灾面积
    Disaster-affected area / affected area
    负向
    Negative
    产供鲁棒性
    Robustness of production and supply
    第一产业占比
    Proportion of primary industry
    第一产业增加值占地区生产总值比重
    Contribution of added value of the primary industry accounts to the regional GDP
    正向
    Positive
    人均农林牧渔业增加值
    Per capita added value of agriculture, forestry, animal husbandry and fishery
    农林牧渔业增加值/农林牧渔业从业人员数
    Added value of agriculture, forestry, animal husbandry and fishery / number of employees of agriculture, forestry, animal husbandry and fishery
    正向
    Positive
    农产品加工比值
    Agricultural product processing ratio
    农产品加工营业收入/农林牧渔业总产值
    Processing and business income of agricultural products / total output value of agriculture, forestry, animal husbandry and fishery
    正向
    Positive
    适应力
    Adaptability
    可持续性
    Sustainability
    农业人力资本存量
    Agricultural human capital stock
    各省人力资本存量
    Provincial human capital stock
    正向
    Positive
    农药使用强度
    Pesticide intensity
    农药使用量/耕地面积
    Pesticide usage / cultivated land area
    负向
    Negative
    化肥使用强度
    Strength of fertilizer use
    化肥施用量/耕地面积
    Fertilizer application amount / cultivated land area
    负向
    Negative
    农村人均用电量
    Per capita electricity consumption in rural area
    农村居民用电量/农村人口
    Electricity consumption of rural residents / rural population
    正向
    Positive
    可恢复性
    Restorability
    复种指数
    Multiple-crop index
    农作物播种面积/耕地面积
    Crop sown area / cultivated land area
    正向
    Positive
    水土协调度
    Soil and water coordination
    水土流失治理面积/辖区面积
    Soil erosion control area / jurisdiction area
    正向
    Positive
    重构力
    Reconstructive power
    多样协作性
    Diversified collaboration
    农业生产合作化程度
    Degree of cooperation in agricultural production
    农村每万人拥有农民专业合作社数量
    Number of specialized farmer cooperatives for every 10 000 rural people
    正向
    Positive
    单位播种面积农林牧渔服务业产值
    Output value of agriculture, forestry, animal husbandry and fishery service industry per unit sown area
    农林牧渔服务业产值/农作物播种面积
    Output value of agriculture, forestry, animal husbandry and fishery service industry / sown area of crops
    正向
    Positive
    单位面积农机总动力
    Agricultural machinery total power per unit area
    农业机械总动力/耕地面积
    Total power of agricultural machinery / cultivated land area
    正向
    Positive
    科技进步性
    Technological progress
    农业固定资产投资
    Investment in agricultural fixed assets
    农村住户固定资产投向农业
    Fixed assets of rural households invested in agriculture
    正向
    Positive
    人均农业科研支出
    Per capita expenditure on agricultural scientific research
    农业科研支出/农村人口数
    Agricultural scientific research expenditure / rural population number
    正向
    Positive
    下载: 导出CSV

    表  2   数字经济发展水平评价指标体系

    Table  2   Evaluation index system of the developmental level of digital economy

    一级指标
    First-level index
    二级指标
    Second-level index
    指标含义
    Index interpretation
    指标属性
    Index attribute
    数字经济发展水平
    Developmental level of digital economy
    互联网普及率
    Internet penetration rate
    每百人互联网用户数
    Number of internet users per 100 people
    正向
    Positive
    互联网相关从业人数
    Number of internet-related employees
    每万人计算机服务和软件从业人员数
    Number of computer services and software employees per 10 000 people
    正向
    Positive
    互联网相关产出
    Internet-related output
    人均电信业务总量
    Total telecom business per capita
    正向
    Positive
    移动互联网用户数
    Number of mobile internet users
    每百人移动电话用户数
    Number of mobile phones users per 100 people
    正向
    Positive
    数字金融普惠发展
    Inclusive development of digital finance
    中国数字普惠金融指数
    The China Digital Financial Inclusion Index
    正向
    Positive
    下载: 导出CSV

    表  3   数字经济发展对农业气候韧性影响的相关变量描述性统计结果(n=300)

    Table  3   Descriptive statistical results of variables related to the impact of digital economy development on agricultural climate resilience (n=300)

