Abstract:
In order to explore the effects of habitat change driven by land use change on functional groups of ant, ant co- mmunities in secondary natural forests, eucalyptus plantations, lac insect plantations, rubber plantations, lac insect-corn agroforests, drylands and farmlands were investigated by pitfall traps and Winkler in Lüchun County, Yunnan Province. A total of 37 891 individual ants were collected, belonging to 137 species, 52 genera and 8 sub-families of Formicidae. The 52 ant genera were divided into 7 functional groups based on competitive interactions, habitat requirements, behavioral dominance, and response to environment stress and disturbance. They were Dominant Dolichoderinae, Subordinate Camponotini, Generalised Myrmicinae, Opportunities, Cryptic Species, Climate Specialists and Specialist Predators. Species richness of different functional groups was in the order of Opportunists (10 genera 32 species) > Climate Specialists (15 genera 29 species) > Generalized Myrmicinae (3 genera 24 species) > Cryptic Species (14 genera 21 species) > Subordinate Camponotini (2 genera 16 species) > Specialist Predators (6 genera 14 species) > Dominant Dolichoderinae (2 genera 2 species). Subordinate Camponotini, Climate Specialists and Cryptic Species had higher abundance in secondary natural forests, eucalyptus plantations and lac insect plantations. Dominant Dolichoderinae had higher abundance in farmlands with high disturbances. Dominant Dolichoderinae had only 2 genera 2 species while most other functional groups had higher species richness in secondary natural forests, eucalyptus plantations, lac insect plantations and lac insect-corn agroforests. There was less difference in species richness of specialist predators among different habitats. Community structures of ant functional groups in eucalyptus plantations and lac insect plantations had high similarities with those in secondary natural forests. The community structures of ant functional groups in rubber plantations and lac insect-corn agroforests had high similarities with those in drylands. Changes in species composition of Climate Specialists, Generalized Myrmicinae, Opportunitists and Subordinate Camponotini among different habitats were larger than those in the other samples. The changes in ant communities of Generalized Myrmicinae, Opportunitists and Subordinate Camponotini were significant in different habitats. This showed that ant communities in eucalyptus plantations, lac insect plantations and secondary natural forests were in high dissimilation with those in drylands and farmlands. Ant communities of Cryptic Species and Climate Specialists in eucalyptus plantations had high similarities with those in lac insect plantations. There were no significant changes in Specialist Predator ant communities among the different habitats. Ant functional groups were good indicators for habitat change, especially Generalized Myrmicinae, Subordinate Camponotini and Opportunitists were better indicators than the other ant functional groups. The most essential attribute was ant abundance, while community compositions within each functional group had different responses to disturbances and changes in available resources with land use change.