Effect of water deficit on mineral element absorption, distribution and water utilization by different wheat varieties
-
摘要: 在限制小麦灌溉面积的大背景下,为进一步稳产促优,本文探讨了华北地区水分亏缺对不同小麦品种矿质元素吸收、分布特性及其与植株水分利用和产量的关系。选用3个生态类型冬小麦品种(抗旱品种‘沧麦6001’、丰水高产品种‘邯麦9’和多抗超高产品种‘济麦22’),设置正常和水分亏缺两个水平的人工气候室箱体栽培试验,主要调查了小麦不同器官矿质元素含量、积累量变化、分配比以及矿质元素变化对水分利用效率和产量的影响。结果表明,矿质元素的含量和分配具有器官特异性,其中小麦叶片Ca、籽粒Cu和Zn、茎秆Na的含量、分配比最高;Fe含量、积累量及Fe分配比因品种、器官、水分差异而不同:正常水分下,‘沧麦6001’以茎秆、‘邯麦9’以叶片的Fe含量、分配比最高;‘济麦22’以茎秆和颖壳Fe含量较高,以叶片和颖壳Fe分配比较高。而水分亏缺下,‘沧麦6001’和‘邯麦9’Fe含量以籽粒最高,‘济麦22’以叶片最高;3品种Fe分配比均以籽粒最高。此外,水分亏缺增加了小麦籽粒Cu、Zn含量及分配比,籽粒Zn、Na和Ca积累量,显著增加‘沧麦6001’的水分利用效率和产量以及‘济麦22’的产量水分利用效率;而降低了‘沧麦6001’籽粒Mn、‘邯麦9’籽粒Cu和Mn、‘济麦22’籽粒Cu和Fe积累量以及‘邯麦9’水分利用效率、干物重、产量。综上,水分亏缺下,‘沧麦6001’更易高产高效,籽粒Fe含量增加,但需补充一定的Mn元素;‘济麦22’的水分利用效率增加,产量未显著下降,需补充一定Fe元素保证品质;‘邯麦9’产量和水分利用效率均显著下降,且籽粒中Cu和Mn积累下降明显。相关分析表明,Cu、Zn、Ca、Mn含量与干物重变化之间存在一定的相互调节作用,但未直接影响产量和水分利用效率,这可能与品种间差异及品种和水分互作影响有关。但矿质元素可能通过影响干物重间接调控水分利用效率的趋势是存在的,尚需进一步研究和验证。Abstract: In the context of limiting the area of wheat irrigation, it is necessary for promoting resources use efficiencies, increasing yield and improving quality of wheat to explore nutrients absorption and utilization, and water use efficiency of wheat under water deficit condition. Pot experiments were conducted in phytotrons with three wheat varieties under two water conditions (normal and drought). The three wheat varieties included 'Cangmai-6001' (drought resistant), 'Hanmai-9' (wet and high yield) and 'Jimai-22' (multi-resistance and super high yield). The content, accumulation and distribution of mineral elements in different organs of the plants were measured. Also the relationship between these indexes with water use efficiency and yield analyzed. The results showed that the contents and accumulation of mineral elements were specific to different plant organs. The highest content and distribution ratio of Ca were observed in leaf, those of Cu and Zn were in grain, Na was in stem. Fe accumulated in different organs of the plant was influenced by water and plant variety. Under normal water condition, the highest Fe content and distribution ratio were in the stem of 'Cangmai-6001', which was the same for the leaf for 'Hanmai-9'. The Fe content in stem and glume and Fe distribution ratio in leaf and glume were higher than in other organs of 'Jimai-22'. Under water deficit condition, Fe content was highest in grain for 'Cangmai-6001'and 'Hanmai-9', but it was highest in leaf for 'Jimai-22'. For all the investigated varieties, the highest Fe distribution was in grain. Water deficit increased with the distribution of Cu and Zn, accumulation of Zn, Na and Ca in grain, water use efficiency and yield for 'Cangmai-6001', and with WUEyield for 'Jimai-22'. However, water deficit decreased with the accumulation of Mn in the grain of 'Cangmai-6001', Cu and Mn in grain of 'Hanmai-9', Cu and Fe accumulation in 'Jimai-22' grain, water use efficiency, yield and dry matter weight of 'Hanmai-9'. Above all, 'Cangmai-6001' was more beneficial in terms of yield increase with higher WUE, higher Fe accumulation in grain and supplemented Mn element under water deficit condition. 'Jimai-22' had stable yield with increasing WUE and supplemented Fe element in grain under water deficit condition. For 'Hanmai-9' variety, the yield, WUE, Cu and Mn accumulation in grain decreased obviously under water deficit condition. Correlation analysis indicated that Cu, Zn, Ca and Mn had significant interaction with dry matter, with no direct effect on yield and WUE. This was related with the differences in variety and interaction effects of variety and water. There was still the tendency for mineral elements to regulate water utilization by influencing wheat dry matter formation, which needed further research and verification.
