Effect of tillage mode on soil structure characteristics of plough layer and sug-arcane yield
-
摘要: 为探讨不同耕整地方式对甘蔗地耕层土壤结构特性和产量的影响,以1.4 m和1.6 m两种种植行距为主处理,以深松35 cm+旋耕25 cm、深翻50 cm+旋耕25 cm、不深松(旋耕25 cm)3种耕整地作业方式为副处理,对甘蔗产量性状,土壤容重、紧实度、孔隙度、三相容积率、田间持水量、土壤贯入阻力和抗剪强度等土壤结构特性进行研究。结果表明:1.6 m行距处理甘蔗蔗茎产量显著低于1.4 m行距处理;1.6 m行距处理土壤紧实度显著小于1.4 m行距,容重显著高于1.4 m行距处理,1.6 m行距处理显著改善土壤贯入阻力和抗剪强度。与对照不深松(旋耕25 cm)相比,深松35 cm+旋耕25 cm及深翻50 cm+旋耕25 cm处理通过增加土壤耕作深度,显著改善了耕层土壤紧实度和耕层土壤容重,改善了耕层的整体疏松程度;深松作业通过提高耕层土壤总孔隙度,尤其增加了30~40 cm土层的毛管孔隙度,提高了深层土壤的保水能力,对甘蔗中后期株高伸长和茎径增粗产生显著的促进效应。深松35 cm+旋耕25 cm与深翻50 cm+旋耕25 cm均显著降低了耕层土壤贯入阻力,但对土壤抗剪强度的改善效果不显著;深松35 cm+旋耕25 cm的固相容积率最小,气相容积率最大,不深松(旋耕25 cm)耕作措施的固相容积率最大,气相容积率最小,3种耕作措施的液相容积率没有显著差异。深松35 cm+旋耕25 cm和深翻50 cm+旋耕25 cm均对土壤物理结构的改善具有积极作用,能显著提高甘蔗产量,在具有大马力拖拉机和高质量深松器的蔗区建议采用深松35 cm+旋耕25 cm的耕整地方式,在缺乏大马力拖拉机和高质量深松器的蔗区,可以采用铧式犁深翻50 cm+旋耕25 cm的耕整地方式来代替深松,以达到增厚耕层的目的。Abstract: In order to establish the mechanical deep-ploughing technology of sugarcane for formation of good plough layer soil structure, the effect of tillage modes on soil plough layer structure and yield components of sugarcane were investigated. An experiment with 3 tillage measures under two planting rows of sugarcane were conducted. The two planting rows were 1.4 m and 1.6 m, respectively, while the subsidiary treatments included three tillage modes as follows-25 cm rotary tillage (as control), 35 cm sub-soiling plus 25 cm rotary tillage (sub-soiling), 50 cm deep plowing plus 25 rotary tillage (deep plowing). Sugarcane yield characteristics, together with soil bulk density, compactness, porosity, three-phase volumetric rate, field water holding capacity, penetration resistance and shear strength were investigated. The results demonstrated that stem yield of 1.6 m rows spacing was significantly lower than that of 1.4 m rows spacing. Also soil compactness of 1.6 m rows spacing was remarkably lower than that of 1.4 m rows spacing. Soil bulk density of 1.6 m rows spacing was strikingly higher than that of 1.4 m rows spacing. The results also indicated that 1.6 m rows spacing significantly improved penetration resistance and shear strength of soil. Also both the sub-soiling and deep plowing significantly increased sugarcane yield. Compared with the control, the sub-soiling and deep plowing treatments increased soil tillage layer depth, and also improved soil com-pactness and bulk density along with the overall porosity of plough layer. It also showed that sub-soiling dramatically increased total porosity of plough layer soil especially capillary porosity of soil. Field water holding capacity of deep soil also greatly improved by sub-soiling, which finally significantly enhanced plant height elongation and stem diameter thickening at the middle and late growth stages of sugarcane. Also both sub-soiling and deep plowing significantly decreased soil penetration resistance, but with insignificant effect on soil shear strength. Among the three tillage measures, there was no significant difference in volume rate of the liquid phase. However, sub-soiling had the smallest solid volume rate and the largest gas phase volume rate. Then the control resulted in the largest solid volume rate, but the smallest gas phase volume rate. In conclusion, sub-soiling and deep plowing had positive effects on soil physical structure and significantly increased yield of sugarcane. We also concluded that in sugarcane planting areas where large horsepower tractors and high quality loosen machines were used, 35 cm sub-soiling + 25 cm rotary tillage method was the most suitable tillage mode. However, in areas without large horsepower tractors and high quality sub-soiling devices, thick plough layer was maintained by the use of 50 cm deep plowing + 25 cm rotary tillage measure.
