Citation: | LI Mengjie, ZHANG Manyin, CUI Lijuan, WANG Henian, GUO Ziliang, LI Wei, WEI Yuanyun, YANG Si, LONG Songyuan. Inversion of Hg content in reed leaf using continuous wavelet transformation and random forest[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1730-1738. DOI: 10.13930/j.cnki.cjea.180131 |
[1] |
KEMPER T, SOMMER S. Maping and monitoring of residual heavy metal contamination and acidification risk after the Aznalcollar mining accident (Andalusia, Spain) using field and airborne hyperspectral data[C]//Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy. Herrsching, 2003: 333-343
|
[2] |
REN H Y, ZHUANG D F, PAN J J, et al. Hyper-spectral remote sensing to monitor vegetation stress[J]. Journal of Soils and Sediments, 2008, 8(5):323-326 doi: 10.1007/s11368-008-0030-4
|
[3] |
SLONECKER T, HAACK B, PRICE S. Spectroscopic analysis of arsenic uptake in Pteris ferns[J]. Remote Sensing, 2009, 1(4):644-675 doi: 10.3390/rs1040644
|
[4] |
陈圣波, 周超, 王晋年.黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究[J].光谱学与光谱分析, 2012, 32(5):1310-1315 doi: 10.3964/j.issn.1000-0593(2012)05-1310-06
CHEN S B, ZHOU C, WANG J N. Vegetation stress spectra and their relations with the contents of metal elements within the plant leaves in metal mines in Heilongjiang[J]. Spectroscopy and Spectral Analysis, 2012, 32(5):1310-1315 doi: 10.3964/j.issn.1000-0593(2012)05-1310-06
|
[5] |
DE OLIVEIRA M T G, ROLIM S B A, DE MELLO-FARIAS P C, et al. Industrial pollution of environmental compartments in the Sinos River Valley, RS, Brazil:Geochemical-biogeochemical characterization and remote sensing[J]. Water, Air, and Soil Pollution, 2008, 192(1/4):183-198 doi: 10.1007/s11270-008-9645-8
|
[6] |
顾艳文, 李帅, 高伟, 等.基于光谱参数对小白菜叶片镉含量的高光谱估算[J].生态学报, 2015, 35(13):4445-4453 http://d.old.wanfangdata.com.cn/Periodical/stxb201513021
GU Y W, LI S, GAO W, et al. Hyperspectral estimation of the cadmium content in leaves of Brassica rapa chinesis based on the spectral parameters[J]. Acta Ecologica Sinica, 2015, 35(13):4445-4453 http://d.old.wanfangdata.com.cn/Periodical/stxb201513021
|
[7] |
史钢强, 杨可明, 孙阳阳, 等.玉米叶片光谱红边位置的铜胁迫响应与污染监测[J].湖北农业科学, 2015, 54(13):3234-3239 http://d.old.wanfangdata.com.cn/Periodical/hbnykx201513043
SHI G Q, YANG K M, SUN Y Y, et al. Spectral red edge position responding and pollution monitoring of corn leaves stressed by heavy metal copper[J]. Hubei Agricultural Sciences, 2015, 54(13):3234-3239 http://d.old.wanfangdata.com.cn/Periodical/hbnykx201513043
|
[8] |
刘美玲, 刘湘南, 李婷, 等.水稻锌污染胁迫的光谱奇异性分析[J].农业工程学报, 2010, 26(3):191-197 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003032
LIU M L, LIU X N, LI T, et al. Analysis of hyperspectral singularity of rice under Zn pollution stress[J]. Transactions of the CSAE, 2010, 26(3):191-197 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201003032
|
[9] |
LIU M L, LIU X N, DING W C, et al. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(2):246-255 doi: 10.1016/j.jag.2010.12.006
|
[10] |
邬登巍, 吴昀昭, 马宏瑞.植物污染胁迫遥感监测研究综述[J].遥感技术与应用, 2009, 24(2):238-245 http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200902019
WU D W, WU Y Z, MA H R. Review on remote sensing monitoring on contaminated plant[J]. Remote Sensing Technology and Application, 2009, 24(2):238-245 http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200902019
|
[11] |
曹仕, 刘湘南, 刘清俊.利用独立变量分析与高光谱植被指数模型监测成熟期水稻中砷污染[J].农业环境科学学报, 2010, 29(5):881-886 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201005011
CAO S, LIU X N, LIU Q J. Monitor arsenic contamination in mature rice by the model based on the independent component analysis and hyperspectral vegetation indices[J]. Journal of Agro-Environment Science, 2010, 29(5):881-886 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201005011
