施磷对苜蓿光合产物在根茎叶的分配及抗蓟马的影响

胡桂馨, 彭然, 崔晓宁, 刘艳君, 李亚姝, 曾文芳

胡桂馨, 彭然, 崔晓宁, 刘艳君, 李亚姝, 曾文芳. 施磷对苜蓿光合产物在根茎叶的分配及抗蓟马的影响[J]. 中国生态农业学报(中英文), 2020, 28(7): 969-978. DOI: 10.13930/j.cnki.cjea.190812
引用本文: 胡桂馨, 彭然, 崔晓宁, 刘艳君, 李亚姝, 曾文芳. 施磷对苜蓿光合产物在根茎叶的分配及抗蓟马的影响[J]. 中国生态农业学报(中英文), 2020, 28(7): 969-978. DOI: 10.13930/j.cnki.cjea.190812
HU Guixin, PENG Ran, CUI Xiaoning, LIU Yanjun, LI Yashu, ZENG Wenfang. Effect of phosphorus application on carbohydrate distribution in roots, stems and leaves of alfalfa and resistance to thrips (Thysanoptera: Thripidae)[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 969-978. DOI: 10.13930/j.cnki.cjea.190812
Citation: HU Guixin, PENG Ran, CUI Xiaoning, LIU Yanjun, LI Yashu, ZENG Wenfang. Effect of phosphorus application on carbohydrate distribution in roots, stems and leaves of alfalfa and resistance to thrips (Thysanoptera: Thripidae)[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 969-978. DOI: 10.13930/j.cnki.cjea.190812

施磷对苜蓿光合产物在根茎叶的分配及抗蓟马的影响

基金项目: 

国家自然科学基金项目 31960350

甘肃农业大学科技创新基金(学科建设基金) GAU-XKJS-2018-012

详细信息
    作者简介:

    胡桂馨, 主要研究方向为草地昆虫与害虫防治。E-mail:huguixin@gsau.edu.cn

  • 中图分类号: S474.3

Effect of phosphorus application on carbohydrate distribution in roots, stems and leaves of alfalfa and resistance to thrips (Thysanoptera: Thripidae)

Funds: 

the National Natural Science Foundation of China 31960350

the Science and Technology Innovation Funds of Gansu Agricultural University (Special Funds for Discipline Construction) GAU-XKJS-2018-012

More Information
  • 摘要: 为了明确施磷后紫花苜蓿根、茎、叶中光合产物分配与苜蓿抗蓟马能力的关系,本试验以紫花苜感虫品种‘甘农3号’和抗虫品种‘甘农9号’为材料,以北方苜蓿蓟马类优势害虫牛角花齿蓟马(Odontothrips loti)为研究对象,设0 mg(P2O5)·kg-1(土)、27 mg(P2O5)·kg-1(土)、54 mg(P2O5)·kg-1(土)、81 mg(P2O5)·kg-1(土)和108 mg(P2O5)·kg-1(土)5个磷水平,分别记为P0、P1、P2、P3和P4,在苜蓿6叶期,按3头·株-1接入牛角花齿蓟马,分别于苜蓿持续受害7 d、14 d和21 d时,评价苜蓿的受害指数,测量单株叶、茎、根生物量和根、茎、叶中的可溶性糖和淀粉含量。结果表明:随着施磷水平的升高,‘甘农3号’和‘甘农9号’苜蓿的受害指数降低,总体以P3水平下最低;受害7 d时,两个苜蓿品种受害指数均下降但不显著;受害14 d和21 d时受害指数下降显著(P < 0.05)。施磷后苜蓿根、茎和叶生物量均显著增加,在蓟马为害前期(7 d)和中期(14 d)苜蓿受害较轻时,生物量向叶中分配较多;在受到持续较重的为害后(21 d),苜蓿的生物量更多向根系分配,相应分配到叶部的生物量有所下降,茎秆中的生物量分配比例变化不显著。相对于‘甘农3号’,各施磷水平下‘甘农9号’分配到叶中的生物量更多。施磷后苜蓿根、茎和叶中可溶性糖和淀粉含量显著增加,随着受害时间的持续,苜蓿根、茎和叶中的淀粉含量总体下降,而可溶性糖含量持续增加;在受害14 d和21 d时,‘甘农9号’的叶和根中的可溶性糖及淀粉含量明显高于‘甘农3号’。总之,施磷可有效增强苜蓿对蓟马的耐害性,在虫害压力适中时,施磷促进了苜蓿地上部分的补偿生长,虫害压力较大时,施磷保证根系的生长以维持其生存。随着受害时间的持续,苜蓿存贮型碳水化合物淀粉的含量趋向减少,根、茎和叶中的可溶性糖含量升高,使较多的资源用于苜蓿光合器官和贮藏器官的构建。P3水平[81 mg(P2O5)·kg-1(土)]为本试验中苜蓿最佳施磷水平。

