-
摘要: 本文选取湖北省武穴市、荆州市和武汉市3个稻-油轮作长期定位试验点(试验时间分别为9年、5年和3年),通过连续监测土壤容重、孔隙度、pH、有机质、全氮、全钾、碱解氮、速效磷和速效钾等,研究在不同耕作年限和方式下,秸秆还田和免耕对水稻季(2015年10月)和油菜季(2016年5月)各土层(0~20 cm和20~40 cm)中土壤物理性质和养分的影响,并应用内梅罗指数法综合评价各土层土壤肥力水平,以探讨长期秸秆还田对土壤肥力的影响。结果表明:1)秸秆还田处理使水稻季和油菜季的土壤容重降低2.00%~16.54%,土壤总孔隙度增加1.00%~15.07%;而免耕处理下油菜季的变化与其相反,水稻季的变化不显著。2)秸秆还田处理增加了3个试验点0~20 cm土层中有机质(4.76%~35.07%)、全氮(1.80%~32.03%)、速效磷(20.95%~65.82%)、碱解氮(5.97%~37.00%)和速效钾(8.71%~133.04%)的含量,其中速效钾含量的增加幅度最高;免耕处理对土壤各养分的影响不显著,而在配施秸秆后,相对于其他处理,其对各养分的增加效果相对最好。各处理对20~40cm土层的影响与0~20 cm土层相似,但整体增加效果没有后者显著。3)各试验处理中,免耕+秸秆还田和施氮磷钾肥+秸秆还田两种处理增加各土层土壤综合肥力系数较大(7.56%~25.93%),它们对土壤肥力的提高效果相对较好。Abstract: In this study, the long-term effects of straw returning and no-tillage on physical properties and nutrient content of soils were assessed by continuous monitoring of soil bulk density, porosity, pH, organic matter, total nitrogen, total potassium, available nitrogen, available phosphorus and available potassium. The study considered different soil layers (0-20 cm and 20-40 cm) under rice-rape rotation system in Wuxue, Jingzhou and Wuhan Cities in Hubei Province for various farming years (9, 5 and 3 years) and cultivation systems. Also the Nemoro index method was used to evaluate soil fertility in different soil layers. The aim of the study was to provide the scientific basis for application of conservation tillage measures and optimization of field management. Results showed that:1) straw returning reduced soil bulk density by 2.00%-16.54% and increased total porosity by 1.00%-15.07% in rice and rape seasons. The changes in rape season were reversed under no-tillage treatment, while no significant changes were noted in the rice season. 2) Straw returning treatment increased the contents of organic matter (4.76%-35.07%), total nitrogen (1.80%-32.03%), available phosphorus (20.95%-65.82%), available nitrogen (5.97%-37.00%) and available potassium (8.71%-133.04%) in the 0-20 cm soil layer across the three sites. Compared with other nutrients, the greatest increase was recorded in available potassium. No significant differences were observed in no-tillage, although it had the best effect in terms of increase in soil nutrients compared with the other treatments after straw returning. The effect of each treatment on the 20-40 cm soil layer was similar to that on the 0-20 cm soil layer, but the total effect in terms of increase in the investigated parameters was not significant. 3) The no-tillage + straw returning and the nitrogen, phosphorus, potassium fertilizers application + straw returning treatments led to more increase in soil fertility with higher increase in integrated fertility index (7.56%-25.93%), they were good choice for improvement of soil fertility in the study sites.