-
Keywords:
- Sugarcane /
- Tillage measure /
- Sub-soiling /
- Rows spacing /
- Plough layer /
- Soil structure /
- Soil physical properties /
- Yield
-
表 1 不同耕作措施对蔗地土壤容重和紧实度的影响
Table 1 Effects of different tillage measures on bulk density and compactness of soil of sugarcane field
耕作措施
Tillage measure行距
Rows spacing (m)土层
Soil layer (cm)土壤容重
Soil bulk density (g·cm-3)土壤紧实度
Soil compactness (N·cm-2)苗期
Seedling stage成熟期
Mature stage旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 0~10 0.85±0.11b — 157.71±78.87b 10~20 1.14±0.17a — 378.97±117.83a 20~30 1.23±0.07a — 419.19±50.97a 30~40 1.11±0.07a — 379.76±43.88a 平均Average 1.08 BC 329.10A 333.91A 1.6 0~10 1.09±0.04b — 80.18±23.56c 10~20 1.16±0.17b — 239.83±63.24b 20~30 1.32±0.09a — 343.20±77.91a 30~40 1.36±0.09a — 366.63±52.19a 平均Average 1.23A 264.39B 257.46C 平均Average 1.16α 296.74α 295.68α 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage
(B2)1.4 0~10 0.89±0.09c — 103.58±37.26c 10~20 1.01±0.08bc — 268.70±101.79b 20~30 1.16±0.11a — 389.58±67.68a 30~40 1.12±0.11ab — 373.85±56.29a 平均
Average1.04C 252.96B 283.92B 1.6 0~10 0.99±0.05b — 84.55±49.79d 10~20 1.11±0.11b — 156.64±44.59c 20~30 1.34±0.11a — 321.95±65.11b 30~40 1.36±0.09a — 375.95±47.24a 平均Average 1.20A 167.80D 234.77D 平均
Average1.12αβ 210.38β 259.35β 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage
(B3)1.4 0~10 0.86±0.05c — 111.01±42.68d 10~20 1.00±0.09b — 213.84±53.86c 20~30 1.21±0.10a — 368.19±66.93b 30~40 1.13±0.08a — 409.01±51.92a 平均
Average1.05C 210.66C 275.51bC 1.6 0~10 0.92±0.08b — 118.24±44.32c 10~20 1.14±0.09a — 247.98±71.17b 20~30 1.23±0.04a — 331.78±89.31a 30~40 1.23±0.07a — 374.06±86.06a 平均
Average1.18B 229.98BC 268.02BC 平均
Average1.09β 220.32β 271.76β F 行距
Row spacing (A)54.19** 16.99** 55.19** 耕作措施
Tillage measure (B)4.77** 26.72** 12.75** 土层
Soil layer (C)68.25** — 436.27** A × B 2.33 9.17** 11.26** A × C 2.07 — 4.87** B × C 0.52 — 5.71** A × B × C 1.86 — 5.08** 同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. 表 2 不同耕作措施对蔗地土壤贯入阻力和抗剪强度的影响
Table 2 Effects of different tillage measures on penetration resistance and shear strength of soil of sugarcane field
耕作措施
Tillage measure行距
Rows spacing (m)土层
Soil layer (cm)贯入阻力
Penetration resistance (KPa)抗剪强度
Shear strength of soil (kg·cm-2)旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 0~10 12.30±7.10c 0.83±0.34c 10~20 50.94±26.05b 4.02±2.16b 20~30 67.86±15.34a 5.39±1.68a 30~40 67.63±9.88a 4.80±1.06ab 平均
Average49.68A 3.76A 1.6 0~10 10.34±6.40d 0.84±0.44d 10~20 20.55±9.09c 1.81±0.76c 20~30 48.35±13.19b 3.41±0.79b 30~40 60.08±9.87a 3.95±0.62a 平均
Average34.83D 2.50D 平均
Average42.26α 3.13α 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage (B2)1.4 0~10 7.78±3.41c 0.75±0.33d 10~20 29.99±10.96b 2.43±1.26c 20~30 61.65±11.44a 4.97±1.40b 30~40 66.83±6.44a 5.67±1.04a 平均
Average41.56B 3.45B 1.6 0~10 8.65±3.71d 0.80±0.38d 10~20 17.79±6.14c 1.67±0.55c 20~30 41.76±14.64b 3.09±0.63b 30~40 66.53±6.90a 4.40±0.73a 平均
Average33.68D 2.49D 平均
