Citation: | CHEN P, WANG J T, DONG X L, TIAN L, ZHANG X J, LIU X J, SUN H Y. Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 452−462. DOI: 10.12357/cjea.20220178 |
[1] |
王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t
WANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t
|
[2] |
闫宗正, 房琴, 路杨, 等. 河北省地下水压采政策下水价机制调控冬小麦灌水量研究[J]. 灌溉排水学报, 2018, 37(8): 91−97, 128
YAN Z Z, FANG Q, LU Y, et al. Changing water price to regulate groundwater extraction for irrigating winter wheat in North China Plain[J]. Journal of Irrigation and Drainage, 2018, 37(8): 91−97, 128
|
[3] |
张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162
ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162
|
[4] |
李四强, 荷洁, 贺书宏. 营养与健康 宏兴隆发展战略之路[J]. 中国食品, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020
LI S Q, HE J, HE S H. Nutrition and health Hongxinglong development strategy[J]. China Food, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020
|
[5] |
谢碧霞, 李安平. 膳食纤维[M]. 北京: 科学出版社, 2006
XIE B X, LI A P. Dietary Fiber[M]. Beijing: Science Press, 2006
|
[6] |
祁春节. 中国园艺产业国际竞争力研究[M]. 北京: 中国农业出版社, 2006
QI C J. A study on the international competitiveness of horticultural industry in China[M]. Beijing: China Agriculture Press, 2006
|
[7] |
MAGGIO A, PASCALE S D, ANGELINO G, et al. Physiological response of tomato to saline irrigation in long-term salinized soils[J]. European Journal of Agronomy, 2004, 21(2): 149−159 doi: 10.1016/S1161-0301(03)00092-3
|
[8] |
SHALHEVET J, YARON B. Effect of soil and water salinity on tomato growth[J]. Plant and Soil, 1973, 39(2): 285−292 doi: 10.1007/BF00014795
|
[9] |
CUARTERO J, FERNÁNDEZ-MUÑOZ R. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1/2/3/4): 83−125
|
[10] |
MARSIC N K, VODNIK D, MIKULIC-PETKOVSEK M, et al. Photosynthetic traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity stress, and growing season[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5439−5450 doi: 10.1021/acs.jafc.8b00169
|
[11] |
NEBAUER S G, SÁNCHEZ M, MARTÍNEZ L, et al. Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts[J]. Plant Physiology and Biochemistry: PPB, 2013, 63: 61−69 doi: 10.1016/j.plaphy.2012.11.006
|
[12] |
ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247−273 doi: 10.1146/annurev.arplant.53.091401.143329
|
[13] |
MAGÁN J J, GALLARDO M, THOMPSON R B, et al. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions[J]. Agricultural Water Management, 2008, 95(9): 1041−1055 doi: 10.1016/j.agwat.2008.03.011
|
[14] |
QARYOUTI M M, QAWASMI W, HAMDAN H, et al. Influence of nacl salinity stress on yield, plant water uptake and drainage water of tomato grown in soilless culture[J]. Acta Horticulturae, 2007(747): 539−545
|
[15] |
BOARI F, CANTORE V, DI VENERE D, et al. Pyraclostrobin can mitigate salinity stress in tomato crop[J]. Agricultural Water Management, 2019, 222: 254−264 doi: 10.1016/j.agwat.2019.06.003
|
[16] |
CANTORE V, PACE B, TODOROVIĆ M, et al. Influence of salinity and water regime on tomato for processing[J]. Italian Journal of Agronomy, 2012, 7(1): 10 doi: 10.4081/ija.2012.e10
|
[17] |
EL-MOGY M M, GARCHERY C, STEVENS R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68(8): 727−737
|
[18] |
MITCHELL J P, SHENNAN C, GRATTAN S R, et al. Tomato fruit yields and quality under water deficit and salinity[J]. Journal of the American Society for Horticultural Science, 1991, 116(2): 215−221 doi: 10.21273/JASHS.116.2.215
|
[19] |
王斌, 张强, 黄高鉴, 等. 水盐胁迫下脱硫石膏对苏打型碱化土理化性质及玉米产量的影响[J]. 安徽农业科学, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080