-
表 1 试验前各试验点土壤的基本性质
Table 1 Soil basic properties of the experiment sites at the beginning of the experiment
试验地点
Experiment site试验起始年份
Starting year of the experimentpH 有机质
Organic matter (g×kg-1)全氮
Total nitrogen (g·kg-1)碱解氮
Available nitrogen (mg·kg-1)速效磷
Available phosphorus (mg×kg-1)速效钾
Available potassium (mg×kg-1)武穴 Wuxue 2007 5.23 34.15 1.92 56.05 6.68 86.14 荆州 Jingzhou 2011 5.97 26.92 0.61 66.51 8.12 179.95 武汉 Wuhan 2013 7.04 5.01 0.03 — 1.26 123.44 —:代表未测。—: Represents no measurement. 表 2 不同试验点的田间试验处理描述
Table 2 Descriptions of different treatments of the field experiment in different experiment sites
试验地点
Experiment site轮作制度
Rotation system编号
Code耕作处理
Tillage treatment施肥处理
Fertilization treatment每季作物施肥量
Fertilization amount of each crop (kg·hm-2)N P2O5 K2O 武穴 Wuxue 水稻-水稻-油菜 Rice-rice-rape CT 传统耕作 Conventional tillage 氮磷钾 Nitrogen, phosphorus,
potassium150/150/2101) 60/45/75 135/150/150 CTS 传统耕作+秸秆还田 Conventional tillage + straw returning 氮磷钾 Nitrogen, phosphorus,
potassium150/150/210 60/45/75 135/150/150 NT 免耕 No tillage 氮磷钾 Nitrogen, phosphorus,
potassium150/150/210 60/45/75 135/150/150 NTS 免耕+秸秆还田 No tillage + straw returning 氮磷钾 Nitrogen, phosphorus,
potassium150/150/210 60/45/75 135/150/150 荆州 Jingzhou 水稻-油菜 Rice-rape NP 传统耕作 Conventional tillage 氮磷 Nitrogen, phosphorus 180/1802) 60/60 0/0 NPK 传统耕作 Conventional tillage 氮磷钾 Nitrogen, phosphorus,
potassium180/180 60/60 90/90 NPS 传统耕作+秸秆还田 Conventional tillage + straw returning 氮磷 Nitrogen, phosphorus 180/180 60/60 0/0 NPKS 传统耕作+秸秆还田 Conventional tillage + straw returning 氮磷钾 Nitrogen, phosphorus,
potassium180/180 60/60 90/90 武汉 Wuhan 水稻-油菜 Rice-rape CK 传统耕作 Conventional tillage 不施肥 No fertilizer 0/03) 0/0 0/0 NPK 传统耕作 Conventional tillage 氮磷钾 Nitrogen, phosphorus,
potassium165/245 60/94 75/300 S 传统耕作+秸秆还田 Conventional tillage + straw returning 不施肥 No fertilizer 0/0 0/0 0/0 NPKS 传统耕作+秸秆还田 Conventional tillage + straw returning 氮磷钾 Nitrogen, phosphorus,
potassium165/245 60/94 75/300 1)“150/150/210”代表武穴地区早稻、晚稻和油菜季氮肥施用分别为150 kg·hm-2、150 kg·hm-2和210 kg·hm-2; 2)“180/180”代表荆州地区中稻和油菜季氮肥施用分别为180 kg·hm-2和180 kg·hm-2; 3)“0/0”代表武汉地区中稻和油菜季氮肥分别是0 kg·hm-2和0 kg·hm-2。1) “150/150/210” represents the application of nitrogen fertilizer for early rice, late rice and rape in the Wuxue site were 150, 150 and 210 kg·hm-2 respectively; 2) “180/180” represents the application of nitrogen fertilizer for middle-season rice and rape in the Jingzhou site were 180 and 180 kg·hm-2 respectively; 3) “0/0” represents the application of nitrogen fertilizer for middle-season rice and rape in the Wuhan site were 0 and 0 kg·hm-2, respectively. 表 3 土壤各属性的分级标准值
Table 3 Grading standards of soil properties
分级标准
Grade standardpH 有机质
Organic matter (g×kg-1)全氮
Total nitrogen (g×kg-1)全钾
Total potassium (g×kg-1)碱解氮
Available nitrogen (mg×kg-1)速效磷
Available phosphorus (mg×kg-1)速效钾
Available potassium (mg×kg-1)上限 Upper limit (xa) 4.5 10 0.75 5 60 3 40 上下限间的值 Value between xa and xp (xc) 6.5 20 1.5 20 120 10 100 下限 Lower limit (xp) 8.5 30 2.0 25 180 20 150 表 4 不同试验点不同处理下土壤物理性质的变化
Table 4 Changes of soil physical properties under different treatments at different experiment sites
试验地点
Experiment site时间
Time处理
Treatment容重
Bulk density (g·cm-3)总孔隙度
Total porosity (%)毛管孔隙度
Capillary porosity (%)通气孔隙度