-
Keywords:
- Wheat /
- Ecological type /
- Water deficit /
- Mineral element /
- Yield /
- Distribution ratio of organ /
- Water use efficiency
-
表 1 水分亏缺下不同小麦品种各器官Mn、Zn、Cu、Ca、Na和Fe含量
Table 1 Contents of Mn, Zn, Cu, Ca, Na and Fe in different organs of different wheat varieties under water deficit condition
水分
Water condition品种
Variety器官
OrganMn
(μg·g-1)Zn
(μg·g-1)Cu
(μg·g-1)Ca
(mg·g-1)Na
(mg·g-1)Fe
(mg·g-1)正常
Normal沧麦6001
Cangmai-6001叶片Leaf 159.41±32.02c 72.47±5.94ghij 19.48±0.84cde 38.68±8.54cd 2.26±0.18cd 0.75±0.06def 茎秆Stem 35.77±4.06jkl 65.54±3.65hijk 14.46±3.34efgh 2.84±0.59fgh 5.06±0.69a 1.67±0.28a 籽粒Grain 80.05±9.87fgh 148.05±11.37a 17.39±2.51cdef 0.88±0.07gh 0.06±0.01g 0.38±0.09hijk 颖壳Glume 127.89±11.43d 122.30±17.01bc 17.25±2.10cdef 4.97±0.20fgh 1.67±0.01e 0.82±0.12d 邯麦9
Hanmai-9叶片Leaf 114.63±7.69de 51.90±6.31k 9.03±0.42hijk 43.37±4.43ab 1.04±0.06f 1.05±0.09c 茎秆Stem 16.16±0.34l 29.83±6.57l 11.96±2.21fghij 3.37±0.64fgh 3.23±0.21b 0.29±0.03ijk 籽粒Grain 69.95±1.29ghi 112.47±2.19cd 58.08±5.31a 0.68±0.05h 0.16±0.02g 0.30±0.09ijk 颖壳Glume 83.33±17.50fgh 85.04±14.11efgh 13.91±1.74efghi 5.59±1.10f 1.92±0.30de 0.63±0.11defg 济麦22
Jimai-22叶片Leaf 175.74±26.89bc 83.74±5.61efgh 15.58±3.77defg 45.50±3.28ab 1.04±0.14f 0.83±0.17d 茎秆Stem 36.00±7.50jkl 73.25±10.81fghij 4.85±1.25k 5.63±0.74f 2.4±0.10c 1.33±0.27b 籽粒Grain 76.30±2.60ghi 108.85±9.38cd 53.34±6.69a 0.74±0.02h 0.11±0.02g 0.48±0.07ghij 颖壳Glume 85.54±3.91fgh 93.08±10.99def 18.23±0.42cde 5.60±0.62f 1.73±0.35e 1.44±0.19b 亏缺
Drought沧麦6001
Cangmai-6001叶片Leaf 215.65±26.90a 86.10±13.28efg 11.12±0.84ghij 41.46±3.78bc 1.14±0.19f 0.47±0.05ghijk 茎秆Stem 24.43±2.77kl 54.35±4.80jk 15.02±3.77defg 2.42±0.50fgh 1.99±0.36de 0.28±0.06jk 籽粒Grain 50.45±17.37ijk 125.21±13.37bc 22.41±5.02c 0.92±0.12gh 0.08±0.00g 1.28±0.13b 颖壳Glume 108.39±7.49def 101.03±12.32de 10.47±2.02ghij 10.29±0.92e 1.91±0.17de 0.47±0.05ghijk 邯麦9
Hanmai-9叶片Leaf 82.65±12.17fgh 57.87±9.34ijk 10.28±0.84ghijk 35.62±0.39d 0.88±0.15f 0.57±0.12efgh 茎秆Stem 14.68±0.20l 54.34±9.77ik 6.94±2.21jk 4.45±0.63fgh 3.28±0.14b 0.29±0.06ijk 籽粒Grain 63.15±4.28ghij 132.22±12.88ab 20.32±1.25cd 0.93±0.12gh 0.18±0.03g 0.70±0.16defg 颖壳Glume 50.17±1.87hij 77.56±5.88fghi 7.22±1.28jk 5.00±1.61fgh 1.89±0.16de 0.53±0.10fghi 济麦22
Jimai-22叶片Leaf 187.87±39.87b 106.97±19.83cd 14.88±1.25defg 46.46±3.33a 1.02±0.11f 0.80±0.05de 茎秆Stem 30.22±4.92kl 73.69±6.80fghij 8.61±0.84ijk 5.51±0.66fg 1.80±0.29e 0.58±0.17efgh 籽粒Grain 72.34±1.99ghi 143.91±15.00a 27.84±5.43b 0.81±0.04h 0.10±0.00g 0.23±0.07k 颖壳Glume 89.00±10.29efg 110.03±8.43cd 10.56±1.93ghij 3.17±0.89fgh 1.86±0.25de 0.37±0.06hijk ANOVA 水分×品种Water × variety ns *** *** * *** *** 水分×器官Water × organ * ns *** ns *** *** 品种×器官Variety × organ *** ** *** *** *** *** 水分×品种×器官Water × variety × organ ** ** *** * *** *** CK:正常供水; D:水分亏缺。小写字母不同表示不同水分条件、不同品种、不同器官间在P < 0.05水平差异显著; *: 0.05水平因素间互作显著; **: 0.01水平因素间互作显著; ***: 0.001水平因素间互作显著; ns:因素间互作不显著。