|
[12] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200803006
|
[13] |
李蜜, 刘湘南, 刘美玲.基于模糊神经网络的水稻农田重金属污染水平高光谱预测模型[J].环境科学学报, 2010, 30(10):2108-2115 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201010027
LI M, LIU X N, LIU M L. Fuzzy neural network model for predicting stress levels in rice fields polluted with heavy metals using hyperspectral data[J]. Acta Scientiae Circumstantiae, 2010, 30(10):2108-2115 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201010027
|
[14] |
张龙, 潘家荣, 朱诚.基于近红外光谱的重金属汞、镉和铅污染水稻叶片鉴别[J].浙江大学学报:农业与生命科学版, 2013, 39(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201301007
ZHANG L, PAN J R, ZHU C. Discrimination of mercury, cadmium and lead polluted rice leaves based on near infrared spectroscopy technology[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2013, 39(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/zjdxxb-nyysm201301007
|
[15] |
许吉仁, 董霁红, 杨源譞, 等.基于支持向量机的矿区复垦农田土壤-小麦镉含量高光谱估算[J].光子学报, 2014, 43(5):102-109 http://d.old.wanfangdata.com.cn/Periodical/gzxb201405018
XU J R, DONG Q H, YANG Y H, et al. Support vector machine model for predicting the cadmium concentration of soil-wheat system in mine reclamation farmland using hyperspectral data[J]. Acta Photonica Sinica, 2014, 43(5):102-109 http://d.old.wanfangdata.com.cn/Periodical/gzxb201405018
|
[16] |
于雷, 洪永胜, 周勇, 等.连续小波变换高光谱数据的土壤有机质含量反演模型构建[J].光谱学与光谱分析, 2016, 36(5):1428-1433 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201605032
YU L, HONG Y S, ZHOU Y, et al. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation[J]. Spectroscopy and Spectral Analysis, 2016, 36(5):1428-1433 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201605032
|
[17] |
李旭青, 刘湘南, 刘美玲, 等.水稻冠层氮素含量光谱反演的随机森林算法及区域应用[J].遥感学报, 2014, 18(4):923-945 http://d.old.wanfangdata.com.cn/Periodical/ygxb201404014
LI X Q, LIU X N, LIU M L, et al. Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice[J]. Journal of Remote Sensing, 2014, 18(4):923-945 http://d.old.wanfangdata.com.cn/Periodical/ygxb201404014
|
[18] |
郑伟, 冯新斌, 李广辉, 等.硝酸水浴消解-冷原子荧光光谱法测定植物中的总汞[J].矿物岩石地球化学通报, 2006, 25(3):285-287 doi: 10.3969/j.issn.1007-2802.2006.03.012
ZHENG W, FENG X B, LI G H, et al. Determination of total mercury in plants by HNO3 digestion in the water bath coupled with cold vapor atomic fluorescence spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3):285-287 doi: 10.3969/j.issn.1007-2802.2006.03.012
|
[19] |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA G A, et al. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation[J]. Remote Sensing of Environment, 2010, 114(4):899-910 doi: 10.1016/j.rse.2009.12.005
|
[20] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32 doi: 10.1023/A:1010933404324
|
[21] |
LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 23(2/3):18-22 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d88a3126c226d093928dfa8c1306f92f
|
[22] |
ZHANG J C, YUAN L, PU R L, et al. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat[J]. Computers and Electronics in Agriculture, 2014, 100:79-87 doi: 10.1016/j.compag.2013.11.001
|
[23] |
STOBART A K, GRIFFITHS W T, AMEEN-BUKHARI I, et al. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Physiologia Plantarum, 1985, 63(3):293-298 doi: 10.1111/ppl.1985.63.issue-3
|
[24] |
郁达, 沈宗根, 张恒泽, 等.汞对萝卜种子发芽及幼苗某些生理特性的影响[J].西北植物学报, 2004, 24(2):231-236 doi: 10.3321/j.issn:1000-4025.2004.02.008
YU D, SHEN Z G, ZHANG H Z, et al. Effects on some physiological characters of seedling and germination of radish seeds after treated with Hg2+[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(2):231-236 doi: 10.3321/j.issn:1000-4025.2004.02.008
|
[25] |
