Volume 29 Issue 3
Feb.  2021
Turn off MathJax
Article Contents
YIN Shilin, ZHANG Jianhua, LI Xingyue, TANG Tian, WANG Xie. Differentiation in the bacterial community structure of mulberry leaf surfaces in the canopy where mulberry ring rot disease occurs[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 520-530. DOI: 10.13930/j.cnki.cjea.200542
Citation: YIN Shilin, ZHANG Jianhua, LI Xingyue, TANG Tian, WANG Xie. Differentiation in the bacterial community structure of mulberry leaf surfaces in the canopy where mulberry ring rot disease occurs[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 520-530. DOI: 10.13930/j.cnki.cjea.200542

Differentiation in the bacterial community structure of mulberry leaf surfaces in the canopy where mulberry ring rot disease occurs

Funds: 

the Special Fund for the Industrial System Construction of Modern Agriculture of China CARS-18

More Information
  • Corresponding author:

    WANG Xie, E-mail: wangxiechangde@hotmail.com

  • Received Date: July 05, 2020
  • Accepted Date: September 14, 2020
  • Available Online: May 10, 2021
  • To identify the antagonistic bacteria of Gonatophragmium, this study investigated variations in the diversity, structure, and function of phylloplane microorganisms in the mulberry ring rot disease areas of mulberry canopy. Using high-throughput sequencing technology, we analyzed the relative abundance of bacteria on the upper and lower surfaces of the upper and lower leaves in the canopy. The results showed that 1) the Shannon index in upper canopy was 1.26 times of that in the lower canopy, and the upper surface of leaves was 1.49 times of that in the lower surface. 2) The dominant genera in the lower surface of a leaf in the lower canopy (LB) and the lower surface of a leaf in the upper canopy (UB) were the genus Pantoea, with relative abundances of 38.04% and 25.31%, respectively. In the upper surface of a leaf in the lower canopy (LS), it was Serratia and the upper surface of a leaf in the upper canopy (US) was Stenotrophomonas, with relative abundances of 18.0% and 23.73%, respectively. 3) The transport and metabolism of carbohydrates and amino acids of bacteria in the lower canopy leaves were stronger than those in the upper canopy leaves; however, lipid metabolism and transport were weaker in the lower canopy leaves. The cell wall biogenesis function of bacteria on the upper surface of leaf in upper canopy was stronger than that on the lower surface, whereas the amino acid transport and metabolism functions were weaker on the upper surface. The biosynthesis, transport, and catabolism of secondary metabolites, lipid transport, and the metabolism of bacteria on the upper surface of lower canopy leaves were stronger than those on the lower surface, but cell movement was weaker on the upper surface. The relative abundances of Bacillus, Asticcacaulis