    变量类型
    Variable type
    变量名称
    Variable name
    平均值
    Average value
    标准差
    Standard deviation
    最小值
    Minimum value
    最大值
    Maximum value
    被解释变量
    Explained variable
    农业气候韧性
    Agricultural climate resilience (ACR)
    0.177 0.079 0.111 0.575
    核心解释变量
    Core explanatory variable
    数字经济发展水平
    Development level of digital economy (Dig)
    0.373 0.174 0.077 0.982
    调节变量
    Regulated variable
    财政支农
    Financial support for agriculture (AF)
    0.547 0.270 0.092 1.339
    农业保险密度
    Agricultural insurance density (AID)
    0.011 0.012 0.0003 0.092
    控制变量
    Controlled variable
    城镇化率
    Urbanization rate (UR)
    0.590 0.122 0.35 0.896
    土地流转率
    Land transfer rate (TF)
    0.318 0.164 0.034 0.911
    农业劳动生产率
    Agricultural labor productivity (ALP)
    5.116 2.521 1.015 16.812
    公路通达度
    Road accessibility (Road)
    0.945 0.505 0.089 2.205
    下载: 导出CSV

    表  4   2011—2020年我国30个省(自治区、直辖市, 不包括香港、澳门、台湾和西藏)农业气候韧性分布格局中心及标准差椭圆参数

    Table  4   Center and standard deviation elliptical parameters of the distribution pattern of agricultural climate resilience in 30 provinces (autonomous regions and municipalities, not including Hong Kong, Macao, Taiwan and Xizang of China) of China from 2011 to 2020

    年份
    Year
    X轴标准差
    Standard deviation of X axis (km)
    Y轴标准差
    Standard deviation of Y axis (km)
    方向角
    Direction angle (°)
    重心移动距离
    Center moving distance (km)
    20111008.4521129.77439.886
    2014986.0311129.84533.35925.148
    2017973.2941121.38328.57617.888
    2020956.2611123.75924.65020.616
    下载: 导出CSV

    表  5   数字经济对农业气候韧性的基准回归结果

    Table  5   Benchmark regression results of digital economy on agricultural climate resilience

    变量
    Variable
    ACR
    模型1 Model 1 模型2 Model 2 模型3 Model 3 模型4 Model 4 模型5 Model 5
    Dig 0.224*** (0.023) 0.047** (0.024) 0.137*** (0.019) 0.625*** (0.0616) 0.351*** (0.066)
    UR 0.421*** (0.036) −0.345*** (0.067) 0.162*** (0.041) −0.387*** (0.087)
    TF 0.087*** (0.026) 0.003 (0.021) 0.096*** (0.024) −0.026 (0.028)
    ALP −0.004*** (0.002) 0.004*** (0.001) −0.003** (0.002) 0.005*** (0.001)
    Road 0.010 (0.007) 0.024 (0.018) 0.007 (0.006) 0.024 (0.017)
    Constant 0.094*** (0.010) −0.103*** (0.015) 0.544*** (0.047) −0.024 (0.016) 0.505*** (0.085)
    Year FE No No No Yes Yes
    Province FE No No Yes No Yes
    N 300 300 300 300 300
    R2 0.241 0.637 0.952 0.737 0.957
      ***: P<0.01; **: P<0.05; *: P<0.1; 括号内为稳健的标准误。ACR和Dig分别代表农业气候韧性和数字经济发展水平; UR、TF、ALP和Road分别代表城镇化率、土地流转率、农业劳动生产率和公路通达度; Constant、Year FE、Province FE、NR2分别代表常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR and Dig represent resilience of agricultural climate and level of digital economy development, respectively; UR, TF, ALP, and Road represent urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively; Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively.
    下载: 导出CSV

    表  6   数字经济发展对农业气候韧性影响的稳健性检验结果

    Table  6   Robustness test results of the impact of digital economy development on agricultural climate resilience