Aeration porosity (%)武穴 Wuxue 水稻季 Rice season CT 0.93±0.09a 64.89±3.56a 59.40±2.18a 5.49±3.37a CTS 0.89±0.07a 66.26±2.81a 60.44±3.09a 5.82±3.70a NT 0.92±0.07a 65.30±2.59a 60.42±1.54a 4.88±2.87a NTS 0.86±0.09a 67.73±3.27a 59.27±2.66a 8.46±4.25a 油菜季 Rape season CT 1.00±0.08ab 62.39±2.80ab 57.90±1.49b 4.49±2.22a CTS 0.92±0.07b 65.11±2.55a 60.28±2.12a 4.83±2.45a NT 1.01±0.07a 61.98±1.05b 57.72±1.70b 4.26±1.28a NTS 0.99±0.08ab 62.59±3.05ab 56.55±1.89b 6.04±3.55a 荆州 Jingzhou 水稻季 Rice season NP 1.17±0.09ab 55.96±3.27ab 51.24±2.37ab 4.72±3.34a NPK 1.24±0.13a 53.12±4.79b 49.54±1.56b 3.58±4.75a NPS 1.07±0.10b 59.66±3.94a 52.12±1.55a 7.54±3.75a NPKS 1.16±0.16ab 56.17±6.16ab 51.02±2.20ab 5.15±4.58a 油菜季 Rape season NP 1.18±0.13ab 55.55±4.86ab 47.09±0.19ab 8.46±5.18b NPK 1.27±0.11a 52.01±4.11b 47.98±0.13ab 4.03±5.23b NPS 1.13±0.10b 57.54±3.73a 49.33±2.68a 8.21±1.31b NPKS 1.06±0.05b 59.85±1.77a 45.54±1.11b 14.31±4.38a 武汉 Wuhan 水稻季 Rice season CK 1.27±0.10a 51.91±3.80b 46.94±0.99b 4.97±3.23a NPK 1.30±0.05a 50.97±2.05b 46.40±1.36b 4.57±1.37a S 1.27±0.02a 52.06±0.70b 47.43±0.75b 4.63±1.06a NPKS 1.18±0.12b 55.61±4.63a 48.76±1.65a 6.85±3.48a 油菜季 Rape season CK 1.36±0.08b 48.66±2.96b 44.29±5.51b 4.37±2.76a NPK 1.40±0.10a 47.11±3.81ab 43.94±5.42b 3.17±2.59ab S 1.30±0.05b 50.84±1.43a 49.81±1.44a 1.03±0.31b NPKS 1.34±0.03ab 49.53±0.92ab 47.51±1.36b 2.02±0.44b 同列不同小写字母表示同一试验点同季不同处理间差异显著(P < 0.05)。Different lowercase letters in the same column mean significant differences at 0.05 level among different treatments in the same crop season in the same experiment station. 表 5 不同试验点各处理下不同土层土壤全量养分的变化
Table 5 Changes of soil total nutrients contents of different layers under different treatments at different experiment sites
试验地点
Experiment site时间
Time处理
Treatment有机质
Organic matter (g×kg-1)全氮
Total nitrogen (g×kg-1)全钾
Total potassium (mg×kg-1)0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 武穴 Wuhan 水稻季 Rice season CT 33.32±1.59Aa 8.70±1.59Bc 1.42±0.11Ab 0.81±0.03Ba 3.15±0.11Ab 2.71±0.06Bb CTS 34.24±2.31Aa 8.99±1.51Bbc 1.76±0.26Aa 0.74±0.07Bb 3.01±0.30Abc 2.59±0.10Bb NT 31.09±0.49Ab 9.52±1.11Bb 1.67±0.16Aab 0.74±0.10Bb 2.90±0.08Ac 2.86±0.37Aab NTS 37.10±2.75Aa 12.45±0.87Ba 1.70±0.25Aa 0.77±0.11Bb 3.53±0.19Aa 3.17±0.36Aa 油菜季 Rape season CT 35.50±3.60Aab 12.60±2.84Bb 1.97±0.17Aab 0.95±0.28Ba 3.19±0.20Ab 2.72±0.11Bbc CTS 37.19±4.59Aa 14.19±2.05Bab 2.04±0.20Aa 0.96±0.20Ba 3.37±0.07Aa 2.91±0.28Bb NT 32.48±2.18Ab 12.07±2.21Bb 1.86±0.19Ab 0.82±0.08Ba 2.71±0.17Ac 2.61±0.11Ac NTS 38.40±3.38Aa 18.03±1.14Ba 2.00±0.17Aab 0.86±0.05Ba 3.51±0.04Aa 3.04±0.14Ba 荆州 Jingzhou 水稻季 Rice season NP 25.87±0.51Ac 11.02±0.73Bb 1.56±0.11Aa 0.65±0.05Bb 9.96±0.34Bb 11.57±0.53Aab NPK 26.23±0.87Ac 11.79±1.18Bb 1.28±0.08Ab 0.82±0.21Bb 10.64±0.22Ba 11.91±0.51Aa NPS 28.40±1.70Ab 13.79±0.95Ba 1.59±0.13Aa 0.69±0.05Bb 9.43±0.41Bc 10.54±0.72Ac NPKS 35.43±0.08Aa 13.74±1.90Ba 1.69±0.15Aa 0.76±0.18Bb 10.60±0.29Aa 11.04±0.54Abc 油菜季 Rape season NP 30.07±2.61Ac 18.02±0.80Bc 1.63±0.16Ab 1.00±0.06Bb 10.25±0.17Bc 11.05±0.24Aab NPK 31.41±0.47Ab 19.65±0.40Bb 1.70±0.08Aab 1.10±0.06Bab 10.91±0.22Ba 11.26±0.26Aa NPS 32.33±0.64Ab 20.60±1.39Bab 1.64±0.10Ab 1.21±0.20Ba 10.57±0.36Ab 10.84±0.32Ab NPKS 33.53±0.70Aa 21.00±1.6Ba 1.76±0.08Aa 1.22±0.21Ba 10.75±0.20Bab 11.28±0.14Aa 武汉 Wuhan 水稻季 Rice season CK 8.19±0.83Ab 6.00±0.53Bb 0.58±0.04Aa 0.54±0.08Aa 10.97±0.54Ab 10.37±0.44Ab NPK 10.12±1.25Aa 7.42±1.85Ba 0.61±0.09Aa 0.58±0.03Aa 10.33±0.66Ac 9.45±0.28Bc S 10.18±1.73Aa 6.50±0.56Bab 0.59±0.03Aa 0.50±0.05Ba 9.67±0.27Ad 10.15±0.90Abc NPKS 10.33±0.19Aa 5.59±0.72Bb 0.56±0.06Aa 0.35±0.04Bb 11.72±0.24Aa 11.22±0.73Aa 油菜季 Rape season CK 7.79±0.82Ab 4.76±1.09Ba 0.56±0.05Ab 0.46±0.11Ba 11.02±0.25Ab 10.43±0.26Bb NPK 9.88±1.95Aa 6.03±1.68Ba 0.57±0.03Ab 0.45±0.04Ba 10.47±0.25Ac 9.58±0.34Bc S 9.91±1.18Aa 5.67±1.21Ba 0.59±0.03Aab 0.43±0.04Ba 10.12±0.35Ad 9.93±0.42Ac NPKS 10.21±2.46Aa 6.23±2.08Ba 0.63±0.09Aa 0.47±0.12Ba 11.53±0.26Aa 11.10±0.30Ba 同行不同大写字母表示同一处理同一指标不同层次间差异显著(P < 0.05), 同列不同小写字母表示同一层次相同试验地点相同作物季不同处理间差异显著(P < 0.05)。