WANG B, ZHANG Q, HUANG G J, et al. Effect of desulphurization gypsum on physical and chemical characteristics of soda-type of alkaline soil and maize yield under water-salt stress[J]. Journal of Anhui Agricultural Sciences, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080
|
[20] |
宓永宁, 左建. 沸石对盐碱地玉米增产效果的研究[J]. 盐碱地利用, 1995, 25(1): 26−28
MI Y N, ZUO J. Effect of zeolite on increase production of maize in saline-alkali soil[J]. Utilization of Saline-Alkali Soil, 1995, 25(1): 26−28
|
[21] |
SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743 doi: 10.1038/s41598-018-33040-7
|
[22] |
DU S T, LIU Y, ZHANG P, et al. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.)[J]. Food Chemistry, 2015, 173: 905−911 doi: 10.1016/j.foodchem.2014.10.115
|
[23] |
何庆元, 向仕华, 吴萍, 等. 硫化氢对盐胁迫条件下大豆抗氧化酶活性的影响[J]. 大豆科学, 2015, 34(3): 427−431
HE Q Y, XIANG S H, WU P, et al. Effects of hydrogen sulfide alleviates salt stress in soybean (Glycine max) antioxidative system[J]. Soybean Science, 2015, 34(3): 427−431
|
[24] |
张春平, 何平, 刘海英, 等. 外源CO供体高铁血红蛋白对盐胁迫下决明种子萌发及幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(2): 189−197
ZHANG C P, HE P, LIU H Y, et al. Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress[J]. China Journal of Chinese Materia Medica, 2012, 37(2): 189−197
|
[25] |
MIAO Y X, LUO X Y, GAO X X, et al. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings[J]. Scientia Horticulturae, 2020, 272: 109577 doi: 10.1016/j.scienta.2020.109577
|
[26] |
张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响[J]. 北方园艺, 2012(20): 23−25
ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress[J]. Northern Horticulture, 2012(20): 23−25
|
[27] |
郭小俊, 谢成俊. 外源ABA对NaCl胁迫下黄瓜幼苗不同离子含量的影响[J]. 中国蔬菜, 2008(9): 27−30
GUO X J, XIE C J. Effect of exogenous ABA on ionic contents of cucumber seedlings under NaCl stress[J]. China Vegetables, 2008(9): 27−30
|
[28] |
束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响[J]. 园艺学报, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005
SHU S, SUN J, GUO S R, et al. Effects of exogenous putrescine on PSⅡ photochemistry and ion distribution of cucumber seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005
|
[29] |
周艳, 刘慧英, 崔金霞, 等. 外源GSH对NaCl胁迫下番茄幼苗叶片及根系离子微域分布的影响[J]. 植物营养与肥料学报, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311
ZHOU Y, LIU H Y, CUI J X, et al. Effects of exogenous glutathione on ions micro-distribution in leaf and root of tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311
|
[30] |
崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05
CUI Y H, LIANG Y, WANG J E, et al. Effects of nano-silicon on seedling growth and antioxidant characteristics of sweet pepper under salt stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05
|
[31] |
于学健. 黄腐酸调控甜菊糖苷合成的机理及甜菊糖苷的酶法转化[D]. 北京: 中国农业大学, 2016
YU X J. Mechanism of stevioside synthesis regulation by fulvic acid and its enzymatic modification[D]. Beijing: China Agricultural University, 2016
|
[32] |
王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015
WANG X K, HUANG J L. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2015
|
[33] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000
BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000
|
[34] |
马芸, 姜瑞, 吴燕. 西瓜中番茄红素含量的测定方法评价[J]. 宁夏农林科技, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041
MA Y, JIANG R, WU Y. Evaluation of determination method of lycopene content in watermelon[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041
|
[35] |
