Influence of artificial lodging at grain-filling stage on plant growth, yield and quality of super rice
-
摘要: 倒伏是水稻实现高产优质的主要限制因子之一。以‘南粳9108’为材料,研究人为模拟倒伏对超级稻物质生产和分配、产量和产量构成因素以及稻米品质的影响及其与倒伏发生时期的关系,探讨倒伏对水稻生长、产量和品质的影响,为超级稻抗倒栽培提供依据。试验设3个处理,分别为正常植株(CK)、抽穗后15 d倒伏(AL15)和抽穗后30 d倒伏(AL30),成熟期测定水稻物质积累与分配、产量和产量构成以及稻米主要品质性状。结果表明,与正常生长水稻相比,AL30和AL15处理使水稻地上部各器官生物量下降,总生物量分别显著降低7.3%和24.3%。从物质分配看,AL15处理使水稻生物量在生殖器官中的分配比例显著下降,而AL30处理植株响应不显著。AL30和AL15处理使水稻产量分别显著下降8.3%和36.4%。抽穗后倒伏造成的产量损失主要与饱粒率和饱粒千粒重下降有关。AL30处理使饱粒率和饱粒千粒重分别显著下降5.6%和3.3%,AL15处理分别极显著下降30.8%和6.7%。水稻结实期倒伏导致饱粒重下降主要与糙米变小,稻谷充实程度明显降低有关。从稻米品质看,AL30和AL15处理使水稻整精米率分别下降7.5%和14.7%,达显著和极显著水平;AL30处理对稻米蛋白质和直链淀粉含量均无显著影响,但AL15处理使稻米蛋白质含量极显著增加20.2%;RVA谱数据表明,结实期倒伏水稻崩解值减少而消减值增加,但均未达显著水平。以上结果表明,结实中后期发生倒伏对超级稻‘南粳9108’籽粒产量和稻米品质影响较小,但结实早期倒伏将使物质生产和籽粒灌浆均受到抑制,最终导致产量大幅下降,同时稻米加工和食味品质亦呈变劣趋势。Abstract: Rice lodging has been one of the main constraints to high yield and good quality rice production in China. Because lodging not only makes mechanized harvesting difficult, it also impedes assimilate, water and nutrient transport in grains, limiting the realization of rice yield potential. Lodging conditions under high humidity are prone to diseases and pests, resulting in poor grain quality. In recent years, the potential risk of rice lodging has been increasing because of the release of high-yielding varieties characterized by large panicle, increased nitrogen fertilizer application and shifts from labor-intensive to simplified planting techniques such as direct-seeding or seedling broadcasting. In addition, extreme weather conditions, such as typhoon accompanied with heavy rains at late growth stage, has been another main reason behind lodging, often affecting large areas of croplands. Therefore, it was of utmost importance to further study the mechanisms of lodging-resistance of rice and the related regulation strategies. In this experiment, the effect of artificial lodging at grain-filling stage on plant growth, yield and grain quality of super rice ('Nanjing 9108') was investigated by comparing plants with normal growth (CK), artificial lodging after 30 days of heading (AL30) and artificial lodging after 15 days of heading (AL15). Compared with CK, AL30 and AL15 artificial lodging treatments decreased dry matter production of aboveground organs of 'Nanjing 9108', which resulted in decrease in total dry matter production by 7.3% (P < 0.05) for AL30 and 24.3% (P < 0.01) for AL15. The proportion of biomass distribution in reproductive organs decreased for AL15, but had no significant change for AL30. AL30 and AL15 artificial lodging treatments decreased grain yield by 8.3% (P < 0.05) and 36.4% (P < 0.01), respectively. Yield loss caused by lodging at grain-filling stage was mainly associated with decreases in filled-grain rate and 1000-full-grain weight. Filled-grain rate and 1000-full-grain weight decreased by 5.6% (P < 0.05) and 3.3% (P < 0.05) for AL30, and by 30.8% (P < 0.01) and 6.7% (P < 0.01) for AL15. Lodging-induced decrease in grain weight was mainly associated with smaller brown rice, which was attributed to poorer grain filling at grain-filling stage. Head rice rate decreased by 7.5% (P < 0.05) for AL30 and 14.7% (P < 0.01) for AL15. AL30 treatment had no effect on protein or amylose contents of rice grain, but AL15 increased protein content by 20.2% (P < 0.05). Artificial lodging had no significant effect on RVA profile of rice grain. The results suggested that the effect of plant lodging at late grain-filling stage (30 days after heading) on yield and grain quality of 'Nanjing 9108' super rice was relatively small. In contrast, plant lodging at early grain-filling stage (15 days after heading) inhibited dry matter production and grain-filling process, resulting in yield loss and grain quality deterioration.
