Turn off MathJax
Article Contents
XUE Q N, WANG Y Y, SHI M X, LI H. Assessment of ecological integrity and analysis of its influencing factors in Zhangjiakou municipality[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−12. DOI: 10.12357/cjea.20240275
Citation: XUE Q N, WANG Y Y, SHI M X, LI H. Assessment of ecological integrity and analysis of its influencing factors in Zhangjiakou municipality[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1−12. DOI: 10.12357/cjea.20240275

Assessment of ecological integrity and analysis of its influencing factors in Zhangjiakou municipality

Funds: This study was supported by the National Natural Science Foundation of China (42071257) and the Natural Science Foundation of Hebei Province (C2021205022).
More Information
  • Corresponding author:

    LI Hao, E-mail: lihao@hebtu.edu.cn

  • Received Date: 2024-05-13
  • Accepted Date: 2024-07-17
  • Available Online: 2024-07-29
  • Anthropogenic disturbances, such as urbanization and agricultural production, significantly contribute to the degradation of regional ecosystems. While the concept of human integrated impact assessments is widely recognized, there is a notable absence of regional assessment methods based on ecological integrity in China. This study addresses this gap by examining Zhangjiakou, a critical area for water source conservation and ecological support for Beijing. We employ a landscape condition model to evaluate six anthropogenic disturbance indicators: slope gradient of cropland, distance from grassland to the nearest settlement, distance from surface water to the nearest settlement, urban area size, road grade, and railway grade. These indicators encompass four domains: agricultural and animal husbandry production, surface water utilization, urbanization, and transportation infrastructure. To quantify the impact scores and maximum impact radius for each indicator, we used a participatory method. This approach led to the creation of separate data layers, each numerically valued from 0 to 1, for each disturbance indicator. These layers were then synthesized into a continuous ecological integrity index using the product method. We applied spatial autocorrelation analysis, hot spot analysis, sensitivity analysis, and commonality analysis to explore the spatial distribution, clustering characteristics, and primary influencing factors of ecological integrity for the years 2000 and 2022. Our findings reveal a distinct spatial distribution pattern in Zhangjiakou: high ecological integrity is observed in the eastern regions, whereas lower integrity characterizes the central, northern, and western areas. This pattern is influenced by regional resources, transportation, and development orientation. Between 2000 and 2022, we observed a significant trend of polarization in human impact on ecological integrity. Specifically, human disturbance decreased in areas with high ecological integrity but increased in areas with lower integrity, indicating diverse levels of anthropogenic influence across different regions. In the eastern part of Zhangjiakou, ecological restoration projects have led to patches of high-integrity forests. Conversely, road construction has created a low-integrity spatial distribution pattern in the central and northern regions, emanating from urban centers and radiating along major roads. The western region, impacted by agricultural and pastoral activities, does not exhibit clear clustering characteristics of ecological integrity. Our study identifies cropland, roads, and grassland as the primary factors influencing the ecological integrity of Zhangjiakou. To mitigate these impacts, we recommend enhancing forest landscape restoration in the eastern region. For the central and northern regions, clear boundaries for highway development should be delineated in accordance with ecological protection guidelines. Additionally, efforts to convert farmland to grassland in the western region should be intensified to improve water supply and enhance ecological carrying capacity. These initiatives aim to establish an ecological security barrier in the northwest of Beijing and improve the region’s resilience to anthropogenic pressures. This study contributes an effective scientific methodology and technical reference for regional ecosystem human integrated impact assessments. It underscores the importance of tailored management interventions based on the spatial aggregation of ecological integrity to address specific challenges posed by anthropogenic disturbances. Such targeted interventions are crucial for promoting sustainable development and enhancing ecological resilience in regions under significant human pressure.

  • loading
  • [1]
    BONGAARTS J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[J]. Population and Development Review, 2019, 45(3): 680−681 doi: 10.1111/padr.12283
    [2]
    邬建国. 景观生态学: 格局、过程、尺度与等级[M]. 2版. 北京: 高等教育出版社, 2007: 103–129