Different capital letters in the same line mean significant differences at 0.05 level between different soil layers for the index under the same treatment, different lowercase letters in the same column mean significant differences at 0.05 level among different treatments in the same layer and the same crop season in the same experiment station. 表 6 不同试验点各处理下不同土层土壤速效养分的变化
Table 6 Changes of soil available nutrients contents of different layers under different treatments at different sites
mg×kg-1 试验点
Site时间
Time处理
Treatment速效磷
Available phosphorus碱解氮
Available nitrogen速效钾
Available potassium0~20 cm 20~40 cm 0~20 cm 20~40 cm 0~20 cm 20~40 cm 武穴 Wuxue 水稻季 Rice season CT 27.05±3.86Ab 7.98±6.27Ba 116.34±1.78Ac 34.02±1.46Bc 30.25±1.26Ab 21.67±1.03Bc CTS 30.48±3.84Ab 11.91±5.06Ba 123.29±7.84Ab 32.79±1.21Bc 67.00±5.29Aa 32.00±0.82Bb NT 27.52±4.98Ab 9.83±3.99Ba 118.23±3.35Abc 38.87±0.37Bb 31.50±2.08Ab 14.00±2.28Bd NTS 35.02±1.36Aa 12.36±2.54Ba 161.98±3.35Aa 44.52±1.08Ba 67.75±1.26Aa 46.75±2.87Ba 油菜季 Rape season CT 28.51±7.29Ab 7.80±1.88Bb 138.69±3.27Ab 66.98±5.88Ba 49.20±4.71Ab 19.79±1.55Bab CTS 30.32±4.58Ab 12.54±2.24Ba 161.02±8.95Aa 63.70±0.48Ba 86.53±1.59Aa 34.02±3.87Ba NT 25.90±1.38Ab 5.84±0.82Bb 137.38±2.64Ab 64.26±2.52Ba 44.46±4.44Ab 18.20±3.12Bb NTS 35.71±3.35Aa 7.27±2.94Bb 161.20±3.98Aa 67.22±1.06Ba 103.61±4.29Aa 32.75±5.42Ba 荆州 Jingzhou 水稻季 Rice season NP 7.01±0.55Ac 5.93±0.53Bc 102.81±0.51Ad 39.50±1.80Bd 66.00±2.24Bc 78.00±6.87Aa NPK 8.54±0.58Ab 6.53±0.81Bc 123.00±0.66Ab 44.12±0.75Bc 67.67±0.52Bc 78.50±2.35Aa NPS 8.68±0.87Ab 7.43±0.68Bb 120.80±1.47Ac 51.77±0.36Bb 71.75±3.44Bb 77.50±5.92Aa NPKS 11.94±0.56Aa 8.36±0.71Ba 149.56±0.70Aa 62.27±0.59Ba 100.25±1.26Aa 76.17±1.47Ba 油菜季 Rape season NP 9.71±0.92Ab 8.05±0.65Ba 112.37±2.19Ac 67.43±2.40Bb 88.83±2.41Ad 91.48±1.41Aa NPK 10.73±1.28Ab 8.25±0.91Ba 113.73±5.90Ac 79.31±7.07Ba 101.75±4.94Ac 84.18±2.41Bb NPS 10.69±1.21Ab 8.11±2.65Ba 126.92±2.76Ab 74.95±4.93Ba 109.71±1.96Ab 85.51±2.52Bb NPKS 14.13±2.62Aa 8.15±0.84Ba 151.48±3.60Aa 75.20±4.84Ba 120.32±3.93Aa 86.84±2.41Bb 武汉 Wuhan 水稻季 Rice season CK 1.05±0.41Ab 0.49±0.39Bb 31.69±0.45Ac 19.67±0.93Ba 95.25±4.92Ac 64.25±4.92Bd NPK 1.53±0.47Aa 1.02±0.17Ba 34.79±1.13Ab 19.86±0.96Ba 105.75±7.80Ab 74.00±4.55Bb S 1.27±0.24Aab 1.00±0.26Ba 35.47±0.21Ab 21.48±0.21Ba 106.75±1.71Ab 69.25±1.50Bc NPKS 1.65±0.43Aa 1.00±0.38Ba 37.94±0.83Aa 20.23±4.54Ba 117.75±0.96Aa 82.00±6.93Ba 油菜季 Rape season CK 2.75±2.06Ab 0.64±0.68Bb 34.16±0.33Ac 21.19±1.08Bc 98.13±5.91Ab 77.21±9.32Ba NPK 4.47±1.55Aa 1.24±2.03Bab 45.24±2.44Ab 29.66±2.44Bb 102.78±9.82Ab 80.53±3.66Ba S 4.56±1.35Aa 1.60±0.83Ba 45.75±0.65Ab 31.92±2.60Bb 128.35±5.11Aa 80.20±9.09Ba NPKS 4.82±0.46Aa 1.75±1.65Ba 54.46±1.83Aa 40.15±2.28Ba 135.65±6.48Aa 82.85±12.26Ba 同行不同大写字母表示同一处理同一指标不同层次间差异显著(P < 0.05), 同列不同小写字母表示同一层次相同试验地点相同作物季不同处理间差异显著(P < 0.05)。Different capital letters in the same line mean significant differences at 0.05 level between different soil layers for the index under the same treatment, different lowercase letters in the same column mean significant differences at 0.05 level among different treatments in the same layer and the same crop season in the same experiment station. 表 7 不同试验点各处理下不同土层土壤综合肥力系数(IFI)的变化