     

    Abstract: The aim of this research was to clarify the distribution of carbohydrates in the roots, stems, and leaves of alfalfa with different phosphorus application rates, and the alfalfa's resistance to thrips. Two alfalfa varieties, 'Gannong No. 3' and 'Gannong No. 9, ' were used in this study. Odontothrips loti, which was the dominant pest of thrips in the alfalfa planting area of northern China, was selected as the research subject. Five soil phosphorus levels [0 (P1), 27(P2), 54(P3), 81(P4), and 108 mg(P2O5)·kg-1soil (P5), were set. And alfalfa was infested with O. loti of 3 head·plant-1 at the 6 leaf stage. The damage index was evaluated; the biomass of the leaves, stems and roots were measured; and the soluble sugar and starch contents of the leaves, stems, and roots were determined after the alfalfa was damaged by O. loti for 7, 14, and 21 days. The result showed that the damage index of 'Gannong No. 3' and 'Gannong No. 9' decreased gradually with increased phosphorus level, the lowest being at P3 level. The damage index of both alfalfa varieties decreased significantly after 14 and 21 days. The leaf, stem and root biomass of both alfalfa varieties increased significantly with increased phosphorus level. More biomass was distributed to the leaves in the early and middle stages (7 and 14 days), while it was distributed to the roots in the period of serious injury (21 days). However, the biomass allocated to stems was not significant. In 'Gannong No. 9', the biomass allocated to the leaves was more than that in 'Gannong No. 3' at the same phosphorus level. The soluble sugar and starch contents of the leaves, stems, and roots increased significantly with phosphorus level increasing. The soluble sugar content of the roots, stems and leaves increased, while the starch content decreased as the period of damage increased. The soluble sugar and starch contents of the leaves and roots of 'Gannong No. 9' were significantly higher than those of 'Gannong No. 3', which was damaged by thrips for 14 and 21 days. Phosphorus application enhanced the tolerance of alfalfa to thrips, with greater effect on 'Gannong No. 3'. Phosphorus application promoted the compensatory growth of the aboveground part at the moderate pest pressure and helped maintain root growth for the survival of alfalfa under severe pest pressure. Correspondingly, with the increase in damage time, the starch content of the root, stem, and leaves tended to decrease, and the soluble sugar content increased, showing that more resources were used to develop the photosynthetic and storage organs. P3 [81 mg(P2O5)·kg-1 soil] was the best fertilization level for enhancing alfalfa's resistance to thrips in this research.