CK: normal water supply; D: water deficit. Values of different organs of different varieties under different water conditions in a column followed by different lowercase letters are significantly different (P < 0.05). *, ** and *** indicate significantly interactive effects at P < 0.05, P < 0.01 and P < 0.001, respectively. ns indicates not significantly interactive effect. 表 2 水分亏缺下不同小麦品种各器官矿质元素积累量
Table 2 Mineral elements accumulation in different organs of different varieties of wheat under water deficit condition
水分
Water condition品种
Variety器官
OrganCu
(μg·plant-1)Mn
(μg·plant-1)Zn
(μg·plant-1)Fe
(mg·plant-1)Na
(mg·plant-1)Ca
(mg·plant-1)正常 沧麦6001 叶片Leaf 9.86fgh 73.02cd 36.57de 0.38def 1.15d 18.22a Normal Cangmai-6001 茎秆Stem 10.35fg 25.77jk 47.51d 1.20b 3.64a 2.04ghijk 籽粒Grain 17.16e 78.64bc 146.53a 0.37defg 0.06k 0.87kl 颖壳Glume 10.22fg 75.52bcd 72.01c 0.49d 0.99d 2.95fghi 邯麦9 叶片Leaf 3.78j 47.98gh 21.72e 0.44de 0.44fghi 18.15a Hanmai-9 茎秆Stem 9.33fghi 12.65l 23.24e 0.23ghijk 2.53b 2.63fghi 籽粒Grain 75.54a 83.88ab 126.85b 0.33efghi 0.18ijk 0.76kl 颖壳Glume 7.74fghij 45.36gh 46.50d 0.35defghi 1.07d 3.05efghi 济麦22 叶片Leaf 4.23ij 48.04gh 23.06e 0.23ghijk 0.28hijk 12.54c Jimai-22 茎秆Stem 3.11j 23.09jk 47.13d 0.86c 1.56c 3.61ef 籽粒Grain 41.62b 60.06ef 85.19c 0.38def 0.08jk 0.58l 颖壳Glume 6.21fghij 29.05j 31.35de 0.49d 0.68ef 1.89hijkl 亏缺 沧麦6001 叶片Leaf 4.64ij 89.37a 35.55de 0.20jk 0.52fgh 17.26a Drought Cangmai-6001 茎秆Stem 10.59f 17.43kl 38.87de 0.20jk 1.45c 1.72ijkl 籽粒Grain 26.23cd 53.18fg 149.60a 1.53a 0.09jk 1.09jkl 颖壳Glume 4.32ij 45.61gh 42.21d 0.19jk 0.92de 4.33e 邯麦9 叶片Leaf 3.99j 31.63ij 22.14e 0.22hijk 0.34ghij 13.72b Hanmai-9 茎秆Stem 4.86hij 10.34l 38.14de 0.20ijk 2.31b 3.12efgh 籽粒Grain 22.02d 68.39de 142.83a 0.75c 0.20ijk 1.00jkl 颖壳Glume 3.39j 23.69jk 36.50de 0.25fghijk 0.90de 2.33fghij 济麦22 叶片Leaf 3.26j 40.30hi 22.95e 0.17k 0.22ijk 10.07d Jimai-22 茎秆Stem 5.28ghij 18.46kl 45.13d 0.35defgh 1.10d 3.37efg 籽粒Grain 28.28c 74.03cd 146.66a 0.23fghijk 0.11jk 0.82kl 颖壳Glume 3.73j 31.56ij 39.32de 0.13k 0.58fg 1.09jkl ANOVA 水分×品种Water × variety *** *** *** *** *** * 水分×器官Water × organ *** ** *** *** *** *** 品种×器官Variety × organ *** *** ** *** *** *** 水分×品种×器官Water × variety × organ *** *** ** *** *** * CK:正常供水; D:水分亏缺。小写字母不同表示不同水分条件、不同品种、不同器官间在P < 0.05水平差异显著; *: 0.05水平因素间互作显著; **: 0.01水平因素间互作显著; ***: 0.001水平因素间互作显著。CK: normal water supply; D: water deficit. Values of different organs of different varieties under different water conditions in a column followed by different lowercase letters are significantly different (P < 0.05). *, ** and *** indicate significantly interactive effects at P < 0.05, P < 0.01 and P < 0.001, respectively. 表 3 水分亏缺对不同小麦品种干物重、产量和水分利用效率的影响
Table 3 Effect of water deficit on dry matter weight, yield, and WUE of different wheat varieties
水分
Water condition品种
