Abstract:
Citrus is one of the main fruit products of Sichuan Province, China. Due to favorable market expectations and the low occurrence of citrus diseases in Sichuan basin, there is a trend of blind expansion of citrus cultivation. However, climate change has had a significant impact on the spatial distribution of crops, and has caused the instability and vulnerability of citrus production in Sichuan. In order to optimize the citrus production space, this study established a model of the relationship between the distribution of areas suitable for growing citrus and environmental variables based on the maximum entropy model (MaxEnt), used the ROC curve to determine the model's accuracy, and used the jackknife method to screen out the dominant environmental variables. The distribution of citrus-suitable areas in Sichuan Province in 1980 and 2010 were compared using ArcGIS, revealing the changes in citrus-suitable areas over nearly 30 years of climate change. The results showed that the dominant environmental variables determining citrus suitability in Sichuan were climatic variables characterized by light, heat, and water. During these 30 years, the trend of climate warming and drying in Sichuan Province changed the structure and function of the regional ecosystem, and caused temporal and spatial variations in citrus-suitable areas. There were two broad changes in the spatial pattern of citrus-suitable areas from 1980 to 2010. First, the highly suitable areas tended to migrate to the north. The boundary of moderately suitable areas located between Chengdu Plain area and northeastern Sichuan Province moved to the southeast. Second, the suitability grade changed in a stepwise fashion. The change in the grades in marginally and moderately suitable areas was obvious. In 2010, the total highly suitable area was about 42 200 km
2, moderately suitable areas covered about 41 900 km
2, and the least suitable areas covered 44 000 km
2; most of the province was not suitable. Using this data of the highly suitable areas, government departments can create policies to increase the quantity of citrus in the south Sichuan region and the southern Shengdu Plain. This study objectively assessed the changes in suitability for planting citrus in Sichuan Province under climate change, and provided a scientific basis for the optimization of citrus space. Application of the maximum entropy model is valuable for accurate simulation and prediction of crop distribution and can be important in guiding crop climatic suitability zoning. However, appropriate environmental variables, spatial scale, and species sampling locations should be selected for different regions and crops to reduce systematic cumulative error and improve the precision of crop climatic suitability zoning.