Volume 32 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
CHEN Y P, CHEN D, LIU Q, WU J H, GUO J H, ZHANG J, MIN D H, ZHANG A J, LI R G, ZHENG Y J, ZHAO Y, MA J F, SU C C, JIANG Y, WEI R. Genetic composition, quality analysis, and cultivation techniques of a new winter wheat line ‘Bailu 181’[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1679−1688. DOI: 10.12357/cjea.20240091
Citation: CHEN Y P, CHEN D, LIU Q, WU J H, GUO J H, ZHANG J, MIN D H, ZHANG A J, LI R G, ZHENG Y J, ZHAO Y, MA J F, SU C C, JIANG Y, WEI R. Genetic composition, quality analysis, and cultivation techniques of a new winter wheat line ‘Bailu 181’[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1679−1688. DOI: 10.12357/cjea.20240091

Genetic composition, quality analysis, and cultivation techniques of a new winter wheat line ‘Bailu 181’

Funds: This study was funded by the State Key Lab of Loess Science (E290090176)
More Information
  • Author Bio:

    CHEN Yiping, E-mail: lifesci@ieecas.cn

  • Received Date: February 28, 2024
  • Accepted Date: July 09, 2024
  • Available Online: July 22, 2024
  • The frequency of extreme weather events, such as low and high temperatures, flood and droughts, has increased in recent years, negatively impacting the production, yield, and quality of wheat worldwide. With the rapid socioeconomic development and population growth in China, the demand for wheat is constantly increasing. Therefore, cultivating wheat varieties with a high yield, good quality, and strong resistance is crucial for ensuring national food security. In an attempt to cultivate new varieties of wheat showing adaptability and resistance to adverse weather conditions, the wheat variety ‘Xiaoyan 22’ was radiated with a lethal dose of CO2 laser to create mutant lines. The resulting mutant lines were screened for their stability, yield, and quality, and assessed against a range of cultivation techniques. ‘Bailu 181’ was selected as the new line most suitable for field environment. The test results showed that: 1) The genetic composition of the mutant strain ‘Bailu181’ from ‘Xiaoyan 22’ was analyzed using the Wheat 660K microarray, identifying 630 517 single nucleotide polymorphisms (SNPs), including 1 indeterminate SNP, 442 859 non-differential SNPs (70.24%), and 187 657 differential SNPs (29.76%). Compared with ‘Xiaoyan 22’, the genetic mutations of ‘Bailu 181’ mainly occurred in the SNPs of AA, CC, GG, and TT (19.23%, 23.50%, 23.40%, and 19.46%, respectively). 2) The 1000-grain weight and yield of ‘Bailu 181’ were significantly greater than those of ‘Xiaoyan 22’, with a mean increase of 9.31% and 5.10%. 3) The contents of 17 amino acids were higher in the seeds of ‘Bailu 181’ than in those of ‘Xiaoyan 22’. Compared with ‘Xiaoyan 22’, the grain bulk density and wet gluten index of ‘Bailu 181’ increased by 7.3% and 15.4%, respectively, while the stability time and maximum tensile resistance increased by 11.0% and 34.8%, respectively. 4) Different fertilization and sowing amounts had varying degrees of impact on the number of grain number per spike, 1000-grain weight, spike number and yield of ‘Bailu 181’. Taking into account both the yield and 1000-grain weight, the economic benefits were maximized under sowing 180 kg of seeds per hectare and applying 750 kg of nitrogen fertilizer per hectare. The results showed that ‘Bailu 181’ was more suitable for planting in the Guanzhong Plain and the Middle Reaches of the Yellow River Region. Approximately 30% of the genes in ‘Bailu 181’ were found to change after irradiation, providing breeding materials for enriching China’s wheat germplasm resources and breeding new varieties of wheat with high yield.