     

  • 图  1   不同磷水平下牛角花齿蓟马为害7 d、14 d和21 d后苜蓿的受害指数

    Figure  1.   Damage indexes of alfalfa infested by Odontothrips loti for 7 days, 14 days and 21 days under different phosphorus levels

    图  2   不同磷水平下牛角花齿蓟马为害7 d、14 d和21 d后苜蓿根、茎和叶的生物量分配比例

    Figure  2.   Biomass proportions of roots, stems and leaves of alfalfa infested by Odontothrips loti for 7, 14 and 21 days under different phosphorus levels

    图  3   不同磷水平下牛角花齿蓟马为害7 d、14 d和21 d后苜蓿根、茎、叶中的可溶性糖含量

    Figure  3.   Soluble sugar contents in roots, stems and leaves of alfalfa infested by Odontothrips loti for 7, 14 and 21 days under different phosphorus levels

    图  4   不同磷水平下牛角花齿蓟马为害7 d、14 d和21 d后苜蓿根、茎、叶中的淀粉含量

    Figure  4.   Starch contents in roots, stems and leaves of alfalfa infested by Odontothrips loti for 7, 14 and 21days under different phosphorus levels

    表  1   不同磷水平下牛角花齿蓟马为害7 d、14 d和21 d后苜蓿单株根、茎和叶的生物量

    Table  1   Biomass of alfalfa leaves, stems and roots infested by Odontothrips loti for 7 days, 14 days and 21 days under different phosphorus levels

    受害时间
    Damaged time (d)
    品种
    Variety
    处理
    Treatment
    叶生物量
    Leaf biomass (g·plant–1)
    茎生物量
    Stem biomass (g·plant–1)
    根生物量
    Root biomass (g·plant–1)
    地上部生物量
    Shoot biomass (g·plant–1)
    茎叶比
    Stem to leaf ratio
    7 甘农3号
    Gannong No. 3
    P0 0.053±0.002d 0.038±0.001c 0.021±0.001d 0.094±0.003d 0.717±0.033ab
    P1 0.061±0.001bc 0.043±0.002bc 0.029±0.001c 0.104±0.003c 0.707±0.018b
    P2 0.073±0.001a 0.059±0.002a 0.036±0.001b 0.132±0.002a 0.821±0.043ab
    P3 0.065±0.001b 0.055±0.003a 0.043±0.001a 0.120±0.001b 0.842±0.056a
    P4 0.059±0.003c 0.045±0.002b 0.030±0.002c 0.104±0.004c 0.767±0.042ab
    甘农9号
    Gannong No. 9
    P0 0.068±0.002e 0.034±0.002c 0.028±0.001c 0.102±0.004d 0.500±0.023b
    P1 0.085±0.003c 0.041±0.002b 0.041±0.001b 0.125±0.005c 0.482±0.013b
    P2 0.078±0.002d 0.037±0.002bc 0.033±0.001c 0.115±0.003c 0.474±0.024b
    P3 0.114±0.002a 0.060±0.001a 0.048±0.001a 0.174±0.003a 0.526±0.006ab
    P4 0.096±0.002b 0.055±0.003a 0.052±0.005a 0.151±0.005b 0.573±0.021a
    14 甘农3号
    Gannong No. 3
    P0 0.065±0.002d 0.047±0.001e 0.070±0.002c 0.112±0.002e 0.723±0.024c
    P1 0.108±0.001b 0.080±0.003c 0.095±0.001b 0.188±0.003c 0.741±0.019c
    P2 0.129±0.003a 0.110±0.001b 0.066±0.002cd 0.239±0.002b 0.853±0.021b
    P3 0.133±0.002a 0.119±0.003a 0.124±0.001a 0.252±0.004a 0.895±0.020a
    P4 0.077±0.003c 0.069±0.003d 0.062±0.003d 0.146±0.006d 0.896±0.024a
    甘农9号
    Gannong No. 9
    P0 0.086±0.001e 0.047±0.001c 0.050±0.001e 0.134±0.001e 0.547±0.009b
    P1 0.108±0.001d 0.067±0.001b 0.062±0.002d 0.175±0.001d 0.620±0.012a
    P2 0.116±0.002c 0.073±0.003b 0.081±0.002c 0.189±0.002c 0.629±0.033a
    P3 0.189±0.002a 0.115±0.004a 0.113±0.004b 0.304±0.005a 0.608±0.019a
    P4 0.171±0.002b 0.109±0.003a 0.145±0.001a 0.281±0.004b 0.637±0.022a
    21 甘农3号
    Gannong No. 3
    P0 0.035±0.001e 0.043±0.001d 0.104±0.001c 0.078±0.002e 1.228±0.037ab
    P1 0.061±0.001c 0.071±0.002bc 0.138±0.002b 0.132±0.004c 1.164±0.067b
    P2 0.086±0.001b 0.082±0.004b 0.119±0.004bc 0.169±0.007b 0.953±0.075c
    P3 0.117±0.002a 0.113±0.003a 0.164±0.003a 0.231±0.007a 0.966±0.037c
    P4 0.045±0.001d 0.063±0.002c 0.109±0.002c 0.108±0.003d 1.400±0.038a
    甘农9号
    Gannong No. 9
    P0 0.040±0.001d 0.044±0.002b 0.105±0.004c 0.084±0.002d 1.100±0.067a
    P1 0.055±0.001c 0.052±0.001a 0.132±0.002a 0.107±0.001c 0.945±0.017b
    P2 0.067±0.001b 0.056±0.002a 0.111±0.002b 0.123±0.005b 0.836±0.025bc
    P3 0.089±0.005a 0.058±0.002a 0.128±0.001a 0.147±0.005a 0.652±0.047cd
    P4 0.070±0.001b 0.051±0.002a 0.116±0.001b 0.120±0.003b 0.729±0.021c
    P0、P1、P2、P3和P4分别表示0 mg(P2O5)·kg-1(土)、27 mg(P2O5)·kg-1(土)、54 mg(P2O5)·kg-1(土)、81 mg(P2O5)·kg-1(土)和108 mg(P2O5)·kg-1(土)5个施磷水平。数据为平均值±标准误。同列不同小写字母表示同一品种同一时间不同处理间差异显著(P < 0.05)。P0, P1, P2, P3 and P4 respectively indicate phosphorus application levels of 0 mg(P2O5)·kg-1(soil), 27 mg(P2O5)·kg-1(soil), 54 mg(P2O5)·kg-1(soil), 81 mg(P2O5)·kg-1(soil) and 108 mg(P2O5)·kg-1(soil). Data are mean ± SE. Different letters in the same column indicate significant differences among different treatments for the same variety in the same time (P < 0.05).
    下载: 导出CSV
  • [1] 唐伟, 玉永雄.豆科植物低磷胁迫的适应机制[J].草业科学, 2014, 31(8):1538-1548 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201408021