Variety总耗水量
Total water consumption (mm)地上干物重
Dry matter weight
(kg∙m-2)产量
Yield(g∙m-2)WUEbiomass
(g∙m-2∙mm-1)WUEyield
(g∙m-2∙mm-1)正常
Normal沧麦6001 Cangmai-6001 385.50±5.76b 0.93±0.14e 234.80±27.63d 2.42±0.34c 0.61±0.07c 邯麦9 Hanmai-9 419.69±9.54a 1.88±0.20a 748.88±80.86a 4.49±0.44a 1.79±0.20a 济麦22 Jimai-22 354.39±12.19c 1.47±0.06bc 497.12±17.25bc 4.15±0.27ab 1.40±0.03b 亏缺
Drought沧麦6001 Cangmai-6001 374.50±7.79b 1.66±0.21ab 568.00±102.02b 4.43±0.48a 1.51±0.24ab 邯麦9 Hanmai-9 340.93±11.42c 1.25±0.06cd 453.65±55.47c 3.67±0.21b 1.33±0.16b 济麦22 Jimai-22 279.92±9.88d 1.14±0.04de 478.77±18.64bc 4.09±0.04ab 1.71±0.01a ANOVA 水分Water ** ns ns * ** 品种Variety ** ** ** ** ** 水分×品种Water × variety ** ** ** ** ** CK:正常供水; D:水分亏缺。小写字母不同表示不同水分条件、不同品种在P < 0.05水平差异显著; *: 0.05水平因素间互作显著; **: 0.01水平因素间互作显著; ns:因素间互作不显著。CK: normal water supply; D: water deficit. Values of different varieties under different water conditions in a column followed by different lowercase letters are significantly different (P < 0.05); * and ** indicate significantly interactive effects at P < 0.05 and P < 0.01, respectively. ns: indicates not significantly interactive effect. 表 4 矿质元素含量和小麦干物重、产量、水分利用效率的相关性
Table 4 Pearson correlation coefficients between element content and wheat dry matter weight, yield and WUE
Cu Mn Zn Fe Na Ca 干物重
Dry matter产量
Yield生物量水分利用效率
WUEbiomass产量水分利用效率
WUEyieldCu 1 Mn -0.003 1 Zn 0.447* 0.140 1 Fe -0.192 0.018 -0.100 1 Na -0.493* -0.303 -0.651** 0.334 1 Ca -0.258 0.786** -0.367 0.098 -0.095 1 干物重Dry matter 0.520** -0.527** 0.490* -0.128 -0.311 -0.646** 1 产量Yield 0.142 -0.110 -0.285 -0.241 -0.175 0.030 0.027 1 WUEbiomass 0.091 -0.054 -0.193 -0.227 -0.257 0.045 -0.067 0.903** 1 WUEyield 0.069 -0.088 -0.188 -0.319 -0.25 0.039 -0.070 0.882** 0.943** 1 *: 0.05水平相关性显著; **: 0.01水平相关性显著. *: significant correlation at P < 0.05. **: significant correlation at P < 0.01. -
[1] 陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003:82-87 Lu J L. Plant Nutrition Science[M]. Beijing:China Agricultural University Press, 2003:82-87
[2] Yuan Z J, Shen Y J. Estimation of agricultural water consumption from meteorological and yield data:A case study of Hebei, North China[J]. PLoS One, 2013, 8(3):e58685 doi: 10.1371/journal.pone.0058685
[3] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective[J]. Journal of Experimental Botany, 2004, 55(396):353-364 doi: 10.1093/jxb/erh064
[4] Chen W, Feng C, Guo W, et al. Comparative effects of osmotic-, salt-and alkali-stress on growth, photosynthesis, and osmotic adjustment of cotton plants[J]. Photosynthetica, 2011, 49(3):417-425 doi: 10.1007/s11099-011-0050-y
[5] 周晓阳, 赵楠, 张辉.水分胁迫下中东杨气孔运动与保卫细胞离子含量变化的关系[J].林业科学研究, 2000, 13(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-LYKX200001011.htm Zhou X Y, Zhao N, Zhang H. Relation of stomatal movement and ion content change of guard cells in populus berolinensis under water stress[J]. Forest Research, 2000, 13(1):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-LYKX200001011.htm
