Continuum removal method for monitoring Fulvia fulva morbidity using hyperspectral data
-
摘要: 阐明番茄叶霉病(Fulvia fulva)光谱特征并对其发病程度进行估测,可为番茄叶霉病大面积遥感监测提供依据。本研究通过分析番茄叶霉病不同发病程度下叶片光谱变化特征,筛选对发病程度识别的敏感波段。并利用去包络线法对光谱反射率进行处理,构建基于光谱特征吸收参量的发病程度估测模型。研究结果表明:随着叶霉病病害等级的加深,番茄叶片的原始光谱反射率、光谱敏感度、相对反射率均呈逐渐降低趋势;可见光波段(550~730 nm)和短波红外波段(1 860~2 260 nm)是识别番茄叶霉病发病程度的最佳波段;且随着病害等级的增加,吸收波段位置(λ)向短波方向移动,最大吸收深度(Dc)和吸收面积(A)均呈递增规律。利用光谱参数构建的番茄叶霉病病害等级预测的逐步回归模型R2达0.81,且模型验证结果较好。研究结果对利用高光谱遥感技术定量估测番茄叶霉病发病程度以及监测、防治农作物病虫害均具有较高的实用价值。Abstract: Fulvia fulva is a major disease in tomato cultivation. Compared with traditional laboratory analysis method, hyperspectral remote-sensing technology can provide simple, cost effective and non-destructive information that can offer processing methods for diagnosing and quantifying plant health. However, there are many limitations (e.g., large volume of data, redundant information and complex spectral) in dealing with hyperspectral data. This paper aimed to clarify the spectrum characteristics of tomato leaf infected by F. fulva and estimate its morbidity degree to provide theoretic basis for large-scale monitoring of F. fulva using hyperspectral remote sensing. To this end, experiments were carried out in 2016 in with disease nursery of tomato F. fulva in Shangqiu. In the research, leaf spectral reflectance of tomato was acquired via ASD FieldSpec 3 spectrometer (350-2 500 nm). The continuum removal method was adopted to process the original spectrum reflectance of tomato leaf with different morbidity degrees of F. fulva. The bands sensitive to F. fulva morbidity degree were selected and an inversion model of morbidity degree established based on absorption parameters of the spectrum features. The results showed that spectral reflectance of healthy tomato plants was higher than that of disease plants in the wavelength range of 350-2 500 nm. Besides, the reflectance, spectral sensitivity and relative reflectance decreased with increasing F. fulva morbidity degree. The most sensitive wave bands for distinguishing F. fulva severity were located in the visible region (550-730 nm) and shortwave infrared region (1 860-2 260 nm). With increasing F. fulva morbidity degree, the absorption position (λ) of both visible spectrum and shortwave infrared spectrum moved to the short wavelength band, while the maximum absorption depth (Dc) and area (A) increased. Particularly, the morbidity degree had a very significant correlation with maximum absorption depth in visible band (Dc1), maximum absorption area in shortwave infrared band (A2), maximum absorption depth in shortwave infrared band (Dc2), position of maximum absorption depth in visible band (λ1) and position of maximum absorption depth in shortwave infrared band (λ2). Consequently, a stepwise regression model for F. fulva morbidity degree was built based on the spectral absorption parameters. The model had good validation results, with determination coefficient (R2) of 0.81. The results of the study not only contributed to the estimation of F. fulva morbidity degree using hyperspectral remote-sensing data, but also had promising values of practical application in monitoring and preventing crop diseases.