    WU J G. Landscape Ecology[M]. 2nd ed. Beijing: Higher Education Press, 2007: 103–129
    [3]
    HAK J C, COMER P J. Modeling landscape condition for biodiversity assessment—Application in temperate North America[J]. Ecological Indicators, 2017, 82: 206−216 doi: 10.1016/j.ecolind.2017.06.049
    [4]
    TISCHENDORF L. Can landscape indices predict ecological processes consistently?[J]. Landscape Ecology, 2001, 16(3): 235−254 doi: 10.1023/A:1011112719782
    [5]
    SANDERSON E W, JAITEH M, LEVY M A, et al. The human footprint and the last of the wild[J]. BioScience, 2002, 52(10): 891 doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
    [6]
    VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 2016, 7: 12558 doi: 10.1038/ncomms12558
    [7]
    PARRISH J D, BRAUN D P, UNNASCH R S. Are we conserving what we say we are? Measuring ecological integrity within protected areas[J]. BioScience, 2003, 53(9): 851 doi: 10.1641/0006-3568(2003)053[0851:AWCWWS]2.0.CO;2
    [8]
    THEOBALD D M. A general model to quantify ecological integrity for landscape assessments and US application[J]. Landscape Ecology, 2013, 28(10): 1859−1874 doi: 10.1007/s10980-013-9941-6
    [9]
    DECKER K L, POCEWICZ A, HARJU S, et al. Landscape disturbance models consistently explain variation in ecological integrity across large landscapes[J]. Ecosphere, 2017, 8(4): e01775 doi: 10.1002/ecs2.1775
    [10]
    WALSTON L J, HARTMANN H M. Development of a landscape integrity model framework to support regional conservation planning[J]. PLoS One, 2018, 13(4): e0195115 doi: 10.1371/journal.pone.0195115
    [11]
    CAI W W, ZHOU Z Y, XIA J H, et al. An advanced index of ecological integrity (IEI) for assessing ecological efficiency of restauration revetments in river plain[J]. Ecological Indicators, 2020, 108: 105762 doi: 10.1016/j.ecolind.2019.105762
    [12]
    MCGARIGAL K, COMPTON B W, PLUNKETT E B, et al. A landscape index of ecological integrity to inform landscape conservation[J]. Landscape Ecology, 2018, 33(7): 1029−1048 doi: 10.1007/s10980-018-0653-9
    [13]
    KENNEDY C M, OAKLEAF J R, THEOBALD D M, et al. Managing the middle: A shift in conservation priorities based on the global human modification gradient[J]. Global Change Biology, 2019, 25(3): 811−826 doi: 10.1111/gcb.14549
    [14]
    GRANTHAM H S, DUNCAN A, EVANS T D, et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity[J]. Nature Communications, 2020, 11: 5978 doi: 10.1038/s41467-020-19493-3
    [15]
    金小伟, 王业耀, 王备新, 等. 我国流域水生态完整性评价方法构建[J]. 中国环境监测, 2017, 33(1): 75−81

    JIN X W, WANG Y Y, WANG B X, et al. Methods development for monitoring and assessment of ecological integrity of surface waters in China[J]. Environmental Monitoring in China, 2017, 33(1): 75−81
    [16]
    席浩郡, 袁一斌, 昝晓辉, 等. 基于生态完整性和社会服务功能的柏条河–府河河流健康评价[J]. 北京大学学报(自然科学版), 2022, 58(6): 1111−1120

    XI H J, YUAN Y B, ZAN X H, et al. Health assessment of the Baitiao-Fu River based on ecological integrity and social service functions[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(6): 1111−1120
    [17]
    李欣桐, 王远铭, 梁瑞峰, 等. 河流系统生态完整性评估的回顾与展望[J]. 中国环境科学, 2024, 44(4): 2256−2272 doi: 10.3969/j.issn.1000-6923.2024.04.047

    LI X T, WANG Y M, LIANG R F, et al. A review and prospect for ecological integrity assessment of river systems[J]. China Environmental Science, 2024, 44(4): 2256−2272 doi: 10.3969/j.issn.1000-6923.2024.04.047
    [18]
    代云川, 薛亚东, 张云毅, 等. 国家公园生态系统完整性评价研究进展[J]. 生物多样性, 2019, 27(1): 104−113 doi: 10.17520/biods.2018142

    DAI Y C, XUE Y D, ZHANG Y Y, et al. Summary comments on assessment methods of ecosystem integrity for national parks[J]. Biodiversity Science, 2019, 27(1): 104−113 doi: 10.17520/biods.2018142
    [19]
    魏钰, 雷光春. 从生物群落到生态系统综合保护: 国家公园生态系统完整性保护的理论演变[J]. 自然资源学报, 2019, 34(9): 1820−1832 doi: 10.31497/zrzyxb.20190903

    WEI Y, LEI G C. From biocenosis to ecosystem: The theory trend of conserving ecosystem integrity in national parks[J]. Journal of Natural Resources, 2019, 34(9): 1820−1832 doi: 10.31497/zrzyxb.20190903
    [20]
    蒋亚芳, 田静, 赵晶博, 等. 国家公园生态系统完整性的内涵及评价框架: 以东北虎豹国家公园为例[J]. 生物多样性, 2021, 29(10): 1279−1287 doi: 10.17520/biods.2021319