    TANG W, YU Y X. Adaptation mechanisms of legume to phosphorus deficiency[J]. Pratacultural Science, 2014, 31(8):1538-1548 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201408021

    [2] 叶思诚, 谭晓风, 袁军.植物低磷适应机制研究进展[J].经济林研究, 2012, 30(2):128-133 http://d.old.wanfangdata.com.cn/Periodical/jjlyj201202028

    YE S C, TAN X F, YUAN J. Advances in research on mechanism of plant acclimation to low phosphorus[J]. Nonwood Forest Research, 2012, 30(2):128-133 http://d.old.wanfangdata.com.cn/Periodical/jjlyj201202028

    [3] 张晓燕, 王森山, 李小龙, 等.不同施钾量对苜蓿碳水化合物含量及抗蓟马的影响[J].草业学报, 2016, 25(10):153-162 doi: 10.11686/cyxb2016144

    ZHANG X Y, WANG S S, LI X L, et al. Effects of potassium application rates on carbohydrate content and resistance to thrips (Thripidae) in alfalfa[J]. Acta Prataculturae Sinica, 2016, 25(10):153-162 doi: 10.11686/cyxb2016144

    [4]

    STRAUSS S Y, AGRAWAL A A. The ecology and evolution of plant tolerance to herbivory[J]. Trends in Ecology & Evolution, 1999, 14(5):179-185 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2775342