Average37.62β 2.97α 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage (B3)1.4 0~10 5.49±3.00d 0.51±0.20d 10~20 18.18±9.60c 1.56±0.60c 20~30 52.70±17.44b 3.76±1.16b 30~40 69.79±4.91a 5.62±0.64a 平均
Average36.54CD 2.86C 1.6 0~10 7.08±2.29c 0.89±0.38d 10~20 30.19±14.37b 1.88±0.98c 20~30 55.86±14.77a 4.57±1.00b 30~40 59.58±15.01a 5.31±1.27a 平均
Average38.18BC 3.16B 平均
Average37.36β 3.01α F 行距
Row spacing (A)45.08** 52.41** 耕作措施
Tillage measure (B)9.22** 1.16 土层
Soil layer (C)599.45** 462.16** A × B 20.83** 29.34** A × C 6.71** 9.07** B × C 3.47** 9.89** A × B × C 9.68** 5.88** 同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. 表 3 不同耕作措施对蔗地土壤孔隙度的影响
Table 3 Effects of different tillage measures on porosity of soil of sugarcane field
耕作措施
Tillage measure行距
Rows spacing (m)土层
Soil layer (cm)孔隙度
Porosity (%)毛管孔隙度
Capillary porosity (%)通气孔隙度
Ventilation porosity (%)旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 0~10 68.68±3.58a 38.59±2.23a 30.09±4.10a 10~20 58.08±9.01b 37.67±3.62a 20.41±11.86b 20~30 54.13±2.28b 40.19±3.42a 13.93±3.63b 30~40 59.55±2.26b 41.28±1.70a 18.27±2.24b 平均
Average60.11A 39.43AB 20.68AB 1.6 0~10 61.02±1.83a 40.60±1.73a 20.42±2.91a 10~20 57.92±5.77a 39.25±6.58a 18.67±2.91a 20~30 52.63±2.76b 39.29±1.72a 13.35±2.69b 30~40 51.46±3.47b 40.90±3.70a 10.56±2.02b 平均
Average55.76B 40.00A 15.75C 平均
Average57.93β 39.72α 18.21β 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage
(B2)1.4 0~10 67.18±2.79a 40.20±6.38a 26.98±7.31a 10~20 63.21±3.51ab 40.32±1.73a 22.90±4.38ab 20~30 57.62±3.28c 40.00±3.65a 17.62±2.27b 30~40 59.06±3.37bc 40.90±2.09a 18.17±2.25b 平均
Average61.77A 40.35A 21.42AB 1.6 0~10 64.43±1.05a 39.33±3.06a 25.10±3.10a 10~20 60.46±3.29b 37.73±2.54a 22.72±3.38a 20~30 51.77±4.01c 36.18±2.11a 15.59±2.26b 30~40 51.62±2.63c 37.49±3.28a 14.14±1.62b 平均
Average57.07B 37.68B 19.39B 平均
Average59.42β 39.02α 20.40αβ 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage
(B3)1.4 0~10 69.09±1.96a 33.44±2.79b 35.65±3.10a 10~20 64.32±3.10b 38.90±6.52a 25.42±6.47b 20~30 56.61±3.79c 40.40±1.73a 16.21±4.73c 30~40 58.93±3.04c 43.46±2.51a 15.47±1.96c 平均Average 62.24A 39.05AB 23.19A 1.6 0~10 67.26±2.54a 37.91±1.80b 29.36±3.26a 10~20 61.82±6.50b 42.07±4.34a 19.75±7.94b 20~30 56.12±1.11c 40.31±1.83ab 15.81±1.76b 30~40 56.77±2.19c 41.43±0.47ab 15.34±2.28b 平均
Average60.49A 40.43A 20.07B 平均
Average61.37α 39.74α 21.63α F 行距
Row spacing (A)28.30 ** 0.15 17.12 ** 耕作措施
Tillage measure (B)8.63 ** 0.60 6.05 ** 土层
Soil layer (C)58.83 ** 2.95 * 54.82 ** A × B 1.90 4.04 * 1.09 A × C 1.77 2.23 1.68 B × C 0.56 2.87 * 1.75 A × B × C 1.22 0.27 1.26 同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上显著。Different lowercase letters in the same column indicatesignificant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. 表 4 不同耕作措施对蔗地土壤三相容积率的影响
Table 4 Effects of different tillage measures on three-phase volume fractions of soil of sugarcane field
耕作措施
Tillage measure行距
Rows spacing (m)土层
Soil layer (cm)固相容积率
Solid volume fraction (%)液相容积率
Liquid volume fraction (%)气相容积率