Table 7 Changes of soil integrated fertility indexes of different layers under different treatments at different sites
试验点
Site处理
Treatment水稻季 Rice 油菜季 Rape 0~20 cm 20~40 cm 0~20 cm 20~40 cm 武穴 Wuxue CT 1.15±0.01Ab 0.69±0.02Bb 1.29±0.01Ac 0.74±0.07Bab CTS 1.27±0.04Aa 0.73±0.03Bb 1.38±0.01Ab 0.83±0.08Ba NT 1.18±0.03Ab 0.65±0.03Bb 1.25±0.02Ad 0.69±0.04Bb NTS 1.33±0.05Aa 0.83±0.02Ba 1.42±0.01Aa 0.82±0.02Ba 荆州 Jingzhou NP 1.36±0.03Ac 0.89±0.02Bd 1.47±0.02Ac 1.19±0.03Bb NPK 1.40±0.02Abc 0.95±0.03Bc 1.51±0.01Ab 1.30±0.06Ba NPS 1.41±0.02Ab 1.00±0.02Bb 1.53±0.02Ab 1.27±0.02Ba NPKS 1.57±0.02Aa 1.08±0.01Ba 1.61±0.04Aa 1.28±0.03Ba 武汉 Wuhan CK 0.70±0.04Ab 0.58±0.04Ba 0.81±0.02Ac 0.60±0.06Bb NPK 0.77±0.08Aab 0.64±0.01Ba 0.91±0.01Ab 0.66±0.03Bba S 0.75±0.02Aab 0.62±0.04Ba 0.95±0.02Ab 0.70±0.02Bba NPKS 0.82±0.05Aa 0.62±0.02Ba 1.02±0.05Aa 0.75±0.09Ba 同行不同大写字母表示同一处理同一指标不同层次间差异显著(P < 0.05), 同列不同小写字母表示同一层次相同试验地点相同作物季不同处理间差异显著(P < 0.05)。Different capital letters in the same line mean significant differences at 0.05 level between different soil layers for the index under the same treatment, different lowercase letters in the same column mean significant differences at 0.05 level among different treatments in the same layer and the same crop season in the same experiment station. -
[1] 马芊红, 张光辉, 耿韧, 等.我国水蚀区坡耕地土壤肥力现状分析[J].水土保持学报, 2016, 30(5):190-196 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201605032.htm Ma Q H, Zhang G H, Geng R, et al. Present condition analysis of sloping farmland soil fertility in the water erosion zone of China[J]. Journal of Soil and Water Conservation, 2016, 30(5):190-196 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201605032.htm
[2] 王淑兰, 王浩, 李娟, 等.不同耕作方式下长期秸秆还田对旱作春玉米田土壤碳、氮、水含量及产量的影响[J].应用生态学报, 2016, 27(5):1530-1540 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605024.htm Wang S L, Wang H, Li J, et al. Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1530-1540 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605024.htm
[3] 冯福学, 黄高宝, 于爱忠, 等.不同保护性耕作措施对武威绿洲灌区冬小麦水分利用的影响[J].应用生态学报, 2009, 20(5):1060-1065 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200905008.htm Feng F X, Huang G B, Yu A Z, et al. Effects of different conservation tillage measures on winter wheat water use in Wuwei oasis irrigated area[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1060-1065 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200905008.htm
[4] Peng W D, Chu C X, Zhong Y Q, et al. Effect of sweet corn straw returning to the field on soil fertility, yield and benefit[J]. Meteorological and Environmental Research, 2016, 7(4):59-63 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mevr201604017&dbname=CJFD&dbcode=CJFQ
[5] 张仁陟, 黄高宝, 蔡立群, 等.几种保护性耕作措施在黄土高原旱作农田的实践[J].中国生态农业学报, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1 Zhang R Z, Huang G B, Cai L Q, et al. Dry farmland practice involving multi-conservation tillage measures in the loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1):61-69 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013108&flag=1