-
Keywords:
- Rice /
- Artificial lodging /
- Dry matter production and distribution /
- Grain yield /
- Yield component /
- Grain quality
-
图 3 结实期人为倒伏处理对‘南粳9108’籽粒产量(A)、单位面积穗数(B)、每穗颖花数(C)、饱粒率(D)、秕粒率(E)、空粒率(F)、饱粒千粒重(G)及所有籽粒平均粒重(H)的影响
Figure 3. Effects of artificial lodging during grain filling stage on grain yield (A), panicle number per m2 (B), spikelet number per panicle (C), full-filled-grain rate (D), unfilled-grain rate (E), empty-grain rate (F), full-filled-grain weight per 1 000 (G) and average grain weight (H) of rice variety 'Nanjing 9108'
表 1 结实期人为倒伏处理对‘南粳9108’稻谷和糙米长度、宽度、厚度和体积的影响
Table 1 Effects of artificial lodging during grain filling stage on length, width, thickness and volume of rough rice and brown rice of rice variety 'Nanjing 9108'
处理Treatment 长度Length (mm) 宽度Width (mm) 厚度Thickness (mm) 体积volume (mm3) 稻谷
Rough riceCK 7.38±0.114a 3.77±0.011a 2.56±0.046a 37.3±0.199a AL30 7.35±0.003a 3.77±0.028a 2.51±0.010a 36.6±0.530a AL15 7.30±0.073a 3.75±0.011a 2.34±0.046b 35.9±1196a 糙米
Brown riceCK 5.02±0.031b 2.99±0.020a 2.17±0.001a 17.0±0.222a AL30 5.22±0.030a 2.49±0.015b 2.12±0.029a 14.4±0.191b AL15 5.06±0.030b 2.46±0.010b 1.95±0.015a 12.7±0.031c CK:不进行人为倒伏处理; AL30:抽穗后30 d人为倒伏处理; AL15:抽穗后15 d人为倒伏处理。不同小写字母表示在0.05水平上差异显著。CK: no lodging as control; AL30: artificial lodging at 30 days after heading; AL15: artificial lodging at 15 days after heading. Different lowercase letters indicate significant differences at P < 0.05. 表 2 结实期人为倒伏处理对‘南粳9108’淀粉黏滞特性的影响
Table 2 Effects of artificial lodging during grain filling stage on starch viscosity properties of rice variety 'Nanjing 9108'
处理Treatment 最高黏度Maximum viscosity (cP) 崩解值Breakdown (cP) 最终黏度Final viscosity (cP) 消减值Setback (cP) 峰值时Peak time (min) CK 2 835±114a 962±25a 2 645±15a 772±26a 6.2±0.100a AL30 2 533±6ab 939±20a 2 379±14b 785±40a 6.1±0.001a AL15 2 431±105b 908±41a 2 304±9c 790±34a 6.1±0.030a CK:不进行人为倒伏处理; AL30:抽穗后30 d人为倒伏处理; AL15:抽穗后15 d人为倒伏处理。不同小写字母表示在0.05水平上差异显著。CK: no lodging as control; AL30: artificial lodging at 30 days after heading; AL15: artificial lodging at 15 days after heading. Different lowercase letters indicate significant differences at P < 0.05. -
[1] 辛良杰, 李秀彬.近年来我国南方双季稻区复种的变化及其政策启示[J].自然资源学报, 2009, 24(1): 58-65 doi: 10.11849/zrzyxb.2009.01.007 XIN L J, LI X B. Changes of multiple cropping in double cropping rice area of southern China and its policy implications[J]. Journal of Natural Resources, 2009, 24(1): 58-65 doi: 10.11849/zrzyxb.2009.01.007
[2] SETTER T L, LAURELES E V, MAZAREDO A M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis[J]. Field Crops Research, 1997, 49(2/3): 95-106
[3] ISLAM M S, PENG S B, VISPERAS R M, et al. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem[J]. Field Crops Research, 2007, 101(2): 240-248 doi: 10.1016/j.fcr.2006.12.002
[4] 苏仕华, 王珏, 孙成亮, 等.水稻倒伏对产量影响的调查与分析[J].北方水稻, 2008, 38(6): 41-43 http://www.cqvip.com/QK/97993B/2011A02/88757574504849494850484852.html SU S H, WANG J, SUN C L, et al. Investigation and analysis of effect of lodging on rice yield[J]. North Rice, 2008, 38(6): 41-43 http://www.cqvip.com/QK/97993B/2011A02/88757574504849494850484852.html
[5] WU W, HUANG J L, CUI K H, et al. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants[J]. Field Crops Research, 2012, 128: 101-108 doi: 10.1016/j.fcr.2012.01.002
