Evaluation of upland cotton yield stability and adaptability using GGE-biplot analysis: A case study of 'Ezamian 30' cotton cultivar in Yangtze River Valley
-
摘要: 农作物品种的高产稳产和广适性一直是产量育种的主要目标,而农作物品种多环境试验中普遍存在的基因型与环境互作效应增加了广适性品种选育的难度,科学评价品种的高产稳产和适应性有助于提高新品种的选育和应用效率。本研究采用GGEbiplot®软件分析了2012—2013年长江流域国家棉花品种区域试验中‘鄂杂棉30’等参试品种丰产性、稳产性和适应性,并采用“成对比较”功能图比较了‘鄂杂棉30’与对照品种‘鄂杂棉10号'在目标区域的适应性表现。结果表明:1)‘鄂杂棉30’在两年多环境品种试验中的丰产性突出,稳产性表现优良。2)‘鄂杂棉30’在两年区域试验中的高产稳产性综合表现(即理想指数)显著优于对照品种‘鄂杂棉10号'及其余各参试品种。3)‘鄂杂棉30’为所有参试品种中适应性最广的品种,其最适宜种植区域涵盖了长江流域大部分棉区。4)‘鄂杂棉30’在长江流域的绝大部分棉区都比对照品种更有产量优势,同时也优于其余参试品种,在长江流域棉区种植优势明显。本研究展示了GGE双标图在品种的丰产性与稳产性分析和适宜种植区域划分等方面的应用效果,明确了‘鄂杂棉30’是兼备丰产性、稳定性和广适性的理想品种,可为‘鄂杂棉30’的合理利用提供理论依据,也为其他作物品种的综合评价提供了参考方法。Abstract: The major challenge for a breeder is choosing genotypes with high yield and stability, which have always been the main objectives of crop yield breeding. However, the ever-existing genotype-by-environment interaction has also always impeded the progress in selecting new cultivars for a wide spectrum of the environment. Scientific and reasonable assessment of the stability and adaptability of varieties are conducive for improving the selection and utilization efficiency of crop breeding. In this study, the GGE-biplot® software was used to explore and visualize yield ability, stability and adaptability of a newly registered cotton cultivar 'Ezamian 30' and other candidate lines in the same groups of national cotton trials during the period 2012-2013 in the Yangtze River Valley (YRV). Meanwhile, the "Pairwise Comparison view" of the GGE biplot was used for one-to-one comparison with the control cultivar 'Ezamian 10' for superiority of adaptability to the local conditions. The results showed that: 1) 'Ezamian 30' had a prominent high-yield and an excellent stability in the 2-year multi-environmental variety trials. 2) The integrated performance (i.e., ideal index) of 'Ezamian 30' in joint evaluation of high yield and stability was significantly superior to that of the control 'Ezamian 10' and other candidate lines in the trials. 3) The dominant suitable planting area of 'Ezamian 30' was widest among all candidate cultivars, which covered an overwhelming majority of the whole cotton planting region in YRV. 4) For one-to-one comparison, 'Ezamian 30' evidently had a beneficial planting advantage with higher yield potential than the control cultivar and other candidate lines in most of cotton growing area in YRV. This study demonstrated the effectiveness of GGE-biplot in the concurrently evaluating high yield/stability, suitable planting area delineation, etc. Furthermore, it showed the ideal characteristics of 'Ezamian 30' for high yield, stability and adaptability. Thus it provided not only theoretical guidelines for reasonable extension and utilization of 'Ezamian 30', but also set up a reference base for comprehensive evaluation of other varieties and/or crops.