    [5] 吴俊江, 王金生, 刘丽君, 等.供磷水平对不同磷效率基因型大豆生物量积累及分配影响[J].大豆科学, 2015, 34(6):1020-1023 http://d.old.wanfangdata.com.cn/Periodical/ddkx201506018

    WU J J, WANG J S, LIU L J, et al. Effect of phosphorous application rate on biomass accumulation and its distribution of soybean with different phosphorus efficient genotype[J]. Soybean Science, 2015, 34(6):1020-1023 http://d.old.wanfangdata.com.cn/Periodical/ddkx201506018

    [6] 何鹏, 吴敏, 韦家少, 等.不同磷水平对橡胶树幼苗氮钾吸收、分配与利用的影响[J].中国农学通报, 2011, 27(16):1-6 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201116001

    HE P, WU M, WEI J S, et al. Influence of different phosphorus levels on absorption, utilization and partition of N, K on Hevea brasiliensis seedlings[J]. Chinese Agricultural Science Bulletin, 2011, 27(16):1-6 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201116001

    [7] 吴楚, 范志强, 王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响[J].应用生态学报, 2004, 15(6):935-940 doi: 10.3321/j.issn:1001-9332.2004.06.005

    WU C, FAN Z Q, WANG Z Q. Effect of phosphorus stress on chlorophyll biosynthesis, photosynthesis and biomass partitioning pattern of Fraxinus mandchurica seedlings[J]. Chinese Journal of Applied Ecology, 2004, 15(6):935-940 doi: 10.3321/j.issn:1001-9332.2004.06.005

    [8] 张蓉, 马建华, 王进华, 等.宁夏苜蓿病虫害发生现状及防治对策[J].草业科学, 2003, 20(6):40-44 doi: 10.3969/j.issn.1001-0629.2003.06.013

    ZHANG R, MA J H, WANG J H, et al. The occurrence and control strategy of alfalfa disease and insects in Ningxia[J]. Pratacultural Science, 2003, 20(6):40-44 doi: 10.3969/j.issn.1001-0629.2003.06.013

    [9] 严林, 梅洁人.青海省紫花苜蓿病虫种类及害虫天敌的调查[J].植物保护, 1996, 22(5):24-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600710863

    YAN L, MEI J R. Investigation on the species and pest natural enemies of alfalfa in Qinghai Province[J]. Plant Protection, 1996, 22(5):24-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600710863

    [10] 贺春贵, 王森山, 曹致中, 等. 40个苜蓿品种(系)对蓟马田间抗性评价[J].草业学报, 2007, 16(5):79-83 doi: 10.3321/j.issn:1004-5759.2007.05.010

    HE C G, WANG S S, CAO Z Z, et al. Field evaluation on resistance of 40Medicago cultivars (lines) to thrips[J]. Acta Prataculturae Sinica, 2007, 16(5):79-83 doi: 10.3321/j.issn:1004-5759.2007.05.010

    [11] 胡桂馨, 贺春贵, 王森山, 等.不同苜蓿品种对牛角花齿蓟马的抗性机制初步研究[J].草业科学, 2007, 24(9):86-89 doi: 10.3969/j.issn.1001-0629.2007.09.020

    HU G X, HE C G, WANG S S, et al. Study on resistance mechanism of Medicago sativa to Odontothrips loti[J]. Pratacultural Science, 2007, 24(9):86-89 doi: 10.3969/j.issn.1001-0629.2007.09.020

    [12] 胡桂馨, 师尚礼, 王森山, 等.不同苜蓿品种对牛角花齿蓟马的耐害性研究[J].草地学报, 2009, 17(4):505-509 http://d.old.wanfangdata.com.cn/Periodical/cdxb200904018

    HU G X, SHI S L, WANG S S, et al. Tolerance of alfalfa varieties to Odontothrips loti Haliday[J]. Acta Agrestia Sinica, 2009, 17(4):505-509 http://d.old.wanfangdata.com.cn/Periodical/cdxb200904018

