Citation: | XUE Y, LI C H, LI J W, LYU H, LAI Q Y, KANG Z L, YAO P, LI J H. Analysis of spatial and temporal characteristics and drivers of agricultural carbon emissions in China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(10): 1−13. DOI: 10.12357/cjea.20240038 |
Against the background of global warming, China has implemented numerous emission reduction measures. In-depth discussions of the sources, structure, drivers, and emission-reduction strategies of agricultural carbon emissions are of great significance for promoting the low-carbon transformation of China’s agricultural industry. To explore the spatial and temporal distribution characteristics and driving factors of China’s agricultural carbon emissions, this study used statistical yearbook data from 31 provinces (autonomous regions and municipalities, excluding Hong Kong, Macao, and Taiwan, and same as below) in China from 2000 to 2021. This study investigated the carbon emissions of water use, land use, and energy consumption from 2000 to 2021 using Intergovernmental Panel on Climate Change (IPCC) carbon emission factors and selected the carbon sources of chemical fertilizers, pesticides, agricultural films, diesel oil, irrigation, and plowing. Three subsystem-related variables were used to calculate the total annual agricultural carbon emissions of each province (autonomous regions and municipalities). Then, we analyzed the results of carbon emissions from agriculture in terms of uncertainty using Monte Carlo simulation. The spatiotemporal evolution trend and spatial correlation characteristics of agricultural carbon emissions were analyzed by combining them with Moran’s Index. The main driving factors of agricultural carbon emissions were analyzed using the Logarithmic Mean Divisia Index. The results show that: 1) From the perspective of time-ordered change, the overall trend of agricultural carbon emissions is inverted “V”-shaped. 2) The provinces with large carbon emissions are mainly concentrated in the Huang-Huai-Hai Region and the central plain, whereas the western region and municipalities have lower agricultural carbon emissions. From the perspective of agricultural carbon emission sources, carbon emissions from chemical fertilizer accounted for the highest proportion. Areas with high-quality land and water resources have high agricultural carbon emissions. Changes in areas with high carbon emissions tended to expand northward. Henan, Anhui, Shandong, and other provinces (autonomous regions and municipalities) show significantly high-high clustering effects, whereas Beijing, Tianjin, Qinghai, and other provinces (autonomous regions and municipalities) show a significantly low-low clustering effect. 3) The economic output factor of agricultural water resources and agricultural labor intensity factor are positive driving factors, whereas the economic output factor of agricultural water resources is the most important reason for the increase in agricultural carbon emissions in China. The agricultural productivity factor, labor scale factor, and agricultural water-land matching factor are the negative driving factors of carbon emissions. Among these factors, the agricultural productivity factor has the highest contribution to carbon emissions reduction and is the most important driving factor for reducing agricultural carbon emissions in China. The findings of this study provide recommendations for China’s decision-making on agricultural emissions reduction. The government should increase investment in low-carbon agriculture, support the research and development of new fertilizers and agricultural machinery, improve the efficiency of land and water resources, and enhance the quality of labor. Simultaneously, it is necessary to take advantage of the agglomeration effect of agricultural carbon emissions to promote concentrated agricultural development and interregional cooperation and cultivate new agricultural talent.