    JIANG Y F, TIAN J, ZHAO J B, et al. The connotation and assessment framework of national park ecosystem integrity: A case study of the Amur Tiger and Leopard National Park[J]. Biodiversity Science, 2021, 29(10): 1279−1287 doi: 10.17520/biods.2021319
    [21]
    石玉琼, 王宁练. 榆林景观生态完整性的地统计分析[J]. 西北大学学报(自然科学版), 2023, 53(1): 25−32

    SHI Y Q, WANG N L. Geostatistics analysis of landscape ecological integrity in Yulin, China[J]. Journal of Northwest University (Natural Science Edition), 2023, 53(1): 25−32
    [22]
    石玉琼, 王宁练. 基于景观尺度的太原生态完整性时空动态与空间变异[J/OL]. 遥感技术与应用, 2023: 1–9 (2023-09-14). https://kns.cnki.net/kcms/detail/62.1099.TP.20230913.1130.004.html

    SHI Y Q, WANG N L. Spatio-temporal dynamics and spatial variation of ecological integrity in Taiyuan based on landscape scale[J/OL]. Remote Sensing Technology and Application, 2023: 1–9 (2023-09-14). https://kns.cnki.net/kcms/detail/62.1099.TP.20230913.1130.004.html
    [23]
    国家发展改革委, 自然资源部. 关于印发《全国重要生态系统保护和修复重大工程总体规划(2021—2035年)》的通知[EB/OL]. 北京: 中国政府网. (2020-06-03) [2024-04-30]. https://www.gov.cn/zhengce/zhengceku/2020-06/12/content_5518982.htm

    National Development and Reform Commission, Ministry of Natural Resources. Notification on issuance of overall plan for major projects of protection and restoration of national important ecological systems (2021−2035)[EB/OL]. Beijing: The People's Republic of China. (2020-06-03) [2024-04-30]. https://www.gov.cn/zhengce/zhengceku/2020-06/12/content_5518982.htm
    [24]
    YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907−3925 doi: 10.5194/essd-13-3907-2021
    [25]
    ZHANG B Q, WU P T, ZHAO X N, et al. Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China[J]. Environmental Earth Sciences, 2013, 68(8): 2427−2438 doi: 10.1007/s12665-012-1927-1
    [26]
    LI H, ZHANG X, ZHANG Y, et al. Risk assessment of forest landscape degradation using Bayesian network modeling in the Miyun Reservoir Catchment (China) with emphasis on the Beijing-Tianjin sandstorm source control program[J]. Land Degradation & Development, 2018, 29(11): 3876−3885
    [27]
    LI H, MA Z C, ZHU Y J, et al. Planning and prioritizing forest landscape restoration within megacities using the ordered weighted averaging operator[J]. Ecological Indicators, 2020, 116: 106499 doi: 10.1016/j.ecolind.2020.106499
    [28]
    谈明洪, 吕昌河. 以建成区面积表征的中国城市规模分布[J]. 地理学报, 2003(2): 285−293 doi: 10.3321/j.issn:0375-5444.2003.02.016

    TAN M H, LV C H. Distribution of China city size expressed by urban built-up area[J]. Acta Geographica Sinica, 2003(2): 285−293 doi: 10.3321/j.issn:0375-5444.2003.02.016
    [29]
    Open Street Map. Roads(511x), Waterways(810x), Bodies of Water(82xx), Railways(6101)[DB/OL]. 2024 [2024-06-19]. https://download.geofabrik.de/asia/china.html
    [30]
    KNIGHT K B, COMER P J, PICKARD B R, et al. Including condition into ecological maps changes everything — a study of ecological condition in the conterminous United States[J]. Land, 2021, 10(11): 1145 doi: 10.3390/land10111145
    [31]
    LIU S L, ZHAO Q H, WEN M X, et al. Assessing the impact of hydroelectric project construction on the ecological integrity of the Nuozhadu Nature Reserve, southwest China[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(7): 1709−1718 doi: 10.1007/s00477-013-0708-z
    [32]
    ZHANG X Y, NING X G, WANG H, et al. Quantitative assessment of the risk of human activities on landscape fragmentation: A case study of Northeast China Tiger and Leopard National Park[J]. The Science of the Total Environment, 2022, 851(Pt 2): 158413
    [33]
    LEU M, HANSER S E, KNICK S T. The human footprint in the west: a large-scale analysis of anthropogenic impacts[J]. Ecological Applications: a Publication of the Ecological Society of America, 2008, 18(5): 1119−1139 doi: 10.1890/07-0480.1
    [34]
    蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报(自然科学版), 2008(1): 9−16

    CAI Y, XING Y, HU D. On sensitivity analysis[J]. Journal of Beijing Normal University (Natural Science), 2008(1): 9−16
    [35]
    於家, 陈芸, 刘静怡, 等. 基于OAT的空间多准则决策中的权重敏感性分析[J]. 资源科学, 2014, 36(9): 1870−1879