    [13] 寇江涛, 师尚礼, 胡桂馨.牛角花齿蓟马为害对紫花苜蓿AsA、GSH含量及相关代谢酶活性的影响[J].应用昆虫学报, 2013, 50(6):1600-1607 http://d.old.wanfangdata.com.cn/Periodical/kczs201306016

    KOU J T, SHI S L, HU G X. The effect of Odontothrips loti damage on AsA, GSH content and metabolic enzyme activities in alfalfa plants[J]. Chinese Journal of Applied Entomology, 2013, 50(6):1600-1607 http://d.old.wanfangdata.com.cn/Periodical/kczs201306016

    [14] 寇江涛, 师尚礼, 胡桂馨, 等.紫花苜蓿对牛角花齿蓟马为害的光合生理响应[J].生态学报, 2014, 34(20):5782-5792 http://d.old.wanfangdata.com.cn/Periodical/stxb201420012

    KOU J T, SHI S L, HU G X, et al. Photosynthetic physiological response of Medicago sativa to Odontothrips loti damage[J]. Acta Ecologica Sinica, 2014, 34(20):5782-5792 http://d.old.wanfangdata.com.cn/Periodical/stxb201420012

    [15] 马琳, 贺春贵, 胡桂馨, 等.四个苜蓿品种无性系大田抗蓟马性能评价[J].植物保护, 2009, 35(6):146-149 http://d.old.wanfangdata.com.cn/Periodical/zwbh200906033

    MA L, HE C G, HU G X, et al. Field evaluation of 4 alfalfa cultivars (clones) for resistance to thrips[J]. Plant Protection, 2009, 35(6):146-149 http://d.old.wanfangdata.com.cn/Periodical/zwbh200906033

    [16] 张晓燕, 王森山, 李小龙, 等.施磷对苜蓿抗蓟马的影响[J].草业学报, 2016, 25(5):102-108 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201605012

    ZHANG X Y, WANG S S, LI X L, et al. Effects of phosphorus application on alfalfa resistance to thrips (Thripidae)[J]. Acta Prataculturae Sinica, 2016, 25(5):102-108 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201605012

    [17] 王茜.牛角花齿蓟马危害对不同苜蓿品种生长的影响[D].兰州: 甘肃农业大学, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10733-2009039198.htm

    WANG Q. Effects of Odontothrips loti damage on growth of alfalfa varieties[D]. Lanzhou: Gansu Agricultural University, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10733-2009039198.htm

    [18] 邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2003:113-114

    ZOU Q. Plant Physiology Experiment Guide[M]. Beijing:China Agricultural Press, 2003:113-114

    [19]

    SIMMS E L. Defining tolerance as a norm of reaction[J]. Evolutionary Ecology, 2000, 27(4):563-570 doi: 10.1023-A-1010956716539/

    [20]

    MASON T G, MASKELL E J. Studies on the transport of carbohydrates in the cotton Plant. Ⅰ. A study of diurnal variation in the carbohydrates of leaf, bark, and wood, and of the effects of ringing[J]. Annals of Botany, 1928, 42(165):189-253 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001950535

    [21] 张璐璐, 王孝安, 王海东, 等.刈割、施肥和浇水对垂穗披碱草生物量分配和补偿性生长的影响[J].兰州大学学报:自然科学版, 2013, 49(6):807-814 http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201306013

    ZHANG L L, WANG X A, WANG H D, et al. Effects of clipping, fertilizing and watering on biomass allocation and compensatory growth of Elymus nutans[J]. Journal of Lanzhou University:Natural Sciences, 2013, 49(6):807-814 http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201306013

    [22] 刘文辉, 张英俊, 师尚礼, 等.高寒地区燕麦(Avena sativa L.)人工草地生物量分配对施肥和混播措施的响应[J].植物营养与肥料学报, 2017, 23(2):398-407 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201702015