[6] 罗珠珠, 黄高宝, Li G D, 等.保护性耕作对旱作农田耕层土壤肥力及酶活性的影响[J].植物营养与肥料学报, 2009, 15(5):1085-1092 http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGTN20170830003&dbname=CAPJ2015 Luo Z Z, Huang G B, Li G D, et al. Effects of conservation tillage on soil nutrients and enzyme activities in rainfed area[J]. Plant Nutrition and Fertilizer Science, 2009, 15(5):1085-1092 http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGTN20170830003&dbname=CAPJ2015
[7] 徐阳春, 沈其荣, 雷宝坤, 等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报, 2000, 11(4):549-552 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200004015.htm Xu Y C, Shen Q R, Lei B K, et al. Effect of long-term no-tillage and application of organic manure on some properties of soil fertility in rice/wheat rotation[J]. Chinese Journal of Applied Ecology, 2000, 11(4):549-552 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200004015.htm
[8] 冯跃华, 邹应斌, 王淑红, 等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究, 2004, 18(3):137-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ200403004.htm Feng Y H, Zou Y B, Wang S H, et al. Impact of zero tillage on the soil characters and the growth and yield formation in direct seeding rice[J]. Crop Research, 2004, 18(3):137-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ200403004.htm
[9] 吴建富, 潘晓华, 王璐, 等.双季抛栽条件下连续免耕对水稻产量和土壤肥力的影响[J].中国农业科学, 2010, 43(15):3159-3167 doi: 10.3864/j.issn.0578-1752.2010.15.013 Wu J F, Pan X H, Wang L, et al. Effects of continuous no-tillage on crop yield and soil fertility in double rice crop-ping system[J]. Scientia Agricultura Sinica, 2010, 43(15):3159-3167 doi: 10.3864/j.issn.0578-1752.2010.15.013
[10] 曹承绵, 严长生, 张志明, 等.关于土壤肥力数值化综合评价的探讨[J].土壤通报, 1983, (4):13-15 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201308025.htm Cao C M, Yan C S, Zhang Z M, et al. Discussion on the comprehensive evaluation of soil fertility[J]. Chinese Journal of Soil Science, 1983, (4):13-15 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201308025.htm
[11] 杨帆, 董燕, 徐明岗, 等.南方地区秸秆还田对土壤综合肥力和作物产量的影响[J].应用生态学报, 2012, 23(11):3040-3044 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201211019.htm Yang F, Dong Y, Xu M G, et al. Effects of straw returning on the integrated soil fertility and crop yield in southern China[J]. Chinese Journal of Applied Ecology, 2012, 23(11):3040-3044 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201211019.htm
[12] 江泽普, 黄绍民, 韦广泼, 等.不同连作免耕稻田土壤肥力变化与综合评价[J].西南农业学报, 2007, 20(6):1250-1254 http://www.cnki.com.cn/Article/CJFDTOTAL-XNYX200706023.htm Jiang Z P, Huang S M, Wei G P, et al. Comprehensive evalu-ation and changes of paddy soil fertility under different con-tinuous cropping and no-tillage modes[J]. Southwest China Journal of Agricultural Sciences, 2007, 20(6):1250-1254 http://www.cnki.com.cn/Article/CJFDTOTAL-XNYX200706023.htm
[13] 刘世平, 陈后庆, 聂新涛, 等.稻麦两熟制不同耕作方式与秸秆还田土壤肥力的综合评价[J].农业工程学报, 2008, 24(5):51-56 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200805012.htm Liu S P, Chen H Q, Nie X T, et al. Comprehensive evaluation of tillage and straw returning on soil fertility in a wheat-rice double cropping system[J]. Transactions of the CSAE, 2008, 24(5):51-56 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200805012.htm
[14] 包耀贤, 徐明岗, 吕粉桃, 等.长期施肥下土壤肥力变化的评价方法[J].中国农业科学, 2012, 45(20):4197-4204 doi: 10.3864/j.issn.0578-1752.2012.20.009 Bao Y X, Xu M G, Lü F T, et al. Evaluation method on soil fertility under long-term fertilization[J]. Scientia Agricultura Sinica, 2012, 45(20):4197-4204 doi: 10.3864/j.issn.0578-1752.2012.20.009