[6] KASHIWAGI T, HIROTSU N, UJⅡE K, et al. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.)[J]. Field Crops Research, 2010, 115(1): 107-115 doi: 10.1016/j.fcr.2009.10.011
[7] Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis: Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK: Cambridge University Press, 2007
[8] KNUTSON T R, MCBRIDE J L, CHAN J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3: 157-163 doi: 10.1038/ngeo779
[9] MASUTOMI Y, ⅡZUMI T, TAKAHASHI K, et al. Estimation of the damage area due to tropical cyclones using fragility curves for paddy rice in Japan[J]. Environmental Research Letters, 2012, 7(1): 17-35
[10] 艾治勇, 马国辉.超级杂交稻抗倒高产肥料运筹技术的数学模型研究[J].植物营养与肥料学报, 2011, 17(4): 803-808 doi: 10.11674/zwyf.2011.0464 AI Z Y, MA G H. Study on mathematical models of fertilizer management technique for resisting lodging and high yield of super hybrid rice[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 803-808 doi: 10.11674/zwyf.2011.0464
[11] 李杰, 张洪程, 龚金龙, 等.不同种植方式对超级稻植株抗倒伏能力的影响[J].中国农业科学, 2011, 44(11): 2234-2243 doi: 10.3864/j.issn.0578-1752.2011.11.004 LI J, ZHANG H C, GONG J L, et al. Effects of different planting methods on the culm lodging resistance of super rice[J]. Scientia Agricultura Sinica, 2011, 44(11): 2234-2243 doi: 10.3864/j.issn.0578-1752.2011.11.004
[12] 李国辉, 钟旭华, 田卡, 等.施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理[J].中国农业科学, 2013, 46(7): 1323-1334 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgnykx201307003 LI G H, ZHONG X H, TIAN K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms[J]. Scientia Agricultura Sinica, 2013, 46(7): 1323-1334 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgnykx201307003
[13] 王云霞, 王晓莹, 杨连新, 等.臭氧胁迫使两优培九倒伏风险增加-FACE研究[J].生态学报, 2011, 31(20): 6098-6107 https://www.researchgate.net/profile/Shengguo_Xue/publication/286759149_Physiological_Response_of_Mirabilis_jalapa_Linn_to_lead_stress_by_FTIR_spectroscopy/links/57daba9b08ae4e6f184378b7.pdf?origin=publication_detail WANG Y X, WANG X Y, YANG L X, et al. Ozone stress increases lodging risk of rice cultivar Liangyoupeijiu: A FACE study[J]. Acta Ecologica Sinica, 2011, 31(20): 6098-6107 https://www.researchgate.net/profile/Shengguo_Xue/publication/286759149_Physiological_Response_of_Mirabilis_jalapa_Linn_to_lead_stress_by_FTIR_spectroscopy/links/57daba9b08ae4e6f184378b7.pdf?origin=publication_detail
[14] 胡雅杰, 曹伟伟, 钱海军, 等.钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响[J].作物学报, 2015, 41(5): 743-757 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201505014 HU Y J, CAO W W, QIAN H J, et al. Effect of planting density of mechanically transplanted pot seedlings on yield, plant type and lodging resistance in rice with different panicle types[J]. Acta Agronomica Sinica, 2015, 41(5): 743-757 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201505014
[15] 许俊伟, 孟天瑶, 荆培培, 等.机插密度对不同类型水稻抗倒伏能力及产量的影响[J].作物学报, 2015, 41(11): 1767-1776 https://www.cnki.com.cn/lunwen-2009193071.html XU J W, MENG T Y, JING P P, et al. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice[J]. Acta Agronomica Sinica, 2015, 41(11): 1767-1776 https://www.cnki.com.cn/lunwen-2009193071.html