-
Keywords:
- Tomato /
- Fulvia fulva /
- High spectrum /
- Continuum removal /
- Morbidity degree
-
表 1 不同病害等级的番茄叶片光谱吸收特征参量
Table 1 Spectral absorption parameters of tomato leaf with different Fulvia fulva morbidity levels
发病程度
Morbidity degree可见光 Visible band (550~-730 nm) 短波红外 Shortwave infrared band (1 860~-2 260 nm) Dc1 A1 λ1 Dc2 A2 λ2 0级 Health 0.71 74.25 682 0.74 213.78 1 921 1级 Level 1 0.76 84.19 681 0.75 226.19 1 915 2级 Level 2 0.78 89.00 679 0.71 219.19 1 914 3级 Level 3 0.81 97.83 677 0.79 237.31 1 914 4级 Level 4 0.83 108.13 677 0.81 260.99 1 913 Dc1:可见光波段最大波段深度; A1:可见光波段吸收峰面积; λ1:可见光波段最大波段深度对应的波长位置; Dc2:短波红外波段最大波段深度; A2:短波红外波段吸收峰面积; λ2:短波红外波段最大波段深度对应的波长位置。Dc1: the maximum absorption depth in visible band; A1: the maximum absorption area in visible band; λ1: the position of the maximum absorption depth in visible band; Dc2: the maximum absorption depth in shortwave infrared band; A2: the maximum absorption area in shortwave infrared band; λ2: the position of the maximum absorption depth in shortwave infrared band. 表 2 番茄叶霉病病害等级的光谱吸收特征参数逐步回归模型
Table 2 Stepwise regression model of Fulvia fulva morbidity level of tomato leaf by spectral absorption parameters
回归方程
Regression equation自变量
Independent回归系数相伴概率
Regression coefficient probability回归方程决定系数(R2)
Regression determination ratioy=45.95-15.69x1+0.09x2-15.80x3-0.15x4+0.04x5 x1(Dc1) 0.00 0.81** x2(A2) 0.00 x3(Dc2) 0.00 x4(λ1) 0.00 x5(λ2) 0.02 Dc1:可见光波段最大波段深度; A1:可见光波段吸收峰面积; λ1:可见光波段最大波段深度对应的波长位置; Dc2:短波红外波段最大波段深度; A2:短波红外波段吸收峰面积; λ2:短波红外波段最大波段深度对应的波长位置。Dc1: the maximum absorption depth in visible band; A1: the maximum absorption area in visible band; λ1: the position of the maximum absorption depth in visible band; Dc2: the maximum absorption depth in shortwave infrared band; A2: the maximum absorption area in shortwave infrared band; λ2: the position of the maximum absorption depth in shortwave infrared band. -
[1] 陈宇飞.我国番茄叶霉病研究进展[J].东北农业大学学报, 2000, 31(4): 411-414 http://www.cnki.com.cn/Article/CJFDTOTAL-DBDN200004018.htm Chen Y F. Research advance of tomato leaf mould in China[J]. Journal of Northeast Agricultural University, 2000, 31(4): 411-414 http://www.cnki.com.cn/Article/CJFDTOTAL-DBDN200004018.htm
[2] 王晓艳, 汪炳良.番茄叶霉病侵染机制及抗性机理研究进展[J].长江蔬菜:学术版, 2008, (7B): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-CJSC200810005.htm Wang X Y, Wang B L. Progress of infecting and resistant mechanism in tomato leaf mould[J]. Journal of Changjiang Vegetables, 2008, (7B): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-CJSC200810005.htm
[3] 孟凡娟, 许向阳, 李景富.番茄叶霉病研究进展[J].中国农学通报, 2005, 21(6): 297-301 http://www.cnki.com.cn/Article/CJFDTOTAL-CJSC200810005.htm Meng F J, Xu X Y, Li J F. Progress in research on Fulvia fulva (Cook) of tomato caused by Cladosporeum fulvum[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 297-301 http://www.cnki.com.cn/Article/CJFDTOTAL-CJSC200810005.htm
[4] 周勇, 于海霞, 贾丽慧, 等.不同杀菌剂对防番茄叶霉病木霉菌叶片定殖效率的影响[J].天津农业科学, 2016, 22(1): 116-118 http://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201601028.htm Zhou Y, Yu H X, Jia L H, et al. Effects of different fungicides on colonization efficiency of the leaves of tomato leaf mold[J]. Tianjin Agricultural Sciences, 2016, 22(1): 116-118 http://www.cnki.com.cn/Article/CJFDTOTAL-TJNY201601028.htm