    YU J, CHEN Y, LIU J Y, et al. One-At-A-Time based weight sensitivity analysis in spatial multi-criteria decision making[J]. Resources Science, 2014, 36(9): 1870−1879
    [36]
    RAY-MUKHERJEE J, NIMON K, MUKHERJEE S, et al. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity[J]. Methods in Ecology and Evolution, 2014, 5(4): 320−328 doi: 10.1111/2041-210X.12166
    [37]
    National Aeronautics and Space Administration. NASADEM: Creating a new NASA digital elevation model and associated products[DB/OL]. (2020-02-18) [2024-04-30]. https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem
    [38]
    Center for International Earth Science Information Network - CIESIN - Columbia University, and Information Technology Outreach Services - ITOS - University of Georgia. Global Roads Open Access Data Set, Version 1 (gROADSv1)[DB/OL]. New York: NASA Socioeconomic Data and Applications Center (SEDAC). (2018-05-05) [2024-04-30]. https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
    [39]
    徐新良. 基于DEM提取的中国流域、河网数据集[DB/OL]. 北京: 资源环境科学数据注册与出版系统. (2018-06-01) [2024-04-30]. https: //www. resdc. cn/DOI/DOI. aspx?DOIID=44

    XU X L. China Watershed and River Network Dataset Extracted from DEM[DB/OL]. Beijing: Resource and Environmental Science Data Platform. (2018-06-01) [2024-04-30]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=44
    [40]
    邱玉宝. 全球河湖矢量数据集(2010)[DB/OL]. 北京: 国家青藏高原数据中心. (2021-04-20) [2024-04-30]. https://data.tpdc.ac.cn/zh-hans/data/66145a93-42c8-41cc-8b0a-12f2b7e5d948

    QIU Y B. Global river and lake vector dataset (2010)[DB/OL]. Beijing: National Tibetan Plateau/Third Pole Environment Data Center. (2021-04-20) [2024-04-30]. https://data.tpdc.ac.cn/zh-hans/data/66145a93-42c8-41cc-8b0a-12f2b7e5d948
    [41]
    HE C, LIU Z, XU M, et al. Dataset of urban built-up area in China (1992−2020) V1.0[DB/OL]. Beijing: National Tibetan Plateau / Third Pole Environment Data Center. (2022−10−19) [2024−04−30]. https://cstr.cn/18406.11.HumanNat.tpdc.272851
    [42]
    CHEN Y, JIN F J, LU Y Q, et al. Development history and accessibility evolution of land transportation network in Beijing-Tianjin-Hebei Region over the past century[J]. Journal of Geographical Sciences, 2018, 28(10): 1500−1518 doi: 10.1007/s11442-018-1558-x
    [43]
    刘超, 许月卿, 卢新海. 生态脆弱贫困区土地利用多功能权衡/协同格局演变与优化分区−以张家口市为例[J]. 经济地理, 2021, 41(1): 181−190

    LIU C, XU Y Q, LU X H. Spatio-temporal evolution and optimization regionalization of trade-off and synergy of land use functions in ecologically fragile and poverty areas: a case study of Zhangjiakou City[J]. Economic Geography, 2021, 41(1): 181−190
    [44]
    李皓, 赵友, 薛倩楠, 等. 张家口市生态系统服务权衡与协同分区优化管理[J]. 陆地生态系统与保护学报, 2023, 3(6): 10−22 doi: 10.12356/j.2096-8884.2023-0068

    LI H, ZHAO Y, XUE Q N, et al. Optimal management of zoning for tradeoffs and synergies between ecosystem services in Zhangjiakou[J]. Terrestrial Ecosystem and Conservation, 2023, 3(6): 10−22 doi: 10.12356/j.2096-8884.2023-0068
    [45]
    张家口市人民政府. 张家口市”十四五”现代综合交通运输体系发展规划[EB/OL]. (2022-10-06) [2024-04-30]. https://www.zjk.gov.cn/content/gzbs/193061.html

    Zhangjiakou People's Government. Official English translation of the Plan for the Development of Modern Comprehensive Transportation System in Zhangjiakou City during the 14th Five-Year Plan Period[EB/OL]. (2022−10−06) [2024-04-30]. https://www.zjk.gov.cn/content/gzbs/193061.html
    [46]
    栾卓然, 田晓华, 吕凤军, 等. 基于遥感张家口坝上地区1980—2019年草地变化趋势与影响因素分析[J]. 河北地质大学学报, 2022, 45(4): 73−79

    LUAN Z R, TIAN X H, LV F J, et al. Analysis of grassland change trend and influencing factors in Zhangjiakou Plateau from1980 to 2019 based on remote sensing[J]. Journal of Hebei GEO University, 2022, 45(4): 73−79

Catalog

    Figures(7)  /  Tables(5)

    Article Metrics

    Article views (20) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return