    项目
    Project
    ACR
    模型1 Model 1 模型2 Model 2
    Dig 0.348*** (−0.083)
    LEDE 0.142*** (−0.022)
    UR −0.336*** (−0.086) −0.489** (−0.194)
    TF −0.057** (−0.026) −0.074* (−0.042)
    ALP 0.004*** (−0.001) 0.002 (−0.002)
    Road 0.025 (−0.017) 0.037 (−0.028)
    Constant 0.569*** (−0.074) 0.596*** (−0.181)
    Year FE Yes Yes
    Province FE Yes Yes
    R2 0.959 0.963
      ***: P<0.01; **: P<0.05; *: P<0.1。括号内为稳健的标准误。ACR、Dig和LEDE分别表示农业气候韧性、数字经济发展水平和替换衡量指标重新测算的数字经济发展水平; UR、TF、ALP和Road分别表示城镇化率、土地流转率、农业劳动生产率和公路通达度; Constant、Year FE、Province FE和R2分别代表常量、时间固定效应、省份固定效应和拟合优度。模型1指替换解释变量, 模型2指缩短时间跨度。Data in parentheses is the robust standard error. ACR, Dig, and LEDE represent resilience of agricultural climate, level of digital economy development, and level of digital economy development recalculated by replacing measurement indicators, respectively. UR, TF, ALP, and Road represent urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively. Constant, Year FE, Province FE, and R2 represent constant, time fixed effect, province fixed effect, and goodness of fit, respectively. Model 1 refers to replace explanatory variables, and Model 2 refers to shorten the time span.
    下载: 导出CSV

    表  7   数字经济发展对农业气候韧性影响的区域异质性回归结果

    Table  7   Regional heterogeneity regression results of the impact of digital economy development on agricultural climate resilience

    变量
    Variable
    ACR
    东部
    East
    中部
    Middle
    西部
    West
    东北部
    Northeast
    Dig 0.577*** (−0.206) 0.072 (−0.097) −0.015 (−0.078) −0.641** (−0.221)
    Constant 0.126 (−0.277) 0.214*** (−0.047) 0.280*** (−0.060) −0.253 (−0.381)
    Controls Yes Yes Yes Yes
    Year FE Yes Yes Yes Yes
    Province FE Yes Yes Yes Yes
    N 100 60 120 30
    R2 0.952 0.987 0.881 0.876
      ***: P<0.01; **: P<0.05。括号内为稳健的标准误。ACR表示农业气候韧性; Dig表示数字经济发展水平; Controls表示上文提到的一系列控制变量; Constant、Year FE、Province FE、NR2分别表示常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR represents agricultural cliamte resilience. Dig represents digital economy development level. Controls represent a series of control variables mentioned earlier. Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively.
    下载: 导出CSV

    表  8   财政支农和农业保险的调节效应分析结果

    Table  8   Analysis results of the regulation effect of financial support for agriculture and agricultural insurance

    变量
    Variable
    ACR
    模型1 Model 1 模型2 Model 2
    Dig 0.322*** (4.72) 0.175** (2.00)
    AF −0.082*** (−2.66)
    Dig×AF 0.078** (2.05)
    AID −0.168 (−0.84)
    Dig×AID 0.549** (2.19)
    Constant 0.483*** (0.086) 0.389*** (−0.090)
    Controls Yes Yes
    Year FE Yes Yes
    Province FE Yes Yes
    N 300 300
    R2 0.957 0.958
      ***: P<0.01; **: P<0.05。括号内为稳健的标准误。ACR、Dig、AF、AID分别表示农业气候韧性、数字经济发展水平、财政支农和农业保险密度; Controls表示上文提到的一系列控制变量; Constant、Year FE、Province FE、NR2分别表示常量、时间固定效应、省份固定效应、样本数和拟合优度。Data in parentheses is the robust standard error. ACR, Dig, AF, and AID represent agricultural climate resilience, digital economy development level, financial support for agriculture, and agricultural insurance density, respectively. Controls represent a series of control variables mentioned earlier. Constant, Year FE, Province FE, N, and R2 represent constant, time fixed effect, province fixed effect, sample size, and goodness of fit, respectively.
    下载: 导出CSV

    表  9   农业气候韧性和数字经济的全局空间自相关检验结果

    Table  9   Results of the global spatial autocorrelation test of agricultural climate resilience and digital economy development level

    年份
    Year
    农业气候韧性 Agricultural climate resilience数字经济发展水平 Digital economy development level
    Moran’s IZZ valuePP valueMoran’s IZZ valuePP value
    20110.1124.4920.0000.2215.4390.000
    20120.1294.6930.0000.2225.5000.000
    20130.1465.0090.0000.2215.4550.000
    20140.1655.1020.0000.2075.2790.000
    20150.1865.3720.0000.1945.0150.000
    20160.1825.3620.0000.2025.2490.000
    20170.1875.3300.0000.1874.8760.000
    20180.1915.3160.0000.1754.5340.000
    20190.1955.1140.0000.1724.4750.000
    20200.1825.0760.0000.1634.3140.000
    下载: 导出CSV

    表  10   数字经济发展对农业气候韧性效应的空间计量模型检验结果

    Table  10   Spatial econometric model test results of the impact of digital economy development on agricultural climate resilience

    检验类型 Inspection type 检验方法 Method of calibration 统计量值 Statistical value PP value
    LM检验 LM checkout LM-error检验 LM-error test 15.565 0.000
    稳健的LM-error检验 Robust LM-error test 54.449 0.000
    LM-lag检验 LM-lag test 0.010 0.918
    稳健的LM-lag检验 Robust LM-lag test 38.894 0.000
    Wald检验 Wald checkout SDM退化为SEM SDM degenerates into SEM 38.060 0.000
    SDM退化为SAR SDM degenerates into SAR 34.290 0.000
    Hausman检验 Hausman-Test 固定效应和随机效应检验 Fixed and random effects tests 20.460 0.040
    LR检验 LR checkout SDM模型退化为SEM模型 SDM model degenerates into SEM model 38.160 0.000
    SDM模型退化为SAR模型 SDM model degenerates into SAR model 30.350 0.000
    下载: 导出CSV

    表  11   数字经济发展对农业气候韧性效应的动态空间杜宾回归结果

    Table  11   Dynamic spatial Durbin regression results of the impact of digital economy development on agricultural climate resilience

    变量 Variable Main Wx
    Dig 0.338** (2.370) 1.296*** (2.640)
    L.ACR −3.688*** (−3.520)
    UR −0.365* (−1.801) −0.926 (−0.962)
    TF 0.051 (1.393) 0.665*** (3.542)
    ALP 0.005** (2.131) −0.012 (1.220)
    Road 0.032* (1.940) −0.012 (−0.141)
    Spatial rho 0.437** (2.441)
    Variance sigma2_e 0.0001*** (3.851)
    N 300
    R2 0.458
      ***: P<0.01; **: P<0.05; *: P<0.1。括号内为t值。Dig、L.ACR、UR、TF、ALP、Road分别代表数字经济发展水平、农业气候韧性滞后一期、城镇化率、土地流转率、农业劳动生产率和公路通达度, Main和Wx分别代表变量对本地区的影响系数和变量对其他地区的空间溢出系数, Spatial rho和Variance sigma2_e分别代表空间效应特异误差和个体效应特异误差, NR2分别代表样本量和拟合优度。Data in parentheses is t value. Dig, L.ACR, UR, TF, ALP, and Road represent digital economic development level, lag of one period in agricultural climate resilience, urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively. Main and Wx represent coefficient of influence of variables on the local region and the spatial spillover coefficient of variables on other regions, respectively. Spatial rho and Variance sigma2_e represent spatial effect specific error and individual effect specific error, respectively. N and R2 represent sample size and goodness of fit, respectively.
    下载: 导出CSV

    表  12   数字经济对农业气候韧性效应的空间计量结果分解

    Table  12   Decomposition of the spatial measurement results of effect of digital economy on agricultural climate resilience