[6] Maathuis F J. Physiological functions of mineral macronutrients[J]. Current Opinion in Plant Biology, 2009, 12(3):250-258 doi: 10.1016/j.pbi.2009.04.003
[7] 白艳波, 李娇, 张宝龙, 等.干旱胁迫对植物矿质元素影响的研究进展[J].生物技术通报, 2013, (3):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201303002.htm Bai Y B, Li J, Zhang B L, et al. Research advance on effect of drought stress on mineral elements of plant[J]. Biotechnology Bulletin, 2013, (3):15-18 http://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201303002.htm
[8] 周芳. 小麦生长及养分吸收对局部根区水分胁迫的响应机制[D]. 杨凌: 西北农林科技大学, 2014: 32-35 http://cdmd.cnki.com.cn/Article/CDMD-10712-1014429849.htm Zhou F. Responses of growth and nutrient uptake in wheat seedlings to partial root-zone water stress and its mechanisms[D]. Yangling:Northwest A&F University, 2014:32-35 http://cdmd.cnki.com.cn/Article/CDMD-10712-1014429849.htm
[9] 周瑞莲, 赵彦宏, 赵哈林, 等.钠盐对冬小麦抗旱性增效作用调控机理的生理生态学分析[J].中国沙漠, 2012, 32(3):784-792 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201203032.htm Zhou R L, Zhao Y H, Zhao H L, et al. Ecological and physiological analysis of effect of different types of sodium salt treatment on winter wheat resistance to drought[J]. Journal of Desert Research, 2012, 32(3):784-792 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201203032.htm
[10] 戴媛, 伏毅, 谭晓荣.干旱对小麦幼苗Fe、Zn含量的影响[J].麦类作物学报, 2009, 29(5):839-843 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW200905020.htm Dai Y, Fu Y, Tan X R. Effect of different drought treatment on Fe and Zn content of wheat seedlings[J]. Journal of Triticeae Crops, 2009, 29(5):839-843 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW200905020.htm
[11] 谭晓荣, 戴媛, 伏毅.干旱对小麦幼苗Cu、Mn含量的影响及其机理研究[J].干旱地区农业研究, 2010, 28(1):152-159 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201001030.htm Tan X R, Dai Y, Fu Y. Effect of drought on content of copper and manganese in wheat seedlings and related mechanism[J]. Agricultural Research in the Arid Areas, 2010, 28(1):152-159 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201001030.htm
[12] 王凤茹, 张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究[J].电子显微学报, 2002, 21(2):106-109 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXV200202002.htm Wang F R, Zhang X H. Cytochemistry of Ca2+ in the chloroplast of the wheat seedling under water stress[J]. Journal of Chinese Electron Microscopy Society, 2002, 21(2):106-109 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXV200202002.htm
[13] 刘月岩, 刘会灵, 乔匀周, 等. CO2浓度升高对不同水分条件下冬小麦生长和水分利用的影响[J].中国生态农业学报, 2013, 21(11):1365-1370 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131108&flag=1 Liu Y Y, Liu H L, Qiao Y Z, et al. Effects of elevated CO2 concentration and different water conditions on winter wheat growth and water use[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11):1365-1370 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20131108&flag=1
