行距配置对冬小麦/白三叶草间作系统小麦群体结构和光合有效辐射的影响
Effect of row space on population structure and photosynthetic available radiation in winter wheat-white clover intercropping system
-
摘要: 2008~2010 年冬小麦/白三叶草不同栽培方式试验(6 种小麦行距配置, 3 个行距×2 个播种量)研究表明,单作条件下, 小麦群体总茎数、叶面积指数、生物量及产量在行距25 cm 与30 cm 处理间差异不大, 均显著高于行距40 cm 处理。行距30 cm、播种量217.5 kg·hm-2 处理的籽粒产量和收获系数分别达7 857.8 kg·hm-2 和0.483。小麦抽穗期和花期, 行距30 cm 与40 cm 处理的冠层底部向上20 cm 处的光合有效辐射(PAR)值差异不大, 行间全天PAR 在50 μmol·m-2·s-1 以上的时间至少有8 h, 而单作条件下白三叶草光补偿点在30~50μmol·m-2·s-1 之间, 这预示着在行距30 cm 与40 cm 处理的小麦行间间作白三叶草能为白三叶草光合作用提供有效光能。行距30 cm 条件下, “小偃81”与“济麦22”单作以及分别与白三叶草间作处理试验表明, “小偃81”与白三叶草间作系统小麦生物量不受间作影响, 小麦叶面积指数与穗数高于“小偃81”单作。“济麦22”与白三叶草间作系统的3 项指标则低于“济麦22”单作。间作条件下, 白三叶草冠层顶部PAR 日变化呈单峰曲线, 冠层底部PAR 较小, 全天最大仅30 μmol·m-2·s-1。与“济麦22”相比, “小偃81”与白三叶草间作冠层底部PAR 全天日变化较小。因此, 行距30 cm 处理小麦行间适合间作白三叶草, 小麦品种“小偃81”比“济麦22”更适合与白三叶草间作。本研究结论可为华北平原发展冬小麦/白三叶草间作种植模式提供参考依据。Abstract: Winter wheat (Triticum aestivum L.) planted with several cropping patterns were intercropped with white clover (Trifolium repens L. vs Rivendel) in 2008~2010 cultivation seasons. Population structure, photosynthetic available radiation (PAR) and yield of wheat and intercropping system were investigated. Results of the experiment with six wheat cropping patterns (3 row spaces × 2 sowing rates) indicated that total stems, LAI, biomass and yield of wheat with 25 cm and 30 cm row spaces were significantly higher than those with 40 cm row space. The yield and harvest index of wheat with 30 cm row space and 217.5 kg·hm-2 sowing rate were 7 857.8 kg·hm-2 and 0.483, respectively. At heading and anthesis stages, less difference was noted in PAR between 30 cm and 40 cm row space treatments at the height of 20 cm above-ground of wheat plant. PAR values above 50 μmol·m-2·s-1 lasted at least 8 h in the 30 cm and 40 cm row space treatments. In white clover sole cropping, however, light compensation point was in the range of 30~50 μmol·m-2·s-1. It suggested that winter wheat-white clover intercropping with 30 cm or 40 cm wheat row space could met the requirement of effective light for photosynthesis in white clover. Another experiment with four treatments — two wheat varieties (“Xiaoyan 81” and “Jimai 22”) as sole crops and individual intercropping with white clover at 30 cm row space — were carried out. The results showed that “Xiaoyan 81” biomass was not affected by intercropping with white clover. Its’ LAI and ear density under intercropping were higher than those under monocropping. “Jimai 22” biomass, LAI and ear density under intercropping were lower than those under monocropping. Under intercropping, diurnal PAR variation at the top of white clover canopy exhibited a unimodal curve. Diurnal PAR at bottom of white clover canopy was less than 30 μmol·m-2·s-1. Diurnal PAR variation at the bottom of “Xiaoyan 81”-white clover intercropping system was smaller than that in “Jimai 22”-white clover intercropping system. In general, 30 cm row space of winter wheat was the most suitable for winter wheat-white clove intercropping. With respect to wheat variety, “Xiaoyan 81” performed better than “Jimai 22” under intercropping. This study had laid the basis for developing winter wheat-white clover intercropping systems in North China Plain.
-
[1] Willey R W. Intercropping—Its importance and research needs. Part 1. Competition and yield advantages[J]. Field Crops Research, 1979, 32: 1-10 [2] Ofori F, Stern W R. Maize/cowpea intercrop system: Effect of nitrogen fertilizer on productivity and efficiency[J]. Field Crops Research, 1986, 14: 247-261 [3] Hauggaard-Nielsen H, Ambus P, Jensen E S. Interspecific competition, N use and interference with weeds in pea-barley intercropping[J]. Field Crops Research, 2001, 70(2): 101-109 [4] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research, 2009, 113: 64-71 [5] Izaurralde R C, Juma N G, McGill W B, et al. Performance of conventional and alternative cropping systems in cryolboreal subhumid central Alberta[J]. The Journal of Agricultural Science, 1993, 120: 33-42 [6] Anil L, Park J, Phipps R H, et al. Temperate intercropping of cereals for forage: A review of the potential for growth and utilization with particular reference to the UK[J]. Grass and Forage Science, 1998, 53(4): 301-317 [7] 张恩和, 李玲玲, 黄高宝, 等. 供肥对小麦间作蚕豆群体及根系的调控[J]. 应用生态学报, 2002, 13(8): 939-942 [8] Thorsted M D, Olesen J E, Weiner J. Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping[J]. Field Crops Research, 2006, 95(2/3): 280-290 [9] 沈新平, 陈后庆, 庄恒扬, 等. 小麦-白三叶草复合群体群关系的初步研究[J]. 生态学杂志, 1999, 18(1): 20-24 [10] 毛凯, 周寿荣. 豆科牧草与冬小麦间作的农田生态效应[J]. 生态学杂志, 1993, 12(4): 55-57 [11] Hiltbrunner J, Streit B, Liedgens M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover?[J]. Field Crops Research, 2007, 102(3): 163-171 [12] 王西芝, 白洪立, 孟淑华, 等. 超高产小麦新品种济麦22 号及超高产栽培技术[J]. 中国种业, 2007(4): 60-62 [13] 史泽艳, 高晓飞, 谢云. SUNSCAN 冠层分析系统在农田系统观测中的应用[J]. 干旱地区农业研究, 2005, 23(4): 78-82 [14] 韩烈保, 胡久林, 杨永利, 等. 白三叶草坪蒸散和光合蒸率日变化研究[J]. 北京林业大学学报, 2006, 28(S1): 22-25 [15] 王润元, 杨兴国, 赵鸿, 等. 半干旱雨养区小麦叶片光合生态特征及其对环境的响应[J]. 生态学杂志, 2006, 25(10): 1161-1166 [16] 刘铁梅, 曹卫星, 罗卫红, 等. 小麦叶面积指数的模拟模究[J]. 麦类作物学报, 2001, 21(2): 38-41 [17] 任书杰, 李世清, 王全九, 等. 栽培模式、施氮和品种对麦冠层结构和产量的影响[J]. 生态学杂志, 2006, 25(12): 1449-1454 [18] 陈素英, 张喜英, 毛任钊, 等. 播期和播量对冬小麦冠层有效辐射和产量的影响[J]. 中国生态农业学报, 2009, 17(4): 681-685
计量
- 文章访问数: 1533
- HTML全文浏览量: 74
- PDF下载量: 1251