  • loading
  • [1]
    梁雪梅, 贾鹏, 秦莉, 等. 激光在土地保护、农作物生长及害虫防治领域应用研究进展[J]. 吉林农业大学学报, 2021, 43(2): 130−137

    LIANG X M, JIA P, QIN L, et al. Research progress of laser application in land protection, crop growth and pest control[J]. Journal of Jilin Agricultural University, 2021, 43(2): 130−137
    [2]
    CHEN Y P, JIA J F, YUE M. Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress[J]. Photochemistry and Photobiology, 2010, 86(3): 600−605 doi: 10.1111/j.1751-1097.2010.00723.x
    [3]
    CHEN Y P, LIU Q. Effect of laser irradiation and ethylene on chilling tolerance of wheat seedlings[J]. Russian Journal of Plant Physiology, 2015, 62(3): 299−306 doi: 10.1134/S1021443715030048
    [4]
    CHEN Y P, LIU Q, CHEN D. CO2 laser enhances the chilling tolerance of wheat seedlings by stimulating NO synthesis[J]. Canadian Journal of Plant Science, 2016, 96(5): 796−807 doi: 10.1139/cjps-2015-0385
    [5]
    CHEN Y P, CHEN D, LIU Q. Exposure to a magnetic field or laser radiation ameliorates effects of Pb and Cd on physiology and growth of young wheat seedlings[J]. Journal of Photochemistry and Photobiology B, Biology, 2017, 169: 171−177 doi: 10.1016/j.jphotobiol.2017.03.012
    [6]
    蒙钟文, 张静, 陈怡平. CO2激光与外源NO对低温胁迫小麦的防护效应[J]. 中国生态农业学报, 2014, 22(5): 566−570

    MENG Z W, ZHANG J, CHEN Y P. Enhancing effects of laser and exogenous nitric oxide on chilling tolerance of wheat seedling[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5): 566−570
    [7]
    联合国粮食及农业组织. 粮食展望[R/OL]. 2023. https://www.fao.org/3/cc6939zh/cc6939zh.pdf

    Food and Agriculture Organization of the United Nations. Food Outlook[R/OL]. 2023. https://www.fao.org/3/cc6939zh/cc6939zh.pdf
    [8]
    国家统计局. 国家统计局关于2022年粮食产量数据的公告[R/OL]. [2022-12-12]. http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html

    National Bureau of Statistics. Announcement of the National Bureau of Statistics on Grain Production Data for 2022[R/OL]. [2022-12-12]. http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html
    [9]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 5498—2013 粮油检验 容重测定[S]. 北京: 中国标准出版社, 2013

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 5498—2013 Inspection of Grain and Oils — Determination of Test Weight[S]. Beijing: Standards Press of China, 2013
    [10]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21304—2007 小麦硬度测定 硬度指数法[S]. 北京: 中国标准出版社, 2007

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 21304—2007 Determination of Wheat Hardness — Hardness Index Method[S]. Beijing: Standards Press of China, 2007
    [11]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24871—2010 粮油检验 小麦粉粗蛋白质含量测定 近红外法[S]. 北京: 中国标准出版社, 2010

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 24871—2010 Inspection of Grain and Oils — Crude Protein Deternimation in Wheat Flour — Near-infrared Method[S]. Beijing: Standards Press of China, 2010
    [12]
    中华人民共和国农业部. NY/T 1094.1—2006 小麦实验制粉 第1部分: 设备、样品制备和润麦[S]. 2006

    Ministry of Agriculture of the People’s Republic of China. NY/T 1094.1—2006 Wheat Experimental Milling Part 1: Equipment, Sample Preparation, and Tempering[S]. 2006
    [13]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21119—2007 小麦 沉降指数测定法 Zeleny试验[S]. 北京: 中国标准出版社, 2007