    LIU W H, ZHANG Y J, SHI S L, et al. Effect of variety, fertilization and mixture sowing on oat biomass allocation in the alpine cultivated pasture[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2):398-407 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201702015

    [23]

    BOSTOCK S J, BENTON R A. The reproductive strategies of five perennial compositae[J]. Journal of Ecology, 1979, 67(1):91-107 doi: 10.2307-2259339/

    [24] 王文娟, 臧岳铭, 李英年, 等.放牧格局和生境资源对矮嵩草(Kobresia humilis)分株生物量分配和补偿性生长的影响[J].生态学报, 2009, 29(5):2186-2194 doi: 10.3321/j.issn:1000-0933.2009.05.002

    WANG W J, ZANG Y M, LI Y N, et al. Effects of grazing disturbance pattern and nutrient availability on biomass allocation and compensatory growth in Kobresia humilis[J]. Acta Ecologica Sinica, 2009, 29(5):2186-2194 doi: 10.3321/j.issn:1000-0933.2009.05.002

    [25] 何文彬.刈割对华北驼绒藜(Ceratoides arborescens)补偿生长的影响[D].呼和浩特: 内蒙古大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10126-1012439884.htm

    HE W B. The impacts of mowing on compensatory growth for Ceratoides arborescens[D]. Hohhot: Inner Mongolia University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10126-1012439884.htm

    [26] 王静, 杨持, 王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J].应用生态学报, 2005, 16(12):2316-2320 doi: 10.3321/j.issn:1001-9332.2005.12.018

    WANG J, YANG C, WANG T J. Changes of biomass allocation of Aremisia frigida population in grazing-induced retrogressive communities[J]. Chinese Journal of Applied Ecology, 2005, 16(12):2316-2320 doi: 10.3321/j.issn:1001-9332.2005.12.018

    [27] 胡桂馨, 彭然, 景康康, 等.牛角花齿蓟马为害对苜蓿无性系根茎叶及同化产物分配的影响[J].应用生态学报, 2017, 28(9):2967-2974 http://d.old.wanfangdata.com.cn/Periodical/yystxb201709025

    HU G X, PENG R, JING K K, et al. Effects of Odontothrips loti (Thysanoptera:Thripidae) damage on clone root, stem, leaf and assimilation product distribution of alfalfa[J]. Chinese Journal of Applied Ecology, 2017, 28(9):2967-2974 http://d.old.wanfangdata.com.cn/Periodical/yystxb201709025

    [28]

    VAIL S G. Selection for overcompensatory plant responses to herbivory:A mechanism for the evolution of plant-herbivore mutualism[J]. The American Naturalist, 1992, 139(1):1-8 doi: 10.1086/285309

    [29]

    KÜHBAUCH W, THOME U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations[J]. Journal of Plant Physiology, 1989, 134(2):243-250 doi: 10.1016/S0176-1617(89)80063-X

    [30] 李跃强, 盛承发.植物的超越补偿反应[J].植物生理学通讯, 1996, 32(6):457-464 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600711946

    LI Y Q, SHENG C F. Plant overcompensation responses[J]. Plant Physiology Communications, 1996, 32(6):457-464 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600711946

    [31] 陈建明, 俞晓平, 陈俊伟, 等.水稻植株光合作用能力的变化与其抗白背飞虱的关系[J].核农学报, 2003, 17(6):423-426 doi: 10.3969/j.issn.1000-8551.2003.06.005

    CHEN J M, YU X P, CHEN J W, et al. Relationship between photosynthesis changes in leaves of rice plants infested by whitebacked planthopper, Sogatella furcifera Horvath and its resistance[J]. Acta Agriculturae Nucleatae Sinica, 2003, 17(6):423-426 doi: 10.3969/j.issn.1000-8551.2003.06.005

图(4)  /  表(1)
计量
  • 文章访问数:  675
  • HTML全文浏览量:  198
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 录用日期:  2020-04-07
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回