Gas volume fraction (%)旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 0~10 31.32±3.58b 19.89±2.61b 48.79±6.18a 10~20 41.92±9.01a 24.80±6.02a 33.28±14.87b 20~30 45.87±2.28a 28.71±1.32a 25.41±2.93b 30~40 40.45±2.26a 27.80±0.61a 31.75±2.65b 平均
Average39.89BC 25.30A 34.81BC 1.6 0~10 38.98±1.83b 19.24±1.84c 41.78±2.99a 10~20 42.08±5.77b 21.91±3.99bc 36.01±9.44a 20~30 47.37±2.76a 24.49±1.90ab 28.14±2.72b 30~40 48.54±3.47a 26.27±3.05a 25.19±4.63b 平均
Average44.24A 22.98B 32.78C 平均
Average42.07α 24.14α 33.79β 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage
(B2)1.4 0~10 32.82±2.79c 19.31±2.02c 47.87±4.12a 10~20 36.79±3.51bc 23.63±2.95b 39.58±6.38b 20~30 42.38±3.28a 26.37±1.42ab 31.25±3.52c 30~40 40.94±3.37ab 26.80±1.60a 32.26±3.18c 平均
Average38.23BC 24.03AB 37.74AB 1.6 0~10 35.57±1.05c 20.83±2.11c 43.60±2.54a 10~20 39.54±3.29b 23.14±1.98bc 37.32±4.61b 20~30 48.23±4.01a 24.54±1.91b 27.23±5.71c 30~40 48.38±2.63a 28.14±1.81a 23.48±1.71c 平均
Average42.93A 24.16AB 32.91C 平均
Average40.58β 24.10α 35.32αβ 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage
(B3)1.4 0~10 30.91±1.96c 17.20±1.08b 51.90±2.92a 10~20 35.68±3.10b 20.40±2.71b 43.92±5.16b 20~30 43.39±3.79a 26.24±3.33a 30.37±6.75c 30~40 41.07±3.04a 28.10±2.46a 30.83±3.78c 平均
Average37.76C 22.98B 39.25A 1.6 0~10 32.74±2.54b 20.44±1.56c 46.83±3.91a 10~20 41.00±3.39a 25.27±1.78b 33.73±5.04b 20~30 43.88±1.11a 27.94±1.54a 28.18±2.43c 30~40 43.23±2.19a 29.01±1.31a 27.76±2.95c 平均
Average40.21B 25.67A 34.12C 平均
Average38.99γ 24.32α 36.69α F 行距
Row spacing (A)35.42 ** 0.13 16.54 ** 耕作措施
Tillage measure (B)7.62 ** 0.10 2.89 土层
Soil layer (C)63.96 ** 66.30 ** 79.01 ** A × B 1.18 10.34 ** 1.01 A × C 1.41 1.72 1.32 B × C 0.63 0.97 0.52 A × B × C 1.96 0.80 1.53 同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. 表 5 不同耕作措施对蔗地土壤含水量的影响
Table 5 Effects of different tillage measures on soil moisture content of sugarcane field
耕作措施
Tillage measure行距
Rows spacing (m)土层
Soil layer (cm)土壤含水率
Soil moisture content (%)田间持水量
Field capacity (%)土壤饱和含水量
Soil saturated water content (%)旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 0~10 19.89±2.61b 46.31±6.57a 51.93±8.14a 10~20 24.80±6.02a 33.43±3.75b 36.65±5.18b 20~30 28.71±1.32a 32.70±3.77b 35.16±4.27b 30~40 27.80±0.61a 37.49±3.26b 40.42±3.56b 平均
Average25.30A 37.48A 41.04AB 1.6 0~10 19.24±1.84c 37.36±1.67a 40.85±1.45a 10~20 21.91±3.99bc 34.89±8.96a 38.64±5.60ab 20~30 24.49±1.90ab 29.98±2.80a 33.72±2.62b 30~40 26.27±3.05a 30.29±4.77a 33.03±5.01b 平均
Average22.98B 33.13B 36.56C 平均
Average24.14α 35.31α 38.80α 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage
(B2)1.4 0~10 19.31±2.02c 46.67±7.42a 51.51±9.89a 10~20 23.63±2.95b 41.00±3.82ab 44.71±4.01ab 20~30 26.37±1.42ab 35.70±5.91b 38.15±6.86b 30~40 26.80±1.60a 37.57±4.29b 39.93±5.55b 平均
Average24.03AB 39.49A 43.58A 1.6 0~10 20.83±2.11c 39.84±5.02a 47.76±6.90a 10~20 23.14±1.98bc 34.29±4.23a 41.19±5.22a 20~30 24.54±1.91b 27.18±4.16b 30.44±4.66b 30~40 28.14±1.81a 27.71±4.11b 30.49±4.26b 平均
Average24.16AB 32.26B 37.47BC 平均
Average24.10α 35.87α 40.52α 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage
(B3)1.4 0~10 17.20±1.08b 38.99±4.69a 45.32±6.24a 10~20 20.40±2.71b 39.21±8.72a 43.10±8.64ab 20~30 26.24±3.33a 33.44±2.10a 36.22±2.57b 30~40 28.10±2.46a 38.55±4.60a 41.42±4.82ab 平均
Average22.98B 37.55A 41.51A 1.6 0~10 20.44±1.56c 41.56±3.75a 49.15±6.52a 10~20 25.27±1.78b 37.38±6.75ab 41.25±7.08b 20~30 27.94±1.54a 32.76±2.04b 36.57±2.50b 30~40 29.01±1.31a 33.90±1.87b 36.61±2.03b 平均
Average25.67A 36.40A 40.89AB 平均
Average24.32α 36.97α 41.20α F 行距
Row spacing (A)0.13 20.82** 13.55** 耕作措施
Tillage measure (B)0.10 1.10 1.99 土层
Soil layer (C)66.30** 20.26** 30.55** A x B 10.34** 3.57* 2.57 A x C 1.72 1.23 1.58 B x C 0.97 1.07 1.07 A x B x C 0.80 1.00 1.49 同列不同小写字母表示同一行距同一耕作措施下不同土层间差异显著(P < 0.05)。同列不同大写字母表示同一行距不同耕作措施间差异显著(P < 0.05)。同列不同小写希腊字母表示不同耕作措施间差异显著(P < 0.05)。*、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among soil layers under the same rows spacing and the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures underthe same rows spacing (P < 0.05). Different Greek letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. 表 6 不同耕作措施对不同行距种植的甘蔗产量性状的影响
Table 6 Effects of tillage measures on yield traits of sugarcane planted with different rows spacings under different tillage measures
耕作措施
Tillage measure行距
Rows spacing (cm)株高
Plant height (cm)茎径
Stem diameter (cm)单茎重
Stem weight (kg·stem-1)有效茎数
Effective stems number (stems·hm-2)锤度
Brix (%)蔗茎产量
Cane yield (t·hm-2)旋耕25 cm
25 cm rotary tillage
(control, B1)1.4 198.32±8.04d 2.58±0.05b 1.04±0.07b 60 888±1 818b 17.46±0.55de 63.21±5.60c 1.6 204.02±3.41cd 2.59±0.05b 1.07±0.04b 50 442±3 303d 16.81±0.70e 54.04±4.29d 平均
Average201.17±6.60C 2.58±0.048B 1.05±0.06C 55 665±6 018B 17.13±0.69C 58.62±6.75B 深翻50 cm+旋耕25 cm
50 cm deep plowing + 25 cm rotary tillage
(B2)1.4 209.57±5.59bcd 2.61±0.09b 1.13±0.08b 64 318±1 782a 18.04±1.01cd 72.41±5.85a 1.6 213.23±3.98abc 2.59±0.07b 1.13±0.05b 64 616±1 845a 18.65±0.76bc 72.79±4.99a 平均
Average211.40±5.01B 2.60±0.082B 1.13±0.07B 64 467±1 737A 18.34±0.91B 72.60±5.19A 深松35cm+旋耕25 cm
35 cm sub-soiling + 25 cm rotary tillage
(B3)1.4 221.83±18.04a 2.66±0.07ab 1.23±0.11a 57 648±2 254c 19.07±0.54b 70.90±7.80ab 1.6 216.13±10.04ab 2.72±0.08a 1.25±0.12a 51 693±3 681d 20.03±0.77a 64.82±7.37bc 平均
Average218.98±14.24A 2.69±0.077A 1.24±0.11A 54 670±4 259B 19.55±0.81A 67.86±7.30A F 行距
Row spacing (A)0.15 0.40 0.49 39.45** 1.52 5.92* 耕作措施
Tillage measure (B)10.46** 7.14** 14.44** 53.07** 31.91** 16.23** A × B 1.21 1.03 0.13 13.29** 3.96* 1.91 同列不同小写字母表示同一耕作措施不同行距间差异显著(P < 0.05), 同列不同大写字母表示不同耕作措施间差异显著(P < 0.05), *、**分别表示在0.05和0.01水平上差异显著。Different lowercase letters in the same columnindicate significant differences among row spacings under the same tillage measure (P < 0.05). Different capital letters in the same column indicate significant differences among tillage measures (P < 0.05). * and ** indicate significant effects at 0.05 and 0.01 levels, respectively. -