[5] 安静, 姚国清, 朱西存.苹果叶片氮素含量高光谱检测研究[J].国土资源遥感, 2016, 28(2): 67-71 doi: 10.6046/gtzyyg.2016.02.11 An J, Yao G Q, Zhu X C. Study of hyperspectral detection for nitrogen content of apple leaves[J]. Remote Sensing for Land & Resource, 2016, 28(2): 67-71 doi: 10.6046/gtzyyg.2016.02.11
[6] 贾方方, 张黎明, 任天宝, 等.基于BP神经网络的烟草叶片质体色素高光谱反演[J].烟草科技, 2016, 49(7): 8-13 http://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201607002.htm Jia F F, Zhang L M, Ren T B, et al. Hyperspectral inversion to estimate plastid pigment contents in tobacco leaves based on BP neural network[J]. Tobacco Science & Technology, 2016, 49(7): 8-13 http://www.cnki.com.cn/Article/CJFDTOTAL-YCKJ201607002.htm
[7] Moshou D, Bravo C, West J, et al. Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks[J]. Computers and Electronics in Agriculture, 2004, 44(3): 173-188 doi: 10.1016/j.compag.2004.04.003
[8] Belasque J, Gasparoto M C G, Marcassa L G. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy[J]. Applied Optics, 2008, 47(11): 1922-1926 doi: 10.1364/AO.47.001922
[9] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999, 67(3): 267-287 doi: 10.1016/S0034-4257(98)00084-4
[10] 张雪红, 田庆久.基于连续统去除法的冬小麦叶片氮积累量的高光谱评价[J].生态学杂志, 2010, 29(1): 181-186 http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201001029.htm Zhang X H, Tian Q J. Hyperspectral evaluation of nitrogen accumulation in winter wheat leaves based on continuum-removed method[J]. Chinese Journal of Ecology, 2010, 29(1): 181-186 http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201001029.htm
[11] 张金恒.基于连续统去除法的水稻氮素营养光谱诊断[J].植物生态学报, 2006, 30(1): 78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200601010.htm Zhang J H. Rice nitrogen nutrition diagnosis using continuum-removed reflectance[J]. Journal of Plant Ecology, 2006, 30(1): 78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200601010.htm
[12] 竞霞, 王纪华, 宋晓宇, 等.棉花黄萎病病情严重度的连续统去除估测法[J].农业工程学报, 2010, 26(1): 193-198 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001036.htm Jing X, Wang J H, Song X Y, et al. Continuum removal method for cotton verticillium wilt severity monitoring with hyperspectral data[J]. Transactions of the CSAE, 2010, 26(1): 193-198 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201001036.htm
[13] 韩兆迎, 朱西存, 王凌, 等.基于连续统去除法的苹果树冠SPAD高光谱估测[J].激光与光电子学进展, 2016, 53(2): 214-223 http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201602032.htm Han Z Y, Zhu X C, Wang L, et al. Hyperspectral evaluation of SPAD value of apple tree canopy based on continuum-removed method[J]. Laser & Optoelectronics Progress, 2016, 53(2): 214-223 http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201602032.htm
[14] 丁丽霞, 王志辉, 葛宏立.基于包络线法的不同树种叶片高光谱特征分析[J].浙江林学院学报, 2010, 27(6): 809-814 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX201006003.htm Ding L X, Wang Z H, Ge H L. Continuum removal based hyperspectral characteristic analysis of leaves of different tree species[J]. Journal of Zhejiang Forestry College, 2010, 27(6): 809-814 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX201006003.htm