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 21119—2007 Wheat — Determination of Sedimentation Index — Zeleny Test[S]. Beijing: Standards Press of China, 2007
    [14]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 5506.2—2008 小麦和小麦粉 面筋含量 第2部分: 仪器法测定湿面筋[S]. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 5506.2—2008 Wheat and Wheat Flour — Gluten Content — Part 2: Determination of Wet Gluten by Mechanical Means[S]. Beijing: Standards Press of China, 2008
    [15]
    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 14614—2019 粮油检验 小麦粉面团流变学特性测试 粉质仪法[S]. 北京: 中国标准出版社, 2019

    State Administration for Market Regulation, National Standardization Administration of the People’s Republic of China. GB/T 14614—2019 Inspection of Grain and Oils — Doughs Rheological Properties Determination of Wheat Flour — Farinograph Test[S]. Beijing: Standards Press of China, 2019
    [16]
    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 14615—2019 粮油检验 小麦粉面团流变学特性测试 拉伸仪法[S]. 北京: 中国标准出版社, 2019

    State Administration for Market Regulation, National Standardization Administration of the People’s Republic of China. GB/T 14615—2019 Inspection of Grain and Oils — Doughs Rheological Properties Determination of Wheat Flour — Extensograph Test[S]. Beijing: Standards Press of China, 2019
    [17]
    中华人民共和国卫生部, 中国国家标准化管理委员会. GB/T 5009.124—2003 食品中氨基酸的测定[S]. 北京: 中国标准出版社, 2003

    Ministry of Health of the People’s Republic of China, National Standardization Administration of the People’s Republic of China. GB/T 5009.124—2003 Determination of Amino Acids in Foods[S]. Beijing: Standards Press of China, 2003
    [18]
    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 6432—2018 饲料中粗蛋白的测定 凯氏定氮法[S]. 北京: 中国标准出版社, 2018

    State Administration for Market Regulation, National Standardization Administration of the People’s Republic of China. GB/T 6432—2018 Determination of Crude Protein in Feeds — Kjeldahl Method[S]. Beijing: Standards Press of China, 2018
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 35876—2018 粮油检验 谷物及其制品中钠、镁、钾、钙、铬、锰、铁、铜、锌、砷、硒、镉和铅的测定 电感耦合等离子体质谱法[S]. 北京: 中国标准出版社, 2018

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB/T 35876—2018 Inspection of Grain and Oils — Determination of Sodium, Magnesium, Kalium, Calcium, Chromium, Manganese, Iron, Copper, Zinc, Arsenic, Selenium, Cadmium and Plumbum in Cereals and Derived Products — Inductively Coupled Plasma-mass Spectrometric Method[S]. Beijing: Standards Press of China, 2018
    [20]
    邓来友. 小偃22品质分析与评价[D]. 杨凌: 西北农林科技大学, 2015: 11–12

    DENG L Y. Quality analysis and evaluation of Xiaoyan22[D]. Yangling: Northwest A & F University, 2015: 11–12
    [21]
    SUN C W, DONG Z D, ZHAO L, et al. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat[J]. Plant Biotechnology Journal, 2020, 18(6): 1354−1360 doi: 10.1111/pbi.13361
    [22]
    梅耀杰, 刘成, 韩冉, 等. 利用660K芯片解析小麦品种济麦262的遗传构成[J]. 山东农业科学, 2021, 53(5): 94−98

    MEI Y J, LIU C, HAN R, et al. Analysis on genetic composition of wheat variety Jimai 262 using 660K array[J]. Shandong Agricultural Sciences, 2021, 53(5): 94−98
    [23]
    郑建敏, 罗江陶, 万洪深, 等. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献[J]. 麦类作物学报, 2019, 39(11): 1293−1300

    ZHENG J M, LUO J T, WAN H S, et al. Genetic contribution of Chuanmai 44 to its derivatives analyzed by a wheat 660K SNP array[J]. Journal of Triticeae Crops, 2019, 39(11): 1293−1300
    [24]
    王和芳, 田平正. 冬小麦新品种−鲁麦4号[J]. 山东农业科学, 1984, 16(3): 51