ZHANG P F, DAI Y Y, MASATERU S, et al. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency[J]. Communications in Soil Science and Plant Analysis, 2017, 48(22): 2601−2611
|
[36] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911
|
[37] |
亓艳艳, 骆洪义, 公华锐, 等. 黄腐酸对基质栽培番茄生长、产量及品质的影响[J]. 山东农业科学, 2018, 50(5): 87−91
QI Y Y, LUO H Y, GONG H R, et al. Effects of fulvic acid treatments on development, yield and quality of tomato in substrate culture[J]. Shandong Agricultural Sciences, 2018, 50(5): 87−91
|
[38] |
李静, 李世莹, 李青松. 黄腐酸用量对番茄产量及品质的影响[J]. 农学学报, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002
LI J, LI S Y, LI Q S. Effects of different amounts of fulvic acid on tomato yield and quality[J]. Journal of Agriculture, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002
|
[39] |
孙倩. 提取腐殖酸及其对土壤环境和植物生长的影响[D]. 南京: 南京农业大学, 2016
SUN Q. Derived humic acids and its effects on soil environment and growth of plants[D]. Nanjing: Nanjing Agricultural University, 2016
|
[40] |
朱会调, 高登涛, 白茹, 等. 黄腐酸对阳光玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科学版), 2021, 39(5): 590−596
ZHU H T, GAO D T, BAI R, et al. Effects of fulvic acid on berry quality and yield of Shine Muscat grape[J]. Journal of Shihezi University (Natural Science), 2021, 39(5): 590−596
|
[41] |
卢林纲. 黄腐酸及其在农业上的应用[J]. 现代化农业, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030
LU L G. Fulvic acid and its application in agriculture[J]. Modernizing Agriculture, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030
|
[42] |
REINA-SÁNCHEZ A, ROMERO-ARANDA R, CUARTERO J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water[J]. Agricultural Water Management, 2005, 78(1/2): 54−66
|
[43] |
SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123−131 doi: 10.1016/j.sjbs.2014.12.001
|
[44] |
高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3): 594−602
GAO Y, GUO X Q, LI F D, et al. Improvement of yield and quality of greenhouse-grown pepper through basal application of fulvic acid fertilizer under chemical fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 594−602
|
[45] |
闫嘉欣, 常青, 杨治平, 等. 黄腐酸液体配方肥对大棚黄瓜产量及品质的影响[J]. 中国农学通报, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108
YAN J X, CHANG Q, YANG Z P, et al. Fulvic acid formulated liquid fertilizer: effect on greenhouse cucumber yield and quality[J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108
|
[46] |
姚东伟. 黄腐酸对番茄生长、产量及光合特性的影响[D]. 太谷: 山西农业大学, 2003
YAO D W. Effect of fulvic acid on growth, yield and photosynthetic characteristic of tomato[D]. Taigu: Shanxi Agricultural University, 2003
|
[47] |
海霞, 米俊珍, 赵宝平, 等. 外源亚精胺对盐胁迫下燕麦幼苗生长及生理特性的影响[J]. 西北植物学报, 2021, 41(6): 1003−1011
HAI X, MI J Z, ZHAO B P, et al. Effects of exogenous spermidine on the growth and physiological characteristics in oat seedlings under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1003−1011
|
[48] |
刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020
LIU X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020
|
[49] |
DINLER B S, GUNDUZER E, TEKINAY T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress[J]. Acta Biologica Cracoviensia Series Botanica, 2016, 58(1): 29−41 doi: 10.1515/abcsb-2016-0002
|
[50] |
张小冰, 王晓丽. 腐植酸钾浸种对玉米幼苗保护酶及MDA的影响[J]. 运城学院学报, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012
ZHANG X B, WANG X L. Effects of soaking seed with potassium humate on the activity of protective enzymes and the level of MDA in maize seedlings[J]. Journal of Yuncheng University, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012
|