[15] 谢伯承, 薛绪掌, 刘伟东, 等.基于包络线法对土壤光谱特征的提取及其分析[J].土壤学报, 2005, 42(1): 171-175 doi: 10.11766/trxb200401110129 Xie B C, Xue X Z, Liu W D, et al. Hull-curve-method-based extraction and analysis of soil spectral characteristics[J]. Acta Pedologica Sinica, 2005, 42(1): 171-175 doi: 10.11766/trxb200401110129
[16] 李云海, 王桥, 黄家柱, 等.地面遥感实验原理与方法[M].北京:科学出版社, 2011: 45 Li Y H, Wang Q, Huang J Z, et al. Principle and Method of Ground Remote Sensing Experiment[M]. Beijing: Science Press, 2011: 45
[17] 张永贺, 陈文惠, 郭乔影, 等.桉树叶片光合色素含量高光谱估算模型[J].生态学报, 2013, 33(3): 876-887 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201303023.htm Zhang Y H, Chen W H, Guo Q Y, et al. Hyperspectral estimation models for photosynthetic pigment contents in leaves of Eucalyptus[J]. Acta Ecologica Sinica, 2013, 33(3): 876-887 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201303023.htm
[18] 贾方方, 马新明, 李春明, 等.不同水分处理对烟草叶片高光谱及红边特征的影响[J].中国生态农业学报, 2011, 19(6): 1330-1335 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110617&flag=1 Jia F F, Ma X M, Li C M, et al. Effect of water condition on hyperspectral and red-edge characteristics of tobacco leaf[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1330-1335 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110617&flag=1
[19] 刘良云.植被定量遥感原理与应用[M].北京:科学出版社: 2014: 32-33 Liu L Y. Principle and Application of Vegetation Quantitative Remote Sensing[M]. Beijing: Science Press, 2014: 32-33
[20] Kobayashi T, Kanda E, Kitada K, et al. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners[J]. Phytopathology, 2001, 91(3): 316-323 doi: 10.1094/PHYTO.2001.91.3.316
[21] 冯伟, 王晓宇, 宋晓, 等.白粉病胁迫下小麦冠层叶绿素密度的高光谱估测[J].农业工程学报, 2013, 29(13): 114-123 doi: 10.3969/j.issn.1002-6819.2013.13.016 Feng W, Wang X Y, Song X, et al. Hyperspectral estimation of canopy chlorophyll density in winter wheat under stress of powdery mildew[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 114-123 doi: 10.3969/j.issn.1002-6819.2013.13.016
[22] 陈兵, 王克如, 李少昆, 等.病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响[J].农业工程学报, 2011, 27(9): 86-93 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201109018.htm Chen B, Wang K R, Li S K, et al. The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves[J]. Transactions of the CSAE, 2011, 27(9): 86-93 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201109018.htm
[23] 袁琳, 张竞成, 赵晋陵, 等.基于叶片光谱分析的小麦白粉病与条锈病区分及病情反演研究[J].光谱学与光谱分析, 2013, 33(6): 1608-1614 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201306039.htm Yuan L, Zhang J C, Zhao J L, et al. Differentiation of yellow rust and powdery mildew in winter wheat and retrieving of disease severity based on leaf level spectral analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1608-1614 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201306039.htm
[24] Cai X Z, Takken F L W, Joosten M H A J, et al. Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression[J]. Molecular Plant Pathology, 2001, 2(2): 77-86 doi: 10.1046/j.1364-3703.2001.00053.x
[25] 蒋金豹, 李一凡, 郭海强, 等.不同病害胁迫下大豆的光谱特征及识别研究[J].光谱学与光谱分析, 2012, 32(10): 2775-2779 doi: 10.3964/j.issn.1000-0593(2012)10-2775-05 Jiang J B, Li Y F, Guo H Q, et al. Spectral characteristics and identification research of soybean under different disease stressed[J]. Spectroscopy and Spectral Analysis, 2012, 32(10): 2775-2779 doi: 10.3964/j.issn.1000-0593(2012)10-2775-05