Turn off MathJax
Article Contents
CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gases emissions under different planting patterns in the Huang-Huai-Hai Region*[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 1−12. DOI: 10.12357/cjea.20240193
Citation: CHEN J, WU L G, ZHANG X, DENG A X, SONG Z W, ZHANG W J, ZHENG C Y. Characteristics and differences of crop yield and greenhouse gases emissions under different planting patterns in the Huang-Huai-Hai Region*[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 1−12. DOI: 10.12357/cjea.20240193

Characteristics and differences of crop yield and greenhouse gases emissions under different planting patterns in the Huang-Huai-Hai Region*

Funds: The study was supported by National Natural Science Foundation of China (32272218), the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202407; 01-ICS-20) and the Modern Agro-industry Technology Research System-Green manure (CARS-22-G-16).
More Information
  • Corresponding author:

    ZHENG Chengyan, E-mail: zhengchengyan@caas.cn

  • Received Date: April 12, 2024
  • Revised Date: August 29, 2024
  • Accepted Date: September 05, 2024
  • Available Online: September 05, 2024
  • Climate change has increasingly triggered extreme weather events, leading to significant adverse impacts on crop production and posing challenges to the sustainability of agricultural systems. This study investigates the effects of different cropping patterns on crop yields and greenhouse gas (GHG) emissions in the Huang-Huai-Hai Region, aiming to provide a scientific basis for constructing climate-resilient, high-yield, and low-carbon cropping systems in the region. Field experiments were conducted from 2015 to 2020 at the Xinxiang Experimental Base of the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Five distinct planting patterns were established, including single-cropping winter wheat (W), single-cropping summer maize (M), single-cropping summer soybean (S), winter wheat-summer soybean double cropping system (W-S), and winter wheat-summer maize double cropping system (W-M). The study thoroughly analyzed crop yields under these five cropping systems over six years, calculating the output value and economic benefits associated with each system. Additionally, from 2017 to 2019, the study monitored soil GHG emissions, measured crop nitrogen accumulation, and calculated the partial factor productivity of nitrogen. Furthermore, the carbon footprint of each planting pattern was also assessed. Results revealed that the W-M double cropping system consistently outperformed other patterns in terms of annual maize-equivalent yield, energy output, and economic benefits. This system demonstrated superior productivity, making it a highly effective model for achieving high yields and maximizing economic returns. However, the W-M pattern also exhibited the highest GHG emissions, indicating a potential trade-off between yield and environmental sustainability. In contrast, the W-S double cropping system showed a reduction in cumulative nitrous oxide (N2O) emissions, direct GHG emissions, and carbon footprint per unit area by 10.7%, 11.1%, and 4.7%, respectively, compared to the W-M system. This reduction highlights the W-S system's potential for mitigating GHG emissions while still maintaining a relatively high yield. Moreover, the study found that single-season soybean cropping resulted in significantly higher nitrogen accumulation compared to wheat and maize, with increases of 31.1% and 87.8%, respectively. However, despite the lower nitrogen accumulation in maize, it exhibited the highest partial factor productivity of nitrogen. In conclusion, while the W-M double cropping system emerges as the most effective pattern for maximizing crop yields and economic benefits, it also presents environmental challenges due to its higher GHG emissions. Therefore, further research is essential to develop emission reduction techniques for the W-M system, aiming to achieve a balance between high yield and low carbon emissions. This study provides critical insights into the trade-offs and synergies between crop productivity and environmental sustainability under different cropping systems, offering valuable guidance for the development of climate-resilient agricultural practices in the Huang-Huai-Hai Region and similar agro-ecological regions.
  • loading
  • [1]
    周宝元, 葛均筑, 侯海鹏, 等. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937−949 doi: 10.3724/SP.J.1006.2020.93049

    ZHOU B Y, GE J Z, HOU H P, et al. Characteristics of annual climate resource distribution and utilization for dif-ferent cropping systems in the south of Yellow-Huaihe-Haihe Rivers Plain[J]. Acta Agronomica Sinica, 2020, 46(6): 937−949 doi: 10.3724/SP.J.1006.2020.93049
    [2]
    LING M H, HAN H B, WEI X L, et al. Temporal and spatial distributions of precipitation on the Huang-Huai-Hai Plain during 1960–2019, China[J]. Journal of Water and Climate Change, 2021, 12(6): 2232−2244 doi: 10.2166/wcc.2021.313
    [3]
    张凯, 周婕, 赵杰, 等. 华北平原主要种植模式农业地下水足迹研究−以河北省吴桥县为例[J]. 中国生态农业学报, 2017, 25(3): 328−336

    ZHANG K, ZHOU J, ZHAO J, et al. Agricultural groundwater footprint of the major cropping system in the North China Plain: A case study of Wuqiao County, Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 328−336
    [4]
    WANG G C, LUO Z K, WANG E L, et al. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain, China[J]. Agricultural and Forest Meteorology, 2018, 260/261: 80−94 doi: 10.1016/j.agrformet.2018.06.003
    [5]
    张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009
    [6]
    BURNEY J A, DAVIS S J, LOBELL D B. Greenhouse gas mitigation by agricultural intensification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12052−12057
    [7]
    DAVIS K F, RULLI M C, SEVESO A, et al. Increased food production and reduced water use through optimized crop distribution[J]. Nature Geoscience, 2017, 10: 919−924 doi: 10.1038/s41561-017-0004-5
    [8]
    CUI J X, SUI P, WRIGHT D L, et al. Carbon emission of maize-based cropping systems in the North China Plain[J]. Journal of Cleaner Production, 2019, 213: 300−308 doi: 10.1016/j.jclepro.2018.12.174
    [9]
    郑孟静, 张经廷, 崔永增, 等. 华北平原基于麦玉轮作的粮薯、粮豆轮作模式碳足迹评价[J]. 华北农学报, 2022, 37(S1): 81−89 doi: 10.7668/hbnxb.20193400

    ZHENG M J, ZHANG J T, CUI Y Z, et al. Carbon footprint evaluation of cereal-bean, cereal-potato rotation modes based on wheat-maize cropping system in North China Plain[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(S1): 81−89 doi: 10.7668/hbnxb.20193400
    [10]
    谢鸿飞, 赵俊芳, 艾金龙, 等. 基于APSIM的华北平原不同种植模式下主要温室气体排放效应评估[J]. 中国农业气象, 2022, 43(12): 955−968 doi: 10.3969/j.issn.1000-6362.2022.12.001

    XIE H F, ZHAO J F, AI J L, et al. Assessment of main greenhouse gas emission effects under different cropping patterns in North China Plain based on APSIM crop model[J]. Chinese Journal of Agrometeorology, 2022, 43(12): 955−968 doi: 10.3969/j.issn.1000-6362.2022.12.001
    [11]
    郑媛媛, 陈宗培, 王贵彦. 海河平原小麦-玉米不同种植制度节水特性分析[J]. 干旱地区农业研究, 2019, 37(5): 9−15 doi: 10.7606/j.issn.1000-7601.2019.05.02

    ZHENG Y Y, CHEN Z P, WANG G Y. Analysis on the water-saving characteristics of winter wheat and summer maize cropping system on Haihe Plain[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 9−15 doi: 10.7606/j.issn.1000-7601.2019.05.02
    [12]
    YANG Y H, TI J S, ZOU J, et al. Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields[J]. Agriculture, Ecosystems & Environment, 2023, 342: 108220
    [13]
    XIAO H, VAN ES H M, AMSILI J P, et al. Lowering soil greenhouse gas emissions without sacrificing yields by increasing crop rotation diversity in the North China Plain[J]. Field Crops Research, 2022, 276: 108366 doi: 10.1016/j.fcr.2021.108366
    [14]
    YANG L, NIE J W, ZHAO J, et al. Reduce carbon footprint without compromising system productivity: Optimizing crop rotation in the North China Plain[J]. Journal of Cleaner Production, 2023, 426: 139124 doi: 10.1016/j.jclepro.2023.139124
    [15]
    SUN T, FENG X M, LAL R, et al. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints[J]. Agriculture, Ecosystems & Environment, 2021, 321: 107614
    [16]
    陈阜. 农业生态学[M]. 北京: 中国农业大学出版社, 2002: 316

    CHEN F. Agroecology[M]. Beijing: China Agricultural University Press, 2002: 316
    [17]
    耿若鑫, 黑泽文, 油伦成, 等. 华北小麦施用脲铵氮肥实现轻简施肥的可行性及技术措施[J]. 植物营养与肥料学报, 2024, 30(6): 1103−1117 doi: 10.11674/zwyf.2023493