[14] Zhang W, Liu D Y, Liu Y M, et al. Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil[J]. Field Crops Research, 2016, 197:74-82 doi: 10.1016/j.fcr.2016.08.010
[15] 姜丽娜, 张黛静, 蒿宝珍, 等. Zn在不同品种小麦植株地上部的积累和分配研究[J].华北农学报, 2010, 25(5):187-192 doi: 10.7668/hbnxb.2010.05.038 Jiang L N, Zhang D J, Hao B Z, et al. Study on Zn accumulation and distribution in aboveground plant of different wheat varieties[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(5):187-192 doi: 10.7668/hbnxb.2010.05.038
[16] 郝志, 田纪春, 姜小苓.小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J].作物学报, 2007, 33(11):1834-1839 doi: 10.3321/j.issn:0496-3490.2007.11.015 Hao Z, Tian J C, Jiang X L. Analyses of Fe, Zn, Cu, and Mn contents in grains and grouping based on the contents for main kindred germplasm of common wheat (Triticum aestivum)[J]. Acta Agronomica Sinica, 2007, 33(11):1834-1839 doi: 10.3321/j.issn:0496-3490.2007.11.015
[17] 赵俊霞, 乔鲜花, 张萍萍, 等.不同基因型小麦籽粒铁含量的差异及其与农艺性状的关系[J].干旱地区农业研究, 2010, 28(3):114-118 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201003019.htm Zhao J X, Qiao X H, Zhang P P, et al. Difference of Fe content of wheat seed between high-Fe genotypes and low-Fe ones and its relation to agronomic characteristics[J]. Agricultural Research in the Arid Areas, 2010, 28(3):114-118 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201003019.htm
[18] 张凯, 崔玉亭, 周顺利, 等.两种水分条件下冬小麦籽粒部分微营养含量及其基因型差异研究[J].华北农学报, 2007, 22(5):19-23 doi: 10.7668/hbnxb.2007.05.004 Zhang K, Cui Y T, Zhou S L, et al. Study of part micronutrition contents of winter wheat grains and genotypes diversity under two kind irrigation conditions[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(5):19-23 doi: 10.7668/hbnxb.2007.05.004
[19] 印莉萍, 黄勤妮, 吴平.植物营养分子生物学及信号转导[M].北京:科学出版社, 2006:294-300 Yin L P, Huang Q N, Wu P. Plant Nutrition Molecular Biology and Signal Transduction[M]. Beijing:Science Press, 2006:294-300
[20] 任立民, 刘鹏.锰毒及植物耐性机理研究进展[J].生态学报, 2007, 27(1):357-367 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200701042.htm Ren L M, Liu P. Review of manganese toxicity & the mechanisms of plant tolerance[J]. Acta Ecologica Sinica, 2007, 27(1):357-367 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200701042.htm
[21] 肖磊, 刘博, 张彦波, 等.外源钙对逆境胁迫下小麦的保护效应[J].河南科技学院学报:自然科学版, 2016, 44(5):17-20 http://www.cnki.com.cn/Article/CJFDTOTAL-HZXB201605004.htm Xiao L, Liu B, Zhang Y B, et al. Protective effect of exogenous calcium on wheat under adversity stress[J]. Journal of Henan Institute of Science and Technology:Natural Sciences Edition, 2016, 44(5):17-20 http://www.cnki.com.cn/Article/CJFDTOTAL-HZXB201605004.htm