[1] |
胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 2023, 31(2): 163−176 doi: 10.12357/cjea.20220777
HU Y H, ZHANG K Y, HU N Y, et al. Review on measurement of agricultural carbon emission in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 163−176 doi: 10.12357/cjea.20220777
|
[2] |
田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097−2105
TIAN Y, ZHANG J B, LI B. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097−2105
|
[3] |
HUANG H F, ZHU N. Study on spatiotemporal characteristics of the impacting factors of agricultural carbon emissions based on the GTWR model: Evidence from the Yellow River Basin, China[J]. Nature Environment and Pollution Technology, 2022, 21(2): 607−615 doi: 10.46488/NEPT.2022.v21i02.019
|
[4] |
邓维忠, 许中坚. 湖南省农业碳排放特征及碳达峰分析[J]. 中国生态农业学报(中英文), 2024, 32(2): 206−217 doi: 10.12357/cjea.20230423
DENG W Z, XU Z J. Characteristics of agricultural carbon emissions and carbon peak analysis in Hunan Province[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 206−217 doi: 10.12357/cjea.20230423
|
[5] |
钱凤魁, 王祥国, 顾汉龙, 等. 东北三省农业碳排放时空分异特征及其关键驱动因素[J]. 中国生态农业学报(中英文), 2024, 32(1): 30−40 doi: 10.12357/cjea.20230225
QIAN F K, WANG X G, GU H L, et al. Spatial-temporal differentiation characteristics and key driving factors of agricultural carbon emissions in the three northeastern provinces of China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 30−40 doi: 10.12357/cjea.20230225
|
[6] |
袁馨, 闫述乾. 西北地区农业碳排放时空特征与达峰分析[J]. 自然资源情报, 2023(10): 30−37 doi: 10.3969/j.issn.1674-3709.2023.10.006
YUAN X, YAN S Q. Temporal and spatial characteristics and peak analysis of agricultural carbon emissions in northwest of China[J]. Natural Resources Information, 2023(10): 30−37 doi: 10.3969/j.issn.1674-3709.2023.10.006
|
[7] |
HAN H B, ZHONG Z Q, GUO Y, et al. Coupling and decoupling effects of agricultural carbon emissions in China and their driving factors[J]. Environmental Science and Pollution Research, 2018, 25(25): 25280−25293 doi: 10.1007/s11356-018-2589-7
|
[8] |
TIAN Y, ZHANG J B, HE Y Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China[J]. Journal of Integrative Agriculture, 2014, 13(6): 1393−1403 doi: 10.1016/S2095-3119(13)60624-3
|
[9] |
崔朋飞, 朱先奇, 李玮. 中国农业碳排放的动态演进与影响因素分析[J]. 世界农业, 2018(4): 127−134
CUI P F, ZHU X Q, LI W. Dynamic evolution and influencing factors of agricultural carbon emissions in China[J]. World Agriculture, 2018(4): 127−134
|
[10] |
丁宝根, 赵玉, 邓俊红. 中国种植业碳排放的测度、脱钩特征及驱动因素研究[J]. 中国农业资源与区划, 2022, 43(5): 1−11
DING B G, ZHAO Y, DENG J H. Calculation, decoupling effects and driving factors of carbon emission from planting industry in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(5): 1−11
|
[11] |
ZHAO R Q, LIU Y, TIAN M M, et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus[J]. Land Use Policy, 2018, 72: 480−492 doi: 10.1016/j.landusepol.2017.12.029
|
[12] |
WANG L G, ZHU R, YIN Z L, et al. Quantifying the spatial–temporal patterns and influencing factors of agricultural carbon emissions based on the coupling effect of water–land resources in arid inland regions[J]. Frontiers in Environmental Science, 2022, 10: 908987 doi: 10.3389/fenvs.2022.908987
|
[13] |
闫文智, 赵翔宇, 王凯歌, 等. 农业水土资源耦合研究进展与展望[J/OL]. 中国农业资源与区划, 2024, 1–12