[1] 廖平伟, 张华, 罗俊, 等.我国甘蔗机械化收获现状的研究[J].农机化研究, 2011, 33(3):26-29 http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201103008.htm LIAO P W, ZHANG H, LUO J, et al. Study on the status of sugarcane harvest mechanization in China[J]. Journal of Ag-ricultural Mechanization Research, 2011, 33(3):26-29 http://www.cnki.com.cn/Article/CJFDTOTAL-NJYJ201103008.htm
[2] 苏俊波, 孔冉, 罗炼芳, 等.甘蔗机械化收获后的宿根性能分析[J].甘蔗糖业, 2016, (6):22-28 http://www.cqvip.com/QK/94396X/201405/663022475.html SU J B, KONG R, LUO L F, et al. Analysis of sugarcane ra-tooning performance after mechanized harvest[J]. Sugarcane and Canesugar, 2016, (6):22-28 http://www.cqvip.com/QK/94396X/201405/663022475.html
[3] 秦培钊, 罗艺, 米超, 等.机械收割对不同种植行距宿根蔗苗期生长的影响[J].南方农业学报, 2012, 43(2):236-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx201202024 QIN P Z, LUO Y, MI C, et al. Effect of mechanical harvesting on shoot growth of ratoon cane with different row spacing[J]. Journal of Southern Agriculture, 2012, 43(2):236-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx201202024
[4] 陈桂芬, 谭裕模, 邢颖, 等.适应甘蔗机械收获的不同种植行距和品种试验[J].甘蔗糖业, 2014, (4):11-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzty201404003 CHEN G F, TAN Y M, XING Y, et al. Study on different planting row spacing and sugarcane varieties adjusting to sugarcane mechanization harvesting[J]. Sugarcane and Canesugar, 2014, (4):11-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzty201404003
[5] 李就好, 谭中文, 罗锡文, 等.耕作和覆盖方式对旱地甘蔗生产的影响[J].农业机械学报, 2004, 35(5):70-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb200405019 LI J H, TAN Z W, LUO X W, et al. Effects of tillage and mulch methods on sugarcane production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5):70-73 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb200405019
[6] 梁强, 谢金兰, 李毅杰, 等.不同收获方式对蔗田土壤容重及甘蔗宿根出苗的影响[J].南方农业学报, 2014, 45(7):1221-1224 http://www.cnki.com.cn/Article/CJFDTotal-GXNY201407016.htm LIANG Q, XIE J L, LI Y J, et al. Effects of different harvesting methods on soil bulk density and seedling roots of ratoon sugarcane[J]. Journal of Southern Agriculture, 2014, 45(7):1221-1224 http://www.cnki.com.cn/Article/CJFDTotal-GXNY201407016.htm
[7] 郑超, 廖宗文, 谭中文, 等.深松对雷州半岛甘蔗产量的影响及其作用机理研究[J].土壤通报, 2004, 35(6):809-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200406031 ZHENG C, LIAO Z W, TAN Z W, et al. Effect of deep ploughing on the yield of sugarcane in the Leizhou Peninsu-la[J]. Chinese Journal of Soil Science, 2004, 35(6):809-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb200406031
[8] 廖青, 韦广泼, 刘斌, 等.机械化深耕深松栽培对甘蔗生长及产量的影响[J].广西农业学报, 2010, 41(6):542-544 http://www.cqvip.com/QK/90177X/2010006/34538627.html LIAO Q, WEI G P, LIU B, et al. Effects of mechanized deep ploughing and scarification cultivation technology on growth and yield of sugarcane[J]. Guangxi Agricultural Sciences, 2010, 41(6):542-544 http://www.cqvip.com/QK/90177X/2010006/34538627.html
[9] 刀静梅, 樊仙, 赵俊, 等.旱地甘蔗不同类型土壤各耕层水分特征常数分析——以开远、元江为例[J].西南农业学报, 2017, 30(2):389-393 http://www.wanfangdata.com.cn/local/toFullText.do?item_id=11893651 DAO J M, FAN X, ZHAO J, et al. Analysis of topsoil mois-ture feature of different soils on dry land sugarcane:Taken Kaiyuan and Yuanjiang as example[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(2):389-393 http://www.wanfangdata.com.cn/local/toFullText.do?item_id=11893651
[10] 吴晓莲, 林兆里, 张华.不同土壤紧实度对甘蔗品种福农39号苗期生长的影响[J].广东农业科学, 2014, 41(19):43-46 doi: 10.3969/j.issn.1004-874X.2014.19.011 WU X L, LIN Z L, ZHANG H. Influence of soil density on seedling growth of sugarcane variety Funong 39[J]. Guang-dong Agricultural Sciences, 2014, 41(19):43-46 doi: 10.3969/j.issn.1004-874X.2014.19.011
[11] 丁昆仑, HANN M J.耕作措施对土壤特性及作物产量的影响[J].农业工程学报, 2000, 16(3):28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200003008 DING K L, HANN M J. Effects of soil management on soil properties and crop yield[J]. Transactions of the CSAE, 2000, 16(3):28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb200003008
[12] 王小彬, 蔡典雄, 金轲, 等.旱坡地麦田夏闲期耕作措施对土壤水分有效性的影响[J].中国农业科学, 2003, 36(9):1044-1049 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200309010.htm WANG X B, CAI D X, JIN K, et al. Water availability for winter wheat affected by summer fallow tillage practices in sloping dryland[J]. Scientia Agricultura Sinica, 2003, 36(9):1044-1049 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200309010.htm
[13] 刘爽, 何文清, 严昌荣, 等.不同耕作措施对旱地农田土壤物理特性的影响[J].干旱地区农业研究, 2010, 28(2):65-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201002013 LIU S, HE W Q, YAN C R, et al. Effects of different tillage managements on soil physical properties in dryland[J]. Agri-cultural Research in the Arid Areas, 2010, 28(2):65-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201002013
[14] 张海林, 秦耀东, 朱文珊.耕作措施对土壤物理性状的影响[J].土壤, 2003, 35(2):140-144 http://mall.cnki.net/magazine/Article/TURA200302011.htm ZHANG H L, QIN Y D, ZHU W S. Effects of tillage on soil physical properties[J]. Soils, 2003, 35(2):140-144 http://mall.cnki.net/magazine/Article/TURA200302011.htm
[15] 许淑青, 张仁陟, 董博, 等.耕作方式对耕层土壤结构性能及有机碳含量的影响[J].中国生态农业学报, 2009, 17(2):203-208 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009201&flag=1 XU S Q, ZHANG R Z, DONG B, et al. Effect of tillage prac-tices on structural properties and content of organic carbon in tilth soil[J]. Chinese Journal of Eco-Agriculture, 2009, 17(2):203-208 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2009201&flag=1
[16] 汪洲涛, 苏炜华, 阙友雄, 等.应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性[J].中国生态农业学报, 2016, 24(6):790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1 WANG Z T, SU W H, QUE Y X, et al. Analysis of yield sta-bility and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6):790-800 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016611&flag=1
[17] 陈宁宁, 李军, 吕薇, 等.不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响[J].中国生态农业学报, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1 CHEN N N, LI J, LYU W, et al. Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland[J]. Chinese Journal of Eco-Agriculture, 2015, 23(9):1102-1111 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015904&flag=1
计量
- 文章访问数: 1166
- HTML全文浏览量: 120
- PDF下载量: 1032