    GENG R X, HEI Z W, YOU L C, et al. Availability and technology of using urea-ammonium fertilizer to realize nitrogen reduction and simplified fertilization in wheat production of North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1103−1117 doi: 10.11674/zwyf.2023493
    [18]
    张鑫, 郑成岩, 李升明, 等. 长期有机无机肥配施降低黄淮海区域小麦-大豆复种系统净温室效应[J]. 植物营养与肥料学报, 2020, 26(12): 2204−2215

    ZHANG X, ZHENG C Y, LI S M, et al. Long-term combined application of chemical and organic fertilizers decrease net greenhouse gas emission in wheat-soybean system in Huang-Huai-Hai region[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2204−2215
    [19]
    林志敏, 李洲, 翁佩莹, 等. 再生稻田温室气体排放特征及碳足迹[J]. 应用生态学报, 2022, 33(5): 1340−1351

    LIN Z M, LI Z, WENG P Y, et al. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1340−1351
    [20]
    刘志铭, 司雨, 姚凡云, 等. 提高东北春玉米产量和资源利用效率降低碳足迹的优化综合管理措施[J]. 中国生态农业学报(中英文), 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405

    LIU Z M, SI Y, YAO F Y, et al. Integrated management improves spring maize yield and resources use efficiency, and reduces the carbon footprint in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 380−388 doi: 10.12357/cjea.20210405
    [21]
    吴健成, 刘卿, 汪翠存, 等. 秸秆还田与氮肥施用对稻田温室气体排放的影响[J]. 生态学报, 2024, 44(12): 5328−5339

    WU J C, LIU Q, WANG C C, et al. Effects of straw returning and nitrogen fertilizer application on greenhouse gas emissions in rice paddy fields and research on fertilizer recommendation[J]. Acta Ecologica Sinica, 2024, 44(12): 5328−5339
    [22]
    HUANG X M, CHEN C Q, QIAN H Y, et al. Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978[J]. Journal of Cleaner Production, 2017, 142: 1629−1637 doi: 10.1016/j.jclepro.2016.11.131
    [23]
    马小艳, 杨瑜, 黄冬琳, 等. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589−1603 doi: 10.3864/j.issn.0578-1752.2022.08.010

    MA X Y, YANG Y, HUANG D L, et al. Annual nutrients balance and economic return analysis of wheat with fertilizers reduction and different rotations[J]. Scientia Agricultura Sinica, 2022, 55(8): 1589−1603 doi: 10.3864/j.issn.0578-1752.2022.08.010
    [24]
    WANG X L, MA X X, YAN G, et al. Gene duplications facilitate C4-CAM compatibility in common purslane[J]. Plant Physiology, 2023, 193(4): 2622−2639 doi: 10.1093/plphys/kiad451
    [25]
    王丹, 周宝元, 马玮, 等. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437−1450 doi: 10.3724/SP.J.1006.2022.13022

    WANG D, ZHOU B Y, MA W, et al. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River[J]. Acta Agronomica Sinica, 2022, 48(6): 1437−1450 doi: 10.3724/SP.J.1006.2022.13022
    [26]
    周宝元, 陈传永, 孙雪芳, 等. 冬小麦-夏玉米双机收籽粒模式周年资源利用效率及经济效益[J]. 中国生态农业学报(中英文), 2022, 30(12): 1959−1972 doi: 10.12357/cjea.20220279

    ZHOU B Y, CHEN C Y, SUN X F, et al. Resource use efficiencies and economic benefits of winter wheat-summer maize cropping system with double mechanical grain harvest[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1959−1972 doi: 10.12357/cjea.20220279
    [27]
    LASISI A, LIU K. A global meta-analysis of pulse crop effect on yield, resource use, and soil organic carbon in cereal- and oilseed-based cropping systems[J]. Field Crops Research, 2023, 294: 108857 doi: 10.1016/j.fcr.2023.108857
    [28]
    YANG H, ZHANG W P, XU H S, et al. Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems[J]. Field Crops Research, 2023, 302: 109093 doi: 10.1016/j.fcr.2023.109093
    [29]
    魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1384−1394 doi: 10.11674/zwyf.19511

    WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384−1394 doi: 10.11674/zwyf.19511
    [30]
    李晓立, 何堂庆, 张晨曦, 等. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948−961 doi: 10.3864/j.issn.0578-1752.2022.05.009

    LI X L, HE T Q, ZHANG C X, et al. Effect of organic fertilizer replacing chemical fertilizers on greenhouse gas emission under the conditions of same nitrogen fertilizer input in maize farmland[J]. Scientia Agricultura Sinica, 2022, 55(5): 948−961 doi: 10.3864/j.issn.0578-1752.2022.05.009
    [31]
    WANG C, ZHAO J C, FENG Y P, et al. Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems[J]. Agricultural Water Management, 2021, 248: 106762 doi: 10.1016/j.agwat.2021.106762
    [32]
    CHENG K, OGLE S M, PARTON W J, et al. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model[J]. Global Change Biology, 2014, 20(3): 948−962 doi: 10.1111/gcb.12368
    [33]
    BEHNKE G D, ZUBER S M, PITTELKOW C M, et al. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA[J]. Agriculture, Ecosystems & Environment, 2018, 261: 62–70
    [34]
    DOS SANTOS I L, DE OLIVEIRA A D, DE FIGUEIREDO C C, et al. Soil N2O emissions from long-term agroecosystems: interactive effects of rainfall seasonality and crop rotation in the Brazilian Cerrado[J]. Agriculture, Ecosystems & Environment, 2016, 233: 111–120
    [35]
    李春喜, 李斯斯, 邵云, 等. 有机物料还田对冬小麦农田土壤温室气体排放影响的研究[J]. 中国生态农业学报, 2019, 27(6): 815−824

    LI C X, LI S S, SHAO Y, et al. Effects of organic waste application on soil greenhouse gas emissions of a winter wheat field[J]. Chinese Journal of Eco-Agriculture, 2019, 27(6): 815−824
    [36]
    朱晓晴, 安晶, 马玲, 等. 秸秆还田深度对土壤温室气体排放及玉米产量的影响[J]. 中国农业科学, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010

    ZHU X Q, AN J, MA L, et al. Effects of different straw returning depths on soil greenhouse gas emission and maize yield[J]. Scientia Agricultura Sinica, 2020, 53(5): 977−989 doi: 10.3864/j.issn.0578-1752.2020.05.010
    [37]
    张广斌, 马静, 徐华, 等. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 2023, 38(3): 504−517

    ZHANG G B, MA J, XU H, et al. Status quo of research and suggestions on reduction of non-CO2 greenhouse gas emission from Chinese farmland[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 504−517
    [38]
    CUI X Q, ZHOU F, CIAIS P, et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation[J]. Nature Food, 2021, 2: 886−893 doi: 10.1038/s43016-021-00384-9
    [39]
    张学林, 何堂庆, 张晨曦, 等. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000−2012 doi: 10.3864/j.issn.0578-1752.2022.10.010

    ZHANG X L, HE T Q, ZHANG C X, et al. Effects of arbuscular mycorrhizal fungi on soil N2O emissions during maize growth periods[J]. Scientia Agricultura Sinica, 2022, 55(10): 2000−2012 doi: 10.3864/j.issn.0578-1752.2022.10.010
    [40]
    林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报(中英文), 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843

    LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China’s agricultural sector: Current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843
    [41]
    李春喜, 刘晴, 邵云, 等. 有机物料还田和减施氮肥对麦-玉周年农田碳氮水足迹及经济效益的影响[J]. 农业资源与环境学报, 2020, 37(4): 527−536

    LI C X, LIU Q, SHAO Y, et al. Effects of organic material returning and nitrogen fertilizer reduction on the economic yields and carbon, nitrogen, and water footprints of wheat-maize annual farmland in China[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 527−536
    [42]
    XU X M, LAN Y. Spatial and temporal patterns of carbon footprints of grain crops in China[J]. Journal of Cleaner Production, 2017, 146: 218−227 doi: 10.1016/j.jclepro.2016.11.181
    [43]
    YAN M, CHENG K, LUO T, et al. Carbon footprint of grain crop production in China–based on farm survey data[J]. Journal of Cleaner Production, 2015, 104: 130−138 doi: 10.1016/j.jclepro.2015.05.058

Catalog

    Figures(3)  /  Tables(7)

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return