[15] 姜学兵, 李运生, 欧阳竹, 等.免耕对土壤团聚体特征以及有机碳储量的影响[J].中国生态农业学报, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1 Jiang X B, Li Y S, Ouyang Z, et al. Effect of no-tillage on soil aggregate and organic carbon storage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3):270-278 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012303&flag=1
[16] 武均, 蔡立群, 齐鹏, 等.不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J].中国生态农业学报, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1 Wu J, Cai L Q, Qi P, et al. Distribution characteristics of or-ganic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the loess plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3):276-284 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015303&flag=1
[17] 张宝峰, 曾路生, 李俊良, 等.优化施肥处理下设施菜地土壤容重与孔隙度的变化[J].中国农学通报, 2013, 29(32):309-314 doi: 10.3969/j.issn.1000-6850.2013.32.057 Zhang B F, Zeng L S, Li J L, et al. Soil bulk density and po-rosity in greenhouse vegetables field under the optimized fertilization treatment[J]. Chinese Agricultural Science Bulletin, 2013, 29(32):309-314 doi: 10.3969/j.issn.1000-6850.2013.32.057
[18] 阚文杰, 吴启堂.一个定量综合评价土壤肥力的方法初探[J].土壤通报, 1994, 25(6):245-247 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB406.001.htm Kan W J, Wu Q T. A quantitative method of comprehensive evaluation of soil fertility[J]. Chinese Journal of Soil Science, 1994, 25(6):245-247 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB406.001.htm
[19] 武均, 蔡立群, 罗珠珠, 等.保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响[J].水土保持学报, 2014, 28(2):112-117 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201402021.htm Wu J, Cai L Q, Luo Z Z, et al. Effects of conservation tillage on soil physical properties of rainfed field of the loess plateau in central of Gansu[J]. Journal of Soil and Water Conservation, 2014, 28(2):112-117 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201402021.htm
[20] 陈学文, 张晓平, 梁爱珍, 等.耕作方式对黑土硬度和容重的影响[J].应用生态学报, 2012, 23(2):439-444 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201202023.htm Chen X W, Zhang X P, Liang A Z, et al. Effects of tillage mode on black soil's penetration resistance and bulk density[J]. Chinese Journal of Applied Ecology, 2012, 23(2):439-444 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201202023.htm
[21] 张婧, 张仁陟, 左小安.保护性耕作对黄土高原农田土壤理化性质的影响[J].中国沙漠, 2016, 36(1):137-143 doi: 10.7522/j.issn.1000-694X.2015.00005 Zhang J, Zhang R Z, Zuo X A. Effects of conservative tillage on physical and chemical characteristics under a pea-wheat rotation system in the loess plateau[J]. Journal of Desert Re-search, 2016, 36(1):137-143 doi: 10.7522/j.issn.1000-694X.2015.00005
[22] 孟红旗, 刘景, 徐明岗, 等.长期施肥下我国典型农田耕层土壤的pH演变[J].土壤学报, 2013, 50(6):1109-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201306006.htm Meng H Q, Liu J, Xu M G, et al. Evolution of pH in topsoils of typical Chinese croplands under long-term fertilization[J]. Acta Pedologica Sinica, 2013, 50(6):1109-1116 http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201306006.htm
[23] Zhang P, Chen X L, Wei T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160:65-72 doi: 10.1016/j.still.2016.02.006
[24] 路兴花, 吴良欢, 庞林江, 等.连续覆膜旱作稻氮、磷、钾养分分布特征探讨[J].土壤通报, 2010, 41(1):145-149 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201001034.htm Lu X H, Wu L H, Pang L J, et al. Distribution of N, P and K in rice plant under a long-term located plastic film mulching cultivation[J]. Chinese Journal of Soil Science, 2010, 41(1):145-149 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201001034.htm