[16] 刘立军, 袁莉民, 王志琴, 等.旱种水稻倒伏生理原因分析与对策的初步研究[J].中国水稻科学, 2002, 16(3): 225-230 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx200203006 LIU L J, YUAN L M, WANG Z Q, et al. Preliminary studies on physiological reason and countermeasure of lodging in dry-cultivated rice[J]. Chinese Journal of Rice Science, 2002, 16(3): 225-230 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx200203006
[17] 张明聪, 刘元英, 罗盛国, 等.养分综合管理对寒地水稻抗倒伏性能的影响[J].中国农业科学, 2010, 43(21): 4536-4542 doi: 10.3864/j.issn.0578-1752.2010.21.025 ZHANG M C, LIU Y Y, LUO S G, et al. Effects of integrated nutrient management on lodging resistance of rice in cold area[J]. Scientia Agricultura Sinica, 2010, 43(21): 4536-4542 doi: 10.3864/j.issn.0578-1752.2010.21.025
[18] 陈书强, 杜晓东, 杨丽敏, 等.水稻倒伏粒重损失及不同品种抗倒能力差异比较[J].黑龙江农业科学, 2015, (10): 34-37 http://www.cqvip.com/QK/96215X/201510/666416342.html CHEN S Q, DU X D, YANG L M, et al. Effect of lodging on yield and comparison of different varieties lodging resistance in rice[J]. Heilongjiang Agricultural Sciences, 2015, (10): 34-37 http://www.cqvip.com/QK/96215X/201510/666416342.html
[19] 刘利华, 金再欣, 刘小丽, 等.水稻倒伏对产量影响的试验结果分析[J].中国稻米, 2009, (2): 19-21 http://mall.cnki.net/magazine/Article/ZJSD200606001.htm LIU L H, JIN Z X, LIU X L, et al. Influence trial of lodging on rice yield[J]. China Rice, 2009, (2): 19-21 http://mall.cnki.net/magazine/Article/ZJSD200606001.htm
[20] 郎有忠, 杨晓东, 王美娥, 等.结实阶段不同时期倒伏对水稻产量及稻米品质的影响[J].中国水稻科学, 2011, 25(4): 407-412 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201104010 LANG Y Z, YANG X D, WANG M E, et al. Effects of lodging at different filling stages on rice grain yield and quality[J]. Chinese Journal of Rice Science, 2011, 25(4): 407-412 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201104010
[21] 程式华.中国超级稻育种研究的创新与发展[J].沈阳农业大学学报, 2007, 38(5): 647-651 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb200705002 CHENG S H. Innovation and development of rice breeding for super high yield in China[J]. Journal of Shenyang Agricultural University, 2007, 38(5): 647-651 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb200705002
[22] 陈温福, 徐正进, 唐亮.中国超级稻育种研究进展与前景[J].沈阳农业大学学报, 2012, 43(6): 643-649 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb201206001 CHEN W F, XU Z J, TANG L. Advances and prospects in research on super rice breeding[J]. Journal of Shenyang Agricultural University, 2012, 43(6): 643-649 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb201206001
[23] 朱大伟, 张洪程, 郭保卫, 等.中国软米的发展及展望[J].扬州大学学报:农业与生命科学版, 2015, 36(1): 47-52 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjf201615150 ZHU D W, ZHANG H C, GUO B W, et al. The development and outlook of Chinese soft rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2015, 36(1): 47-52 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjf201615150
[24] 王才林, 张亚东, 朱镇, 等.优良食味粳稻新品种南粳9108的选育与利用[J].江苏农业科学, 2013, 41(9): 86-88 http://www.cqvip.com/QK/93934X/201309/47358628.html WANG C L, ZHANG Y D, ZHU Z, et al. Breeding and utilization of the new japonica rice variety Nanjing 9108[J]. Jiangsu Agricultural Sciences, 2013, 41(9): 86-88 http://www.cqvip.com/QK/93934X/201309/47358628.html