    变量
    Variable
    短期效应 Short-term effect 长期效应 Long-term effect
    直接效应
    Direct effect
    间接效应
    Indirect effect
    总效应
    Total effect
    直接效应
    Direct effect
    间接效应
    Indirect effect
    总效应
    Total effect
    Dig 0.302** (2.27) 0.860** (2.20) 1.162*** (2.89) 0.473 (0.12) −0.153 (−0.04) 0.319*** (3.00)
    UR −0.317 (−1.58) −0.563 (−0.87) −0.880 (−1.52) −1.450 (−0.05) 1.198 (0.04) −0.252 (−1.49)
    TF 0.032 (0.90) 0.473*** (3.41) 0.506*** (3.83) −0.113 (−0.02) 0.252 (0.04) 0.139*** (4.00)
    ALP 0.005** (2.07) 0.008 (1.03) 0.012* (1.68) 0.013 (0.05) −0.010 (−0.04) 0.003* (1.74)
    Road 0.033* (1.92) −0.022 (−0.36) 0.012 (0.22) 0.092 (0.05) −0.088 (−0.05) 0.003 (0.24)
      ***: P<0.01; **: P<0.05; *: P<0.1。括号内为t值。Dig、UR、TF、ALP和Road分别代表数字经济发展水平、城镇化率、土地流转率、农业劳动生产率和公路通达度。Data in parentheses is t value. Dig, UR, TF, ALP, and Road represent digital economic development level, urbanization rate, land transfer rate, agricultural labor productivity, and road accessibility, respectively.
    下载: 导出CSV
  • [1]

    AINUDDIN S, ROUTRAY J K. Earthquake hazards and community resilience in Baluchistan[J]. Natural Hazards, 2012, 63(2): 909−937 doi: 10.1007/s11069-012-0201-x

    [2]

    MARTIN R, SUNLEY P, GARDINER B, et al. How regions react to recessions: resilience and the role of economic structure[J]. Regional Studies, 2016, 50(4): 561−585 doi: 10.1080/00343404.2015.1136410

    [3] 隋建利, 李悦欣, 刘金全. 中国经济韧性的时空敛散与异质分化特征−基于马尔科夫区制转移混频动态因子模型的识别[J]. 管理世界, 2024, 40(3): 16−36, 73, 37 doi: 10.3969/j.issn.1002-5502.2024.03.002

    SUI J L, LI Y X, LIU J Q. The spatiotemporal convergence and divergence, heterogeneous differentiation characteristics of economic resilience in China: identification based on a Markov switching mixed-frequency dynamic factor model[J]. Journal of Management World, 2024, 40(3): 16−36, 73, 37 doi: 10.3969/j.issn.1002-5502.2024.03.002

    [4] 应超, 李加林, 刘永超, 等. 东海海岸带县域城市韧性演化及影响因素[J]. 地理学报, 2024, 79(2): 462−483 doi: 10.11821/dlxb202402011

    YING C, LI J L, LIU Y C, et al. The spatiotemporal evolution and influencing factors of resilience of county-level cities in the East China Sea coastal zone based on “background-operation-efficiency”[J]. Acta Geographica Sinica, 2024, 79(2): 462−483 doi: 10.11821/dlxb202402011

    [5] 杨仙湖, 姚媛媛, 张瑜瑜, 等. 气候韧性研究可视化分析: 基于CiteSpace和VOSviewer[J]. 科学观察, 2024, 19(1): 31−38

    YANG X H, YAO Y Y, ZHANG Y Y, et al. Visual analysis of climate resilience studies: based on CiteSpace and VOSviewer[J]. Science Focus, 2024, 19(1): 31−38

    [6] 马文林, 郭丽平, 王海婷, 等. 社区生态系统气候韧性概念及评估研究[J]. 生态经济, 2023, 39(3): 177−183

    MA W L, GUO L P, WANG H T, et al. Concept and assessment of climate resilience in community ecosystem[J]. Ecological Economy, 2023, 39(3): 177−183

    [7] 汤云凯, 邓汉慧. 数字经济对共同富裕的影响效果及作用机制检验[J]. 统计与决策, 2023, 39(18): 11−15

    TANG Y K, DENG H H. Test of effect and mechanism of digital economy on common affluence[J]. Statistics & Decision, 2023, 39(18): 11−15

    [8] 张毅, 王军. 数字经济对资源错配的影响研究: 作用机理与经验证据[J]. 当代经济管理, 2023, 45(11): 32−45

    ZHANG Y, WANG J. Research on the impact of digital economy on resource misallocation: mechanism and empirical evidence[J]. Contemporary Economic Management, 2023, 45(11): 32−45

    [9] 李清华, 何爱平. 数字经济对区域经济协调发展的影响效应及作用机制研究[J]. 经济问题探索, 2022(8): 1−13

    LI Q H, HE A P. Research on the effect and mechanism of digital economy on the coordinated development of regional economy[J]. Inquiry into Economic Issues, 2022(8): 1−13

