杨滨娟, 孙丹平, 张颖睿, 黄国勤. 长江中游地区水旱复种轮作模式资源利用率比较研究[J]. 中国生态农业学报(中英文), 2018, 26(8): 1197-1205. DOI: 10.13930/j.cnki.cjea.180006
引用本文: 杨滨娟, 孙丹平, 张颖睿, 黄国勤. 长江中游地区水旱复种轮作模式资源利用率比较研究[J]. 中国生态农业学报(中英文), 2018, 26(8): 1197-1205. DOI: 10.13930/j.cnki.cjea.180006
YANG Binjuan, SUN Danping, ZHANG Yingrui, HUANG Guoqin. Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1197-1205. DOI: 10.13930/j.cnki.cjea.180006
Citation: YANG Binjuan, SUN Danping, ZHANG Yingrui, HUANG Guoqin. Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8): 1197-1205. DOI: 10.13930/j.cnki.cjea.180006

长江中游地区水旱复种轮作模式资源利用率比较研究

Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River

  • 摘要: 为了实现农田资源高效利用,维护农业生态良性循环,优化长江中游地区传统种植模式,本研究于2013年10月-2015年11月,以冬闲连作为对照,分析比较了不同水旱复种轮作模式(冬闲-早稻-晚稻→冬闲-早稻-晚稻、马铃薯-玉米‖大豆-晚稻→蔬菜-花生‖玉米-晚稻、蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻、绿肥-早稻-晚稻→油菜-花生-晚稻、油菜-花生-晚稻→马铃薯-玉米‖大豆-晚稻)的光、温、水、土资源利用效率。结果表明:水旱复种轮作模式的冬季、晚季和周年的光能利用率均比冬闲连作处理高,周年光能利用率两年间分别高8.26%~82.50%和2.63%~121.42%,其中均以"蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻"轮作模式最高。水旱复种轮作模式的年有效积温利用率均高于冬闲连作模式,两年间分别高12.87%~21.26%和11.17%~25.88%,以"蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻"轮作模式最佳。两年间水旱复种轮作模式的冬季、晚季和周年的水分利用率均比冬闲连作处理高,其中周年水分利用率分别高45.36%~83.50%和40.00%~118.75%,以"马铃薯-玉米‖大豆-晚稻→蔬菜-花生‖玉米-晚稻"轮作模式的晚季和周年水分利用率最高,"蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻"模式的冬季水分利用率最高。两年间土地利用率均以"绿肥-早稻-晚稻"复种模式最高,平均利用率达96.11%,"蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻"轮作模式的土地利用率表现最好。因此,各水旱复种轮作模式的周年光能利用率、年有效积温利用率、水分利用率和土地利用率均高于冬闲对照,其中以"蔬菜-花生‖玉米-晚稻→绿肥-早稻-晚稻"和"绿肥-早稻-晚稻→油菜-花生-晚稻"轮作模式表现较好,适宜在长江中游地区推广应用。

     

    Abstract: A field experiment was conducted to search for the possibility of efficient use of farmland resources, maintain virtuous circle of agricultural ecology and optimize traditional planting patterns in the middle reaches of Yangtze River. The use efficiencies of solar radiation, heat, water and land in 5 paddy-upland multi-crop rotation systems (winter fallow-early rice-late rice → winter fallow-early rice-late rice, potato-maize soybean ‖ -late rice → vegetable-peanut corn ‖ -late rice, vegetable-peanut corn ‖ -late rice → green manure-early rice-late rice, milk vetch-early rice-late rice → rapeseed-peanut-late rice, rapeseed-peanut-late rice → potato-maize‖ soybean-late rice) with continuous cropping with winter fallow as the control were analyzed. Results showed that solar radiation use efficiency in winter, late season and for the year under paddy-upland multi-cropping rotation patterns was higher than continuous cropping with winter fallow. Annual solar radiation use efficiency was respectively 8.26%-82.50% and 2.63%-121.42% higher than continuous winter fallow during the two years. Vegetable-peanut corn ‖ -late rice → green manure-early rice-late rice pattern had the highest solar radiation use efficiency in winter, spring and in the whole year. Annual effective accumulated temperature utilization rate of paddy-upland multi-cropping rotation patterns was higher than that of continuous cropping with winter fallow, which were respectively 12.87%-21.26% and 11.17%-25.88% higher than continuous cropping with winter fallow during the two years. Vegetable-peanut corn ‖ -late rice → green manure-early rice-late rice pattern was the best among all patterns. Water use efficiency in winter, late season and for the year under paddy-upland multi-cropping rotation patterns was higher than that of continuous cropping with winter fallow, with annual water use efficiencies respectively 45.36%-83.50% and 40.00%-118.75% higher during the two years. Potato-maize soybean ‖ -late rice → vegetable-peanut corn ‖ -late rice pattern was best in late season and annual year. Vegetable-peanut corn ‖ -late rice → green manure-early rice-late rice was the highest in winter. Land use efficiency of green manure-early rice-late rice rotation pattern was the highest, with an average utilization rate of 96.11%. Land use efficiency of vegetable-peanut maize ‖ -late rice → green manure-early rice-late rice multi-cropping pattern was the highest. Comprehensive analysis showed that annual solar radiation use efficiency, annual effective accumulated temperature utilization rate, water use efficiency and land use efficiency under paddy-upland multi-cropping rotation patterns were higher than that under continuous cropping with winter fallow. Vegetable-peanut corn ‖ -late rice → green manure-early rice-late rice, and milk vetch-early rice-late rice → rapeseed-peanut-late rice performed better and thus suitable for promotion in the middle reaches of Yangtze River.

     

/

返回文章
返回