[25] 孙成效, 段彬伍, 谢黎虹, 等.利用近红外透射光谱技术同步测定糙米的多项品质指标初报[J].中国水稻科学, 2006, 20(4): 451-454 https://www.wenkuxiazai.com/doc/acd63f136edb6f1aff001fe0-2.html SUN C X, DUAN B W, XIE L H, et al. Determination of several quality characteristics of brown rice by near infrared transmission spectroscopy[J]. Chinese Journal of Rice Science, 2006, 20(4): 451-454 https://www.wenkuxiazai.com/doc/acd63f136edb6f1aff001fe0-2.html
[26] 杨连新, 王余龙, 石广跃, 等.近地层高臭氧浓度对水稻生长发育影响研究进展[J].应用生态学报, 2008, 19(4): 901-910 http://www.cqvip.com/QK/90626A/200804/26953291.html YANG L X, WANG Y L, SHI G Y, et al. Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: A review[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 901-910 http://www.cqvip.com/QK/90626A/200804/26953291.html
[27] 郭贵华, 刘海艳, 李刚华, 等. ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J].中国农业科学, 2014, 47(22): 4380-4391 doi: 10.3864/j.issn.0578-1752.2014.22.004 GUO G H, LIU H Y, LI G H, et al. Analysis of physiological characteristics about ABA alleviating rice booting stage drought stress[J]. Scientia Agricultura Sinica, 2014, 47(22): 4380-4391 doi: 10.3864/j.issn.0578-1752.2014.22.004
[28] 马一泓, 王术, 于佳禾, 等.水稻生长对干旱胁迫的响应及抗旱性研究进展[J].种子, 2016, 35(7): 45-49 http://mall.cnki.net/magazine/Article/ZHZI201607012.htm MA Y H, WANG S, YU J H, et al. Responses of drought stress in plant growth and study advances on drought resistance in rice[J]. Seed, 2016, 35(7): 45-49 http://mall.cnki.net/magazine/Article/ZHZI201607012.htm
[29] 杨连新, 王余龙, 董桂春, 等.栽培和环境条件对水稻饱粒重的影响[J].江苏农业科学, 2002, 30(6): 9-13 http://www.cnki.com.cn/Article/CJFDTotal-ANJS201102005.htm YANG L X, WANG Y L, DONG G C, et al. Effects of different cultural and environmental conditions on fulfilled grain weight in rice[J]. Jiangsu Agricultural Sciences, 2002, 30(6): 9-13 http://www.cnki.com.cn/Article/CJFDTotal-ANJS201102005.htm
[30] YANG L X, WANG Y L, DONG G C, et al. Effect of nitrogen on hull traits and its causes in Yangdao 6[J]. Agricultural Sciences in China, 2002, 1(7): 738-744
[31] 段俊, 田长恩, 梁承邺.水稻结实过程中谷壳的作用及生理变化[J].作物学报, 2000, 26(1): 71-76 http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200001011.htm DUAN J, TIAN C E, LIANG C Y. Studies on effects and physiological changes of the hull on grain filling in rice[J]. Acta Agronomica Sinica, 2000, 26(1): 71-76 http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200001011.htm
[32] 张启莉, 谢黎虹, 李仕贵, 等.稻米蛋白质与蒸煮食味品质的关系研究进展[J].中国稻米, 2012, 18(4): 1-6 http://www.cqvip.com/QK/98556X/201204/42658286.html ZHANG Q L, XIE L H, LI S G, et al. Research progress of the relationship between rice protein and cooking and eating quality[J]. China Rice, 2012, 18(4): 1-6 http://www.cqvip.com/QK/98556X/201204/42658286.html
[33] WANG Y X, FREI M, SONG Q L, et al. The impact of atmospheric CO2 concentration enrichment on rice quality - A research review[J]. Acta Ecologica Sinica, 2011, 31(6): 277-282 doi: 10.1016/j.chnaes.2011.09.006
[34] 李刚, 邓其明, 李双成, 等.稻米淀粉RVA谱特征与品质性状的相关性[J].中国水稻科学, 2009, 23(1): 99-102 https://www.wenkuxiazai.com/doc/6ebd804cf7ec4afe04a1df7f-2.html LI G, DENG Q M, LI S C, et al. Correlation analysis between RVA profile characteristics and quality in rice[J]. Chinese Journal of Rice Science, 2009, 23(1): 99-102 https://www.wenkuxiazai.com/doc/6ebd804cf7ec4afe04a1df7f-2.html