GUPTA P, JAIN M, SARANGTHEM J, et al. Inhibition of 5-aminolevulinic acid dehydratase by mercury in excised greening maize leaf segments[J]. Plant Physiology and Biochemstry, 2013, 62:63-69 doi: 10.1016/j.plaphy.2012.10.008
|
[26] |
宋开山, 张柏, 王宗明, 等.小波分析在大豆叶绿素含量高光谱反演中的应用[J].中国农学通报, 2006, 22(9):101-108 doi: 10.3969/j.issn.1000-6850.2006.09.026
SONG K S, ZHANG B, WANG Z M, et al. Application of wavelet transformation in in-situ measured hyperspectral data for soybean LAI estimation[J]. Chinese Agricultural Science Bulletin, 2006, 22(9):101-108 doi: 10.3969/j.issn.1000-6850.2006.09.026
|
[27] |
宋开山, 张柏, 王宗明, 等.基于小波分析的大豆叶绿素a含量高光谱反演模型[J].植物生态学报, 2008, 32(1):152-160 doi: 10.3773/j.issn.1005-264x.2008.01.017
SONG K S, ZHANG B, WANG Z M, et al. Soybean chlorophyll a concentration estimation models based on wavelet-transformed, in situ collected, canopy hyperspectral data[J]. Journal of Plant Ecology, 2008, 32(1):152-160 doi: 10.3773/j.issn.1005-264x.2008.01.017
|
[28] |
梁栋, 杨勤英, 黄文江, 等.基于小波变换与支持向量机回归的冬小麦叶面积指数估算[J].红外与激光工程, 2015, 44(1):335-340 doi: 10.3969/j.issn.1007-2276.2015.01.057
LIANG D, YANG Q Y, HUANG W J, et al. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat[J]. Infrared and Laser Engineering, 2015, 44(1):335-340 doi: 10.3969/j.issn.1007-2276.2015.01.057
|
[29] |
方圣辉, 乐源, 梁琦.基于连续小波分析的混合植被叶绿素反演[J].武汉大学学报:信息科学版, 2015, 40(3):296-302 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201503002
FANG S H, LE Y, LIANG Q. Retrieval of chlorophyll content using continuous wavelet analysis across a range of vegetation species[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):296-302 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201503002
|
[30] |
CHENG T, RIVARD B, SÁNCHEZ-AZOFEIFA A. Spectroscopic determination of leaf water content using continuous wavelet analysis[J]. Remote Sensing of Environment, 2011, 115(2):659-670 doi: 10.1016/j.rse.2010.11.001
|
[31] |
BLACKBURN G A. Wavelet decomposition of hyperspectral data:A novel approach to quantifying pigment concentrations in vegetation[J]. International Journal of Remote Sensing, 2007, 28(12):2831-2855 doi: 10.1080/01431160600928625
|
[32] |
BLACKBURN G A, FERWERDA J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis[J]. Remote Sensing of Environment, 2008, 112(4):1614-1632 doi: 10.1016/j.rse.2007.08.005
|
[33] |
孙少波, 杜华强, 李平衡, 等.基于小波变换的毛竹叶片净光合速率高光谱遥感反演[J].应用生态学报, 2016, 27(1):49-58 http://d.old.wanfangdata.com.cn/Periodical/yystxb201601007
SUN S B, DU H Q, LI P H, et al. Retrieval of leaf net photosynthetic rate of moso bamboo forests using hyperspectral remote sensing based on wavelet transform[J]. Chinese Journal of Applied Ecology, 2016, 27(1):49-58 http://d.old.wanfangdata.com.cn/Periodical/yystxb201601007
|
[34] |
王云飞, 庞勇, 舒清态.基于随机森林算法的橡胶林地上生物量遥感反演研究——以景洪市为例[J].西南林业大学学报, 2013, 33(6):38-45 doi: 10.3969/j.issn.2095-1914.2013.06.007
WANG Y F, PANG Y, SHU Q T. Counter-Estimation on aboveground biomass of Hevea brasiliensis plantation by remote sensing with random forest algorithm-A case study of Jinghong[J]. Journal of Southwest Forestry University, 2013, 33(6):38-45 doi: 10.3969/j.issn.2095-1914.2013.06.007
|
[35] |
程立真, 朱西存, 高璐璐, 等.基于随机森林模型的苹果叶片磷素含量高光谱估测[J].果树学报, 2016, 33(10):1219-1229 http://cdmd.cnki.com.cn/Article/CDMD-10434-1017077332.htm
CHENG L Z, ZHU X C, GAO L L, et al. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model[J]. Journal of Fruit Science, 2016, 33(10):1219-1229 http://cdmd.cnki.com.cn/Article/CDMD-10434-1017077332.htm
|
[36] |
高振东.基于水稻叶绿素含量变化的重金属污染胁迫遥感分析与评价[D].长春: 东北师范大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10200-1015418062.htm
GAO Z D. Analysis and evaluation of heavy-metal pollution stress based on chlorophyll content of rice using hyperspectral data[D]. Changchun: Northeast Normal University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10200-1015418062.htm
|