YAN W Z, ZHAO X Y, WANG K G, et al. Research progress and prospects on the coupling of agricultural water and soil resources[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning, 2024, 1–12
|
[14] |
WEN S B, HU Y X, LIU H M. Measurement and spatial–temporal characteristics of agricultural carbon emission in China: An internal structural perspective[J]. Agriculture, 2022, 12(11): 1749 doi: 10.3390/agriculture12111749
|
[15] |
曲绅豪, 姚怀柱, 王彦东, 等. 江苏典型灌区农业水土资源匹配现状及其承载力特征[J]. 水土保持研究, 2023, 30(6): 452−457, 467
QU S H, YAO H Z, WANG Y D, et al. Matching status and bearing capacity characteristics of agricultural water and land resources in typical irrigation districts of Jiangsu Province[J]. Research of Soil and Water Conservation, 2023, 30(6): 452−457, 467
|
[16] |
赵晓翠, 王继军, 乔梅, 等. 水土保持技术对农业产业-资源系统的耦合路径分析[J]. 生态学报, 2019, 39(16): 5820−5828
ZHAO X C, WANG J J, QIAO M, et al. Coupling path analysis of soil and water conservation technology to the agricultural industry-resource system[J]. Acta Ecologica Sinica, 2019, 39(16): 5820−5828
|
[17] |
王浩坤, 陈红, 秦帅, 等. 水—土—能—碳关联下主产区粮食全要素生产率动态演进分析[J]. 资源开发与市场, 2024, 40(5): 649–657
WANG H K, CHEN H, QIN S, et al. Dynamic evolution analysis of total factor productivity of grain in major producing areas under water-soil-energy-carbon correlation[J]. Resource Development & Market, 2024, 40(5): 649–657
|
[18] |
赵荣钦, 李志萍, 韩宇平, 等. 区域“水—土—能—碳” 耦合作用机制分析[J]. 地理学报, 2016, 71(9): 1613−1628 doi: 10.11821/dlxb201609012
ZHAO R Q, LI Z P, HAN Y P, et al. The coupling interaction mechanism of regional water-land-energy-carbon system[J]. Acta Geographica Sinica, 2016, 71(9): 1613−1628 doi: 10.11821/dlxb201609012
|
[19] |
江文渊, 曾珍香, 张征云. 考虑“水—土—能—碳” 关联的我国工农业碳排放效率及减排潜力研究[J]. 中国环境管理, 2020, 12(6): 120−129
JIANG W Y, ZENG Z X, ZHANG Z Y. China’s industrial and agricultural carbon emission efficiency and reduction potential considering the water-land-energy-carbon nexus[J]. Chinese Journal of Environmental Management, 2020, 12(6): 120−129
|
[20] |
王信, 于涵, 施雨, 等. 基于多要素耦合的舟山农业空间低碳评估与规划[J]. 同济大学学报(自然科学版), 2022, 50(2): 168−177 doi: 10.11908/j.issn.0253-374x.21150
WANG X, YU H, SHI Y, et al. Low carbon assessment and planning of agricultural space in Zhoushan based on multi-element nexus[J]. Journal of Tongji University (Natural Science), 2022, 50(2): 168−177 doi: 10.11908/j.issn.0253-374x.21150
|
[21] |
ZHOU Y, ZHANG X R, CHEN Y S, et al. A water-land-energy-carbon nexus evaluation of agricultural sustainability under multiple uncertainties: The application of a multi-attribute group decision method determined by an interval-valued intuitionistic fuzzy set[J]. Expert Systems With Applications, 2024, 122833
|
[22] |
王若梅, 马海良, 王锦. 基于水-土要素匹配视角的农业碳排放时空分异及影响因素−以长江经济带为例[J]. 资源科学, 2019, 41(8): 1450−1461 doi: 10.18402/resci.2019.08.06
WANG R M, MA H L, WANG J. Spatial and temporal differences of agricultural carbon emissions and impact factors of the Yangtze River Economic Belt based on a water-land perspective[J]. Resources Science, 2019, 41(8): 1450−1461 doi: 10.18402/resci.2019.08.06
|
[23] |
杨青林. 河南省农业水土资源开发的碳排放效应研究[D]. 郑州: 华北水利水电大学, 2019: 1–79
YANG Q L. Carbon emission effect of agricultural water and land resources exploitation in Henan Province[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019: 1–79
|
[24] |
冯誉萱, 薛选登. 考虑水土匹配的黄河流域农业碳排放时空分异研究[J]. 人民黄河, 2023, 45(11): 29−33 doi: 10.3969/j.issn.1000-1379.2023.11.005
FENG Y X, XUE X D. Spatial and temporal variation of agricultural carbon emissions in the Yellow River Basin considering soil and water matching[J]. Yellow River, 2023, 45(11): 29−33 doi: 10.3969/j.issn.1000-1379.2023.11.005
|
[25] |
IPCC. Climate Change 2007: The Physical Science Basis: Working GroupⅠ Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007
|
[26] |
马涛. 上海农业碳源碳汇现状评估及增加碳汇潜力分析[J]. 农业环境与发展, 2011, 28(5): 38−41
MA T. Evaluation on the present situation of agricultural carbon sources and carbon sinks in Shanghai and analysis on the potential of increasing carbon sinks[J]. Agro-Environment & Development, 2011, 28(5): 38−41
|
[27] |
王宝义, 张卫国. 中国农业生态效率测度及时空差异研究[J]. 中国人口·资源与环境, 2016, 26(6): 11−19 doi: 10.3969/j.issn.1002-2104.2016.06.002
WANG B Y, ZHANG W G. A research of agricultural eco-efficiency measure in China and space-time differences[J]. China Population, Resources and Environment, 2016, 26(6): 11−19 doi: 10.3969/j.issn.1002-2104.2016.06.002
|
[28] |
段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203−208
DUAN H P, ZHANG Y, ZHAO J B, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203−208
|
[29] |
李波, 张俊飚. 基于投入视角的我国农业碳排放与经济发展脱钩研究[J]. 经济经纬, 2012, 29(4): 27−31
LI B, ZHANG J B. Decoupling of China’s agriculture carbon emissions and economic development based on the input perspective[J]. Economic Survey, 2012, 29(4): 27−31
|
[30] |
董锋, 杨庆亮, 龙如银, 等. 中国碳排放分解与动态模拟[J]. 中国人口·资源与环境, 2015, 25(4): 1−8
DONG F, YANG Q L, LONG R Y, et al. Factor decomposition and dynamic simulation of China’s carbon emissions[J]. China Population, Resources and Environment, 2015, 25(4): 1−8
|
[31] |
倪筱珈. 湖南省农业低碳化发展评价与优化[D]. 株洲: 湖南工业大学, 2020: 1–78
NI X J. Evaluation and optimization of agriculture low-carbon development in Hunan Province[D]. Zhuzhou: Hunan University of Technology, 2020: 1–78
|
[32] |
胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62
HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56−62
|
[33] |
彭宸, 贾俊松, 余清项等. 中国农业碳排放异质性的时空演化及影响因素分析[J/OL]. 环境科学研究, 2024: 1–19
PENG C, JIA J S, YU Q X, et al. Analysis of spatio-temporal evolution and influencing factors of agricultural carbon emission heterogeneity in China[J/OL]. Environmental Science Research, 2024: 1–19
|
[34] |
田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127
TIAN Y, YIN M H. Recalculation of agricultural carbon emissions in China: basic status, dynamic evolution, and spatial spillover effects[J]. China’s rural economy, 2022(3): 104−127
|
[35] |
葛继红, 孔阿敬, 王猛. “双碳”背景下中国农业碳排放分布动态及减排路径[J]. 新疆农垦经济, 2023(4): 44−52
GE J H, KONG A J, WANG M. The distribution dynamics and emission reduction pathways of agricultural carbon emissions in China under the background of “dual carbon”[J]. Xinjiang Agricultural Reclamation Economy, 2023(4): 44−52
|
[36] |
伍国勇, 刘金丹, 陈莹. 中国农业碳排放强度空间特征及溢出效应分析[J]. 环境科学与技术, 2021, 44(11): 211−219
WU G Y, LIU J D, CHEN Y. Analysis of spatial characteristics and spillover effects of agricultural carbon emission intensity in China[J]. Environmental Science & Technology, 2021, 44(11): 211−219
|
[37] |
黄晓慧, 杨飞. 碳达峰背景下中国农业碳排放测算及其时空动态演变[J]. 江苏农业科学, 2022(14): 232−239
HUANG X H, YANG F. Calculation and spatiotemporal dynamic evolution of agricultural carbon emissions in China under the background of carbon peak[J]. Jiangsu Agricultural Sciences, 2022(14): 232−239
|