[25] Mengel K, Uhlenbecker K. Determination of available inter-layer potassium and its uptake by ryegrass[J]. Soil Science Society of America Journal, 1993, 57(3):761-766 doi: 10.2136/sssaj1993.03615995005700030023x
[26] Zhang H M, Xu M G, Shi X J, et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3):341-349 doi: 10.1007/s10705-010-9359-3
[27] 杨昆仑, 杨守军, 辛秀琛.玉米秸秆还田对土壤中磷有效性的影响[J].安徽农业科学, 2012, 40(28):13782-13783 doi: 10.3969/j.issn.0517-6611.2012.28.037 Yang K L, Yang S J, Xin X C. Effect of maize straw returning to soil on phosphorus availability[J]. Journal of Anhui Agri-cultural Sciences, 2012, 40(28):13782-13783 doi: 10.3969/j.issn.0517-6611.2012.28.037
[28] Kaewpradit W, Toomsan B, Cadisch G, et al. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency[J]. Field Crops Research, 2009, 110(2):130-138 doi: 10.1016/j.fcr.2008.07.011
[29] 潘剑玲, 代万安, 尚占环, 等.秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J].中国生态农业学报, 2013, 21(5):526-535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013502&flag=1 Pan J L, Dai W A, Shang Z H, et al. Review of research pro-gress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availabil-ity[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5):526-535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013502&flag=1
[30] 慕平, 张恩和, 王汉宁, 等.连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响[J].水土保持学报, 2011, 25(5):81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201105018.htm Mu P, Zhang E H, Wang H N, et al. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation, 2011, 25(5):81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201105018.htm
[31] 姚小萌, 周正朝, 田霄鸿, 等.长期机械化秸秆全量还田对土壤养分分层的影响[J].土壤通报, 2015, 46(1):198-202 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201501033.htm Yao X M, Zhou Z C, Tian X H, et al. Effects of long-term all straw return to field with machine on the stratifications of soil nutrients[J]. Chinese Journal of Soil Science, 2015, 46(1):198-202 http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201501033.htm
[32] 薛斌, 殷志遥, 肖琼, 等.稻-油轮作条件下长期秸秆还田对土壤肥力的影响[J].中国农学通报, 2017, 33(7):134-141 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201707023.htm Xue B, Yin Z Y, Xiao Q, et al. Effects of long-term straw re-turning on soil fertility under rice rape rotation system[J]. Chinese Agricultural Science Bulletin, 2017, 33(7):134-141 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201707023.htm
[33] Page K, Dang Y, Dalal R. Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems[J]. Australasian Plant Pathology, 2013, 42(3):363-377 doi: 10.1007/s13313-013-0198-y
[34] 沈奕彤, 郭成久, 金珊, 等.土壤容重对黑土坡面养分流失的影响[J].水土保持学报, 2016, 30(1):26-30 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201601006.htm Shen Y T, Guo C J, Jin S, et al. Effect of soil bulk density on nutrient loss of black soil slope[J]. Journal of Soil and Water Conservation, 2016, 30(1):26-30 http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201601006.htm
[35] 杨招弟, 蔡立群, 张仁陟, 等.不同耕作方式对旱地土壤酶活性的影响[J].土壤通报, 2008, 39(3):514-517 http://youxian.cnki.com.cn/yxdetail.aspx?filename=HJKZ20171027015&dbname=CAPJ2015 Yang Z D, Cai L Q, Zhang R Z, et al. Soil enzymatic activities under different tillages practricess in dryland[J]. Chinese Journal of Soil Science, 2008, 39(3):514-517 http://youxian.cnki.com.cn/yxdetail.aspx?filename=HJKZ20171027015&dbname=CAPJ2015