-
Keywords:
- Cotton (Gossypium hirsutum L.) /
- GGE-biplot /
- Yield stability /
- Productivity /
- Adaptability /
- Regional crop trial
-
表 1 2012—2013年长江流域国家棉花区域试验参试品种信息表
Table 1 Discription of cotton cultivars in the national cotton regional trials in the Yangtze River Valley in 2012-2013
年份
Year品种
Cultivar简称
Abbreviation品种来源
Cultivar pedigree皮棉产量
Lint yield
(kg∙plot-1)稳产指数
Stability index理想指数
Ideal index2012 丰田棉1号Fengtianmian 1 Ftm1 Line D3 × SJM30-1 3.28±0.57cC 0.3 1.5 金科棉8号Jinkemian 8 Jkm8 J-8 × J-14 3.02±0.57eE 0.5 2.6 大唐6号Datang 6 Dt6 HG-1 × K48 3.30±0.65cC 0.6 1.4 鄂杂棉10号Ezamian 10 Ezm10 Tai 96167 × Tai D-3 3.42±0.71bB 0.1 0.7 泗阳839 Siyang 839 Sy839 8027 × Siyang 739 3.42±0.60bB 0.3 0.8 中棉所61 Zhongmiansuo 61 Zms61 Zhong 96-2 × Zhong 9425 3.16±0.64dD 0.9 2.3 齐棉8号Qimian 8 Qm8 S-1 × Y16-4 3.10±0.67dDE 0.4 2.3 湘杂棉23号Xiangzamian 23 Xzm23 K703 × GK 19-17 3.12±0.60dD 0.6 2.1 九杂棉11 Jiuzamian 11 Jzm11 Jiu 0568 × Jiu 0536 3.27±0.56cC 0.3 1.4 鄂杂棉30 Ezamian 30 Ezm30 Xiang 203-6 × Xiang_Bt 03 3.55±0.71aA 0.1 0.2 2013 宁抗棉2号Ningkangmian 2 Nkm2 H128 × Siyuan 321 2.98±0.54dD 1.1 2.4 荃银棉8号Quanyinmian 8 Qym8 5029 × Quan 97-15 3.25±0.47bB 0.2 0.8 日辉棉10号Rihuimian 10 Rhm10 Sumian 12 × SGK 321 3.25±0.60bB 0.1 0.7 徐棉21号Xumian 21 Xm21 Xu 97403/GK 19 2.78±0.75eE 0.3 2.8 GK39 GK39 Line 82 × GK 12-01 2.95±0.73dD 1.0 2.5 鄂杂棉30 Ezamian 30 Ezm30 Xiang 203-6 × Xiang_Bt 03 3.45±0.58aA 0.2 0.2 鄂杂棉10号Ezamian 10 Ezm10 Tai 96167 × Tai D-3 3.17±0.58cC 0.0 1.2 创棉11号Chuangmian 11 Cm11 H011 × GK 19-11 2.96±0.52dD 0.1 2.4 每年产量数据后不同小写和大写字母分别表示在5%和1%水平上差异显著。Yield data in each year followed by differneand capital and lowercase letters are significantly different at 5% and 1% probability levels, respectively. 表 2 2012—2013年长江流域国家棉花区试品种皮棉产量的联合方差分析
Table 2 Combined analysis of variance for cotton lint yield from the national cotton regional trials in the Yangtze River Valley in 2012-2013
年份
Year变异来源
Variation source自由度(df)
Degree of freedom平方和(SS)
Sum of squares均方(MS)
Mean squareF 2012 区组Block 36 3.135 0.087 3.139** 基因型Genotype (G) 9 13.240 1.471 53.028** 环境Environment (E) 17 181.471 10.675 384.786** 基因型×环境(GE) 153 17.310 0.113 4.078** 误差Error 324 8.988 0.028 总变异Total 539 224.145 2013 区组Block 32 1.380 0.043 2.254** 基因型Genotype (G) 7 16.041 2.292 119.768** 环境Environment (E) 15 104.302 6.953 363.428** 基因型×环境(GE) 105 27.203 0.259 13.541** 误差Error 224 4.286 0.019 总变异Total 383 153.212 **表示差异极显著(P < 0.01)。** shows indicateds significant difference at 0.01 level (P < 0.01). -
[1] Mohammed Y A, Chen C C, McPhee K, et al. Yield performance and stability of dry pea and lentil genotypes in semi-arid cereal dominated cropping systems[J]. Field Crops Research, 2016, 188: 31-40 doi: 10.1016/j.fcr.2016.01.001
[2] 常磊, 柴守玺. GGE双标图在我国旱地春小麦稳产性分析中的应用[J].中国生态农业学报, 2010, 18(5): 988-994 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20105988&flag=1 Chang L, Chai S X. Application of GGE biplot in spring wheat yield stability analysis in rainfed areas of China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 988-994 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20105988&flag=1
[3] Silva K B, Bruzi A T, Zuffo A M, et al. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content[J]. Genetics and Molecular Research, 2016, 15(2): 1-11 https://www.ncbi.nlm.nih.gov/pubmed/27173225
[4] Xu N Y, Fok M, Zhang G W, et al. The application of GGE biplot analysis for evaluating test locations and mega-environment investigation of cotton regional trials[J]. Journal of Integrative Agriculture, 2014, 13(9): 1921-1933 doi: 10.1016/S2095-3119(13)60656-5
[5] Yan W K, Frégeau-Reid J, Pageau D, et al. Genotype-by-environment interaction and trait associations in two genetic populations of oat[J]. Crop Science, 2016, 56(3): 1136-1145 doi: 10.2135/cropsci2015.11.0678
[6] 汪洲涛, 苏炜华, 阙友雄, 等.应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性[J].中国生态农业学报, 2016, 24(6): 790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1 Wang Z T, Su W H, Que Y X, et al. Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1
[7] Annicchiarico P. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy[J]. Euphytica, 1997, 94(1): 53-62 doi: 10.1023/A:1002954824178
[8] van Eeuwijk F A, Malosetti M, Yin X Y, et al. Statistical models for genotype by environment data: From conventional ANOVA models to eco-physiological QTL models[J]. Australian Journal of Agricultural Research, 2005, 56(9): 883-894 doi: 10.1071/AR05153
[9] DeLacy I H, Redden R J, Butler D G, et al. Analysis of linéenvironment interactions for yield in navy beans. 3. Pattern analysis of environments over years[J]. Australian Journal of Agricultural Research, 2000, 51(5): 619-628 doi: 10.1071/AR97137
[10] Yan W K. Singular-value partitioning in biplot analysis of multienvironment trial data[J]. Agronomy Journal, 2002, 94(5): 990-996 doi: 10.2134/agronj2002.0990
[11] Zobel R W, Wright M J, Gauch H G. Statistical analysis of a yield trial[J]. Agronomy Journal, 1988, 80(3): 388-393 doi: 10.2134/agronj1988.00021962008000030002x
[12] Yan W K, Hunt L A, Sheng Q L, et al. Cultivar evaluation and mega-environment investigation based on the GGE biplot[J]. Crop Science, 2000, 40(3): 597-605 doi: 10.2135/cropsci2000.403597x
[13] 李辛村, 张恩和, 董孔军, 等.用AMMI双标图分析糜子品种的产量稳定性及试点代表性[J].中国生态农业学报, 2012, 20(4): 422-426 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012406&flag=1 Li X C, Zhang E H, Dong K J, et al. AMMI-Biplot analysis of yield stability and test-site representativeness of proso-millet cultivars[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 422-426 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012406&flag=1
[14] Yan W K, Kang M S, Ma B, et al. GGE biplot vs. AMMI analysis of genotype-by-environment data[J]. Crop Science, 2007, 47(2): 643-655 doi: 10.2135/cropsci2006.06.0374
[15] Yan W K. GGEbiplot — A windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal, 2001, 93(5): 1111-1118 doi: 10.2134/agronj2001.9351111x
[16] 许乃银, 金石桥, 张国伟, 等. HA-GGE双标图在长江流域棉花品种区域试验中的应用[J].棉花学报, 2013, 25(6): 517-524 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201306007.htm Xu N Y, Jin S Q, Zhang G W, et al. The effectiveness of HA-GGE biplot application in analyzing the data from the national cotton cultivar regional trial in the Yangtze river valley[J]. Cotton Science, 2013, 25(6): 517-524 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201306007.htm
[17] Sarkar B, Sharma R C, Verma R P S, et al. Identifying superior feed barley genotypes using GGE biplot for diverse environments in India[J]. Indian Journal of Genetics and Plant Breeding, 2014, 74(1): 26-33 doi: 10.5958/j.0975-6906.74.1.004
[18] 许乃银, 李健.利用GGE双标图和综合选择指数划分棉花品种生态区[J].中国生态农业学报, 2014, 22(9): 1113-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014916&flag=1 Xu N Y, Li J. Using GGE biplot and comprehensive selection index to investigate mega-environments of cotton cultivar[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1113-1121 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014916&flag=1
[19] Yan W K. Mega-environment analysis and test location evaluation based on unbalanced multiyear data[J]. Crop Science, 2015, 55(1): 113-122 doi: 10.2135/cropsci2014.03.0203
[20] 唐淑荣, 许乃银, 杨伟华, 等.基于GGE分析的西北内陆棉区纤维品质生态区划分[J].中国生态农业学报, 2016, 24(12): 1674-1682 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161210&flag=1 Tang S R, Xu N Y, Yang W H, et al. Ecological regionalization of cotton fiber quality in the Northwest Inland Region using GGE analysis[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1674-1682 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161210&flag=1
[21] 许乃银, 李健. GGE双标图的信息比校正原理与应用——以长江流域棉花品种生态区划分为例[J].中国生态农业学报, 2015, 23(9): 1169-1177 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015911&flag=1 Xu N Y, Li J. Principles and applications of information ratio adjustment of GGE biplot — A case study of cotton mega-environment investigation in the Yangtze River Valley[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1169-1177 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015911&flag=1
[22] 慕平, 赵桂琴, 柴继宽.基于GGE-Biplot的甘肃省不同生态区燕麦生产性能及适应性分析[J].中国生态农业学报, 2015, 23(6): 705-712 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015606&flag=1 Mu P, Zhao G Q, Chai J K. Analysis of oats productivity and adaptability in different ecological regions of Gansu Province using GGE-Biplot[J]. Chinese Journal of Eco-Agriculture, 2015, 23(6): 705-712 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015606&flag=1
[23] Klomsa Ard P, Patanothai A, Jaisil P. Efficient test sites for multi-environment evaluation of sugarcane genotypes in Thailand[J]. International Journal of Plant Production, 2013, 7(4): 763-790 https://www.researchgate.net/publication/289234610_Efficient_test_sites_for_multi-environment_evaluation_of_sugarcane_genotypes_in_Thailand
[24] Yan W K, Kang M S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists[M]. Boca Raton, London, New York, Washington D C: CRC Press, 2003
[25] Yan W K. Crop Variety Trials: Data Management and Analysis[M]. Oxford, UK: Wiley-Blackwell, 2014
[26] 严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报, 2010, 36(11): 1805-1819 http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201011003.htm Yan W K. Optimal use of biplots in analysis of multi-location variety test data[J]. Acta Agronomica Sinica, 2010, 36(11): 1805-1819 http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201011003.htm
[27] Yan W K, Tinker N A. Biplot analysis of multi-environment trial data: Principles and applications[J]. Canadian Journal of Plant Science, 2006, 86(3): 623-645 doi: 10.4141/P05-169
[28] 许乃银, 张国伟, 李健, 等.基于GGE双标图和比强度选择的棉花品种生态区划分[J].中国生态农业学报, 2012, 20(11): 1500-1507 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121113&flag=1 Xu N Y, Zhang G W, Li J, et al. Investigation of cotton mega-environment based on fiber strength selection and GGE biplot[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1500-1507 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121113&flag=1
[29] Yan W K, Hunt L A. Interpretation of genotype×environment interaction for winter wheat yield in Ontario[J]. Crop Science, 2001, 41(1): 19-25 doi: 10.2135/cropsci2001.41119x
[30] Gauch H G Jr. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs[M]. Amsterdam: Elsevier, 1992