    [10] 汤渌洋, 鲁邦克, 邢茂源, 等. 中国数字经济发展水平测度及动态演变分析[J]. 数理统计与管理, 2023, 42(5): 869−882

    TANG L Y, LU B K, XING M Y, et al. The measurement and analysis of the development of China’s digital economy and dynamic evolution[J]. Journal of Applied Statistics and Management, 2023, 42(5): 869−882

    [11] 李春娥, 吴黎军, 韩岳峰. 中国省域数字经济发展水平综合测度与分析[J]. 统计与决策, 2023, 39(14): 17−21

    LI C E, WU L J, HAN Y F. Comprehensive measurement and analysis of China’s provincial digital economy development level[J]. Statistics & Decision, 2023, 39(14): 17−21

    [12] 李明亮, 陈德慧, 余国新. 数字普惠金融赋能粮食体系韧性−基于空间溢出效应视角分析[J/OL]. 中国农业资源与区划, 2024: 1–13 (2023-07-22). http://kns.cnki.net/kcms/detail/11.3513.s.20230608.1515.036.html

    LI M L, CHEN D H, YU G X. Digital inclusive finance empowers food system resilience: based on the perspective of spatial spillover effect[J/OL]. Agricultural Resources and Regionalization in China, 2024: 1–13 (2023-07-22). http://kns.cnki.net/kcms/detail/11.3513.s.20230608.1515.036.html

    [13] 罗慧, 刘杰, 王丽, 等. 西北气候暖湿化的农业经济影响评估: 以宁夏为例[J]. 气候变化研究进展, 2023, 19(3): 293−304

    LUO H, LIU J, WANG L, et al. Impact assessment of climate warming and wetting on agricultural economy in Northwest China: a case study of Ningxia[J]. Climate Change Research, 2023, 19(3): 293−304

    [14] 顾倩. 气候变化下的农业适应性行为研究[J]. 农业灾害研究, 2022, 12(11): 79−81 doi: 10.3969/j.issn.2095-3305.2022.11.026

    GU Q. Research on agricultural adaptive behavior under climate change[J]. Journal of Agricultural Catastrophology, 2022, 12(11): 79−81 doi: 10.3969/j.issn.2095-3305.2022.11.026

    [15] 陶爱萍, 张珍. 数字经济对服务贸易发展的影响−基于国家层面面板数据的实证研究[J]. 华东经济管理, 2022, 36(5): 1−14

    TAO A P, ZHANG Z. The impact of digital economy on the development of trade in services: empirical research based on panel data at the national level[J]. East China Economic Management, 2022, 36(5): 1−14

    [16] 王玉聪. 数字经济发展能否提升城市经济韧性[J]. 合作经济与科技, 2023(16): 34−36 doi: 10.3969/j.issn.1672-190X.2023.16.012

    WANG Y C. Can the development of digital economy enhance the resilience of urban economy?[J]. Co-Operative Economy & Science, 2023(16): 34−36 doi: 10.3969/j.issn.1672-190X.2023.16.012

    [17]

    LYU Y W, WANG W Q, WU Y, et al. How does digital economy affect green total factor productivity? Evidence from China[J]. Science of the Total Environment, 2023, 857: 159428 doi: 10.1016/j.scitotenv.2022.159428

    [18] 张勋, 万广华, 张佳佳, 等. 数字经济、普惠金融与包容性增长[J]. 经济研究, 2019, 54(8): 71−86

    ZHANG X, WAN G H, ZHANG J J, et al. Digital economy, financial inclusion, and inclusive growth[J]. Economic Research Journal, 2019, 54(8): 71−86

    [19] 赵巍, 徐筱雯. 数字经济对农业经济韧性的影响效应与作用机制[J]. 华南农业大学学报(社会科学版), 2023, 22(2): 87−96

    ZHAO W, XU X W. Effect and mechanism of digital economy on the resilience of agricultural economy[J]. Journal of South China Agricultural University (Social Science Edition), 2023, 22(2): 87−96

    [20] 赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展− 来自中国城市的经验证据[J]. 管理世界, 2020, 36(10): 65−76 doi: 10.3969/j.issn.1002-5502.2020.10.006