    WANG H F, TIAN P Z. A new winter wheat variety — Lumai 4[J]. Shandong Agricultural Sciences, 1984, 16(3): 51
    [25]
    刘志生. 晚播早熟冬小麦新品种−鲁麦6号[J]. 山东农业科学, 1985, 17(3): 48

    LIU Z S. Lumai 6, a new winter wheat variety with late sowing and early maturity[J]. Shandong Agricultural Sciences, 1985, 17(3): 48
    [26]
    王宾王, 张洪领, 周爱莲, 等. 小麦新品种−鲁麦16号[J]. 作物杂志, 1991(3): 10

    WANG B W, ZHANG H L, ZHOU A L, et al. A new wheat variety — Lumai 16[J]. Crops, 1991(3): 10
    [27]
    国家市场监督管理总局, 中国国家标准化管理委员会. GB 1351—2023 小麦[S]. 北京: 中国标准出版社, 2023

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of the People’s Republic of China. GB 1351—2023 Wheat[S]. Beijing: Standards Press of China, 2023
    [28]
    要燕杰, 高翔, 李晓燕, 等. 小麦品质指标与面团流变学特性的相关和多元回归分析[J]. 华北农学报, 2013, 28(S1): 147−154 doi: 10.7668/hbnxb.2013.S1.028

    YAO Y J, GAO X, LI X Y, et al. Correlation and multiple regression analysis between wheat quality index and dough rheological properties[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1): 147−154 doi: 10.7668/hbnxb.2013.S1.028
    [29]
    傅兆麟, 马宝珍, 王光杰, 等. 小麦旗叶与穗粒重关系的研究[J]. 麦类作物学报, 2001, 21(1): 92−94 doi: 10.3969/j.issn.1009-1041.2001.01.021

    FU Z L, MA B Z, WANG G J, et al. Relationship between the flag leaf and the grain weight per spike in wheat[J]. Acta Tritical Crops, 2001, 21(1): 92−94 doi: 10.3969/j.issn.1009-1041.2001.01.021
    [30]
    郭丽果, 尹宝重, 郑佩佩, 等. 播前耕作方式对河北平原区节水冬小麦光合特性和籽粒产量的影响[J]. 江苏农业科学, 2017, 45(1): 69−72

    GUO L G, YIN B Z, ZHENG P P, et al. Effects of tillage methods before sowing on photosynthetic characteristics and grain yield of water-saving winter wheat in Hebei Plain[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 69−72
    [31]
    王欣, 王才. 不同播期和播种量对冬小麦生长特征和产量的影响[J]. 作物杂志, 2021(6): 182−188

    WANG X, WANG C. Effects of different sowing dates and seeding rates on the growth characteristics and yield of winter wheat[J]. Crops, 2021(6): 182−188
    [32]
    李娜, 张保军, 张正茂, 等. 不同施氮量和播量对‘普冰151’干物质积累特征及籽粒灌浆特性的影响[J]. 西北农业学报, 2017, 26(5): 693−701 doi: 10.7606/j.issn.1004-1389.2017.05.007

    LI N, ZHANG B J, ZHANG Z M, et al. Effects of different N application rate and seeding rate on dry matter accumulation and grain filling characteristics of ‘Pubing 151’[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(5): 693−701 doi: 10.7606/j.issn.1004-1389.2017.05.007
    [33]
    王竟绍, 董召荣, 张健, 等. 密度、氮肥基追比例对不同穗型小麦产量的影响[J]. 安徽农业大学学报, 2011, 38(1): 14−19

    WANG J S, DONG Z R, ZHANG J, et al. Effects of different densities and ratios of base and top-dressing nitrogen fertilizer on grain yield of two wheat varieties with different spike types[J]. Journal of Anhui Agricultural University, 2011, 38(1): 14−19

Catalog

    Figures(5)  /  Tables(2)

    Article Metrics

    Article views (6) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return