[22] 蔡建一. 小麦Na+吸收途径及Na+在霸王适应渗透胁迫中的生理作用[D]. 兰州: 兰州大学, 2010: 35-36 http://cdmd.cnki.com.cn/article/cdmd-10730-2010130521.htm Cai J Y. Low-affinity Na+ uptake in wheat and the physiological role of Na+ in adapting to osmotic stress in Zygophyllum xanthoxylum[D]. Lanzhou:Lanzhou University, 2010:35-36 http://cdmd.cnki.com.cn/article/cdmd-10730-2010130521.htm
[23] Gong J M, Lee D A, Schroeder J I. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(17):10118-10123 doi: 10.1073/pnas.1734072100
[24] 孙岩. 水分胁迫对冬小麦的生长发育、生理特征及其养分运输的影响[D]. 北京: 中国农业科学院, 2007: 39-41 http://cdmd.cnki.com.cn/Article/CDMD-82101-2007156557.htm Sun Y. Influences of water stress on growth and development, physiological characteristics and nutrient distribution of winter wheat[D]. Beijing:Chinese Academy of Agricultural Sciences, 2007:39-41 http://cdmd.cnki.com.cn/Article/CDMD-82101-2007156557.htm
[25] 魏孝荣, 郝明德, 邱莉萍.土壤干旱条件下锰肥对夏玉米光合特性的影响[J].植物营养与肥料学报, 2004, 10(3):255-258 doi: 10.11674/zwyf.2004.0307 Wei X R, Hao M D, Qiu L P. Effect of manganese fertilizer on maize photosynthetic performance under soil drought condition[J]. Plant Nutrition and Fertilizer Science, 2004, 10(3):255-258 doi: 10.11674/zwyf.2004.0307
[26] 李孟华, 王朝辉, 王建伟, 等.低锌旱地施锌方式对小麦产量和锌利用的影响[J].植物营养与肥料学报, 2013, (6):1346-1355 doi: 10.11674/zwyf.2013.0608 Li M H, Wang Z H, Wang J W, et al. Effect of Zn application methods on wheat grain yield and Zn utilization in Zn-deficient soils of dryland[J]. Plant Nutrition and Fertilizer Science, 2013, (6):1346-1355 doi: 10.11674/zwyf.2013.0608
[27] 吴娜, 卜洪震, 曾昭海, 等.灌溉定额对夏播裸燕麦产量和品质的影响[J].草业学报, 2010, 19(5):204-209 doi: 10.11686/cyxb20100527 Wu N, Bu H Z, Zeng Z H, et al. Effects of irrigation quota on yield and quality of summer-sown, naked oat[J]. Acta Prataculturae Sinica, 2010, 19(5):204-209 doi: 10.11686/cyxb20100527
[28] 农业部小麦专家指导组.小麦高产创建示范技术[M].北京:中国农业出版社, 2008:128 Wheat Expert Pannel Appointed by Ministry of Agriculture. Demonstration Technology of High-yielding Establishment in Wheat[M]. Beijing:China Agriculture Press, 2008:128
[29] 张建军, 唐小明, 党翼.灌水量及其分配方式对冬小麦水分利用效率、光合特性和产量的影响[J].麦类作物学报, 2008, 28(1):85-90 doi: 10.7606/j.issn.1009-1041.2008.01.017 Zhang J J, Tang X M, Dang Y. Effects of irrigation quantity and irrigation ways on water use efficiency, photosynthetic characters and yield of winter wheat[J]. Journal of Triticeae Crops, 2008, 28(1):85-90 doi: 10.7606/j.issn.1009-1041.2008.01.017
[30] Ghasemi-Fasaei R, Ronaghi A. Interaction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil[J]. Journal of Plant Nutrition, 2008, 31(5):839-848 doi: 10.1080/01904160802043148
[31] 杨习文, 田霄鸿, 陆欣春, 等.喷施锌肥对小麦籽粒锌铁铜锰营养的影响[J].干旱地区农业研究, 2010, 28(6):95-102 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201006020.htm Yang X W, Tian X H, Lu X C, et al. Effect of foliar zinc application on the micronutrients of wheat grain[J]. Agricultural Research in the Arid Areas, 2010, 28(6):95-102 http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201006020.htm