    ZHAO T, ZHANG Z, LIANG S K. Digital economy, entrepreneurship, and high-quality economic development: empirical evidence from urban China[J]. Management World, 2020, 36(10): 65−76 doi: 10.3969/j.issn.1002-5502.2020.10.006

    [21] 王晓润, 李娟, 刘熙. 我国农业保险对农业碳排放的影响研究[J]. 云南农业大学学报(社会科学), 2023, 17(4): 86−94 doi: 10.12371/j.ynau(s).202303072

    WANG X R, LI J, LIU X. Research on the impact of agricultural insurance on agricultural carbon emissions in China[J]. Journal of Yunnan Agricultural University (Social Science), 2023, 17(4): 86−94 doi: 10.12371/j.ynau(s).202303072

    [22] 欧阳鹏, 姜霞. 农业生产性服务何以提高农业绿色全要素生产率?[J]. 西部经济管理论坛, 2024, 35(2): 23−34

    OUYANG P, JIANG X. How can agricultural productivity service improve agricultural green total factor productivity?[J]. West Forum on Economy and Management, 2024, 35(2): 23−34

    [23] 谢祎泠, 刘志雄. 农地流转对农业数字经济发展的影响[J]. 湖南农业大学学报(社会科学版), 2024, 25(2): 22−29

    XIE Y L, LIU Z X. Research on the impact of farmland transfer on the development of agricultural digital economy[J]. Journal of Hunan Agricultural University (Social Sciences), 2024, 25(2): 22−29

    [24] 甘林针, 钱龙, 钟钰. 成效不彰VS行之有效: 粮食安全省长责任制促进了粮食生产吗?[J]. 经济评论, 2024(2): 22−35

    GAN L Z, QIAN L, ZHONG Y. Ineffective vs. effective: has the governor’s responsibility system for food security promoted food production?[J]. Economic Review, 2024(2): 22−35

    [25] 朱华, 余茂辉. 县域经济高质量发展水平的统计评价−以湖北省为例[J]. 统计与决策, 2024, 40(8): 132−137

    ZHU H, YU M H. Statistical evaluation of high-quality development level of county economy—Taking Hubei Province as an example[J]. Statistics & Decision, 2024, 40(8): 132−137

    [26] 柏培文, 杨志才. 中国二元经济的要素错配与收入分配格局[J]. 经济学(季刊), 2019, 18(2): 639−660

    BAI P W, YANG Z C. Misallocation of China’s dual economic and income distribution[J]. China Economic Quarterly, 2019, 18(2): 639−660

    [27] 陈钊, 陆铭, 金煜. 中国人力资本和教育发展的区域差异: 对于面板数据的估算[J]. 世界经济, 2004, 27(12): 25−31, 77

    CHEN Z, LU M, JIN Y. Regional differences of human capitals and education development in China: an estimation of the panel data[J]. World Economy, 2004, 27(12): 25−31, 77

    [28] 王香艳, 李金叶. 数字经济是否有效促进了节能和碳减排?[J]. 中国人口·资源与环境, 2022, 32(11): 83−95 doi: 10.12062/cpre.20221022

    WANG X Y, LI J Y. Did the digital economy effectively promote energy conservation and CO2 reduction?[J]. China Population, Resources and Environment, 2022, 32(11): 83−95 doi: 10.12062/cpre.20221022

    [29] 张刚, 张文佳. 数字经济赋能乡村产业振兴机制与实践路径研究[J]. 商展经济, 2023(12): 34−37

    ZHANG G, ZHANG W J. Research on the mechanism and practical paths of rural industrial revitalization boosted by the digital economy[J]. Trade Fair Economy, 2023(12): 34−37

    [30] 高志刚, 丁梦雅. 数字经济、碳排放强度与资源型城市高质量发展[J]. 甘肃社会科学, 2024(2): 184–195

    GAO Z G, DING M Y. Digital economy, carbon emission intensity, and high-quality development of resource-based cities[J]. Gansu Social Sciences, 2024(2): 184–195

图(2)  /  表(12)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  45
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 录用日期:  2024-05-07
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2024-06-09

目录

    /

    返回文章
    返回