不同氮源对三倍体毛白杨落叶分解的影响
Influence of exogenous N resource on triploid Populus tomentosa leaf decomposition
-
摘要: 为探索加快毛白杨落叶分解的途径, 采取室内培养的方法研究了添加铵态氮、硝态氮及混合氮对三倍体毛白杨落叶分解速度和主要营养元素释放的影响。结果表明, 添加氮源对三倍体毛白杨落叶分解有一定的促进作用, 不同氮源之间差异显著。140 d后, 施加铵态氮、混合氮和硝态氮的落叶分解率分别为46.0%、30.0%和28.8%, 而对照为27.4%, 处理间差异显著; Olson指数方程拟合结果表明,施加铵态氮、混合氮和硝态氮后落叶分解50%和95%所需时间分别为175 d、316 d、301 d和781 d、1 238 d、1 627 d,比对照分别缩短49.7%、9.2%、13.5%和52.0%、23.9%、14.1%。同时, 添加氮源后对落叶中N、P、K元素的释放影响有所不同, 其中对K元素的释放基本没有产生影响, 随着分解的进行, 不同处理落叶中K元素浓度逐渐降低。但添加氮源对N、P元素的释放产生了显著影响, 与对照相比, 添加氮源缩短了N、P释放的富集时间, 降低了富集的幅度;N、P的富集时间均从对照的21 d缩短到处理的7 d; N的富集幅度从对照为初始浓度的1.94倍降低到处理为初始浓度的1.32~1.56倍, P的富集幅度从对照为初始浓度的2.98倍降低到处理为初始浓度的1.70~2.26倍。因此添加氮源加快了落叶的分解速度,促进了落叶中N、P的释放, 有利于加快养分循环, 提高立地生产力。Abstract: Litter decomposition is important for nutrient cycle in terrestrial ecosystems. Released nutrients by litter decomposition are critical for particularly fast-growing and high-yield pulp forests. Delays in on-site nutrient release could limit forest productivity. It is therefore vital to accelerate the decomposition of leaf litter for the rapid release of needed nutrients in forest plantations. To determine ways of rapid litter decomposition and nutrient release, the effects of exogenous ammonium nitrogen, nitrate nitrogen and mixed nitrogen on triploid P. tomentosa leaf decomposition were determined in a laboratory study. The results showed significant differences in the rates of decomposition of triploid P. tomentosa leaf under the different nitrogen resources. Leaf decomposition significantly accelerated under exogenous ammonium nitrogen. Compared with the control (27.4%), leaf decomposed rates under exogenous ammonium nitrogen, mixed nitrogen and nitrate nitrogen resources were 46.0%, 30.0% and 28.8%, respectively, after 140 d decomposition. The fitting results with Olson exponential equation showed that the times for 50% and 95% leaf decomposition under exogenous ammonium nitrogen, mixed nitrogen and nitrate nitrogen resources were 175 d, 316 d, 301 d and 781 d, 1 238 d, 1 627 d, which were shortened by 49.7%, 9.2%, 13.5% and 52.0%, 23.9%, 14.1%, compared with the control, respectively. There remarkable differences in released main nutrients of litter decomposition under exogenous ammonium nitrogen, mixed nitrogen and nitrate nitrogen resources. K content decreased with increasing degree of decomposition, and was not influenced by exogenous nitrogen resource. However, N and P release was influenced by exogenous nitrogen resource. While the accumulation time of N and P shortened from 21 to 7 days, the degree of N accumulation dropped from 1.94 (under the control) to 1.44 (under exogenous nitrogen) times of initial N concentration. The degree of P accumulation also dropped from 2.98 (under the control) to 1.98 (under exogenous nitrogen) times of initial exogenous P concentration. This suggested that exogenous nitrogen improved on-site productivity via accelerated leaf litter decomposition and N, P release, which in turn shortened the decomposition cycle of triploid P. tomentosa leaf litter.
-
[1] 肖红生, 王勇, 骆世明. 农林生态系统保护土壤肥力的功能及其核算方法[J]. 中国生态农业学报, 2008, 16(5): 1225-1229 [2] Isaac S R, Nair M A. Litter dynamics of six multipurpose trees in a homegarden in southern Kerala, India[J]. Agroforestry Systems, 2006, 67(3): 203-213 [3] 吴起明. 闽粤栲群落凋落物持水量及其与群落结构的相关性研究[J]. 中国生态农业学报, 2004, 12(1): 152-154 [4] 丁印龙, 向平, 谭中奇, 等. 榕树叶片分解过程物质与能量动态变化研究[J]. 中国生态农业学报, 2005, 13(1): 53-56 [5] 黄钰辉, 官丽莉, 周国逸, 等. 西双版纳热带季节雨林和哀牢山中山湿性常绿阔叶林优势植物及地表凋落物层的热值[J]. 植物生态学报, 2007, 31(3): 457-463 [6] Huang Y, Shen Y, Zhou M, et al. Decomposition of plant re-sidue as influenced by its lignin and nitrogen[J]. Acta Phy-toecologica Sinica, 2003, 27(2): 183-188 [7] Taylor B R, Parkinson D, Parsons E F J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test[J]. Ecology, 1989, 70(1): 97-104 [8] 贾黎明, 方陆明, 胡延杰. 杨树刺槐混交林及纯林枯落叶分解[J]. 应用生态学报, 1998, 9(5): 463-467 [9] 项文化, 闫文德, 田大伦, 等. 外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J]. 林业科学, 2005, 41(6): 1-6 [10] 章志琴, 林开敏, 邹双全, 等. 不同调控措施对杉木枯落物分解的影响[J]. 浙江林学院学报, 2006, 23(1): 65-69 [11] 朱之悌, 林惠斌, 康向阳. 毛白杨异源三倍体B301等无性系选育的研究[J]. 林业科学, 1995, 31(6): 499-505 [12] 宋曰钦, 翟名普, 贾黎明. 三倍体毛白杨地上凋落物对林龄的响应[J]. 东北林业大学学报, 2010, 38(3): 17-19 [13] 康向阳, 张平东, 高鹏, 等. 秋水仙碱诱导白杨三倍体新途径的发现[J]. 北京林业大学学报, 2004, 26(1): 5-8 [14] 蒲俊文, 宋君龙, 姚春丽. 三倍体毛白杨纤维形态变异的研究[J]. 北京林业大学学报, 2002, 24(2): 68-72 [15] 薛睿, 贺斌, 薛文瑞. 甘肃干旱荒漠区纸浆林三倍体毛白杨营建试验[J]. 陕西林业科技, 2006(2): 12-16, 36 [16] 林仲桂, 张仁福, 钟福生, 等. 危害三倍体毛白杨的害虫种类、发生与防治研究[J]. 湖南环境生物职业技术学院学报, 2006, 12(1): 1-4 [17] 张鼎华, 翟明普, 林平, 等. 杨树刺槐混交林枯落物分解速率的研究[J]. 中国生态农业学报, 2004, 12(3): 24-26 [18] 郭继勋, 祝廷成. 羊草草原枯枝落叶分解的研究—— 主要优势植物的分解速率和损失率[J]. 生态学报, 1992, 12(4): 295-301 [19] 廖晓初. 氮源对外生菌根生长、氮吸收和硝酸还原酶活性的影响[D]. 重庆: 西南大学, 2006: 28 [20] Moro M J, Domingo F. Litter decomposition in four woody species in a Mediterranean climate: Weight loss, N and P dy-namics[J]. Annals of Botany, 2000, 86(6): 1065-1071 [21] 肖慈英, 黄青春, 阮宏华. 松、栎纯林及混交林凋落物分解特性研究[J]. 土壤学报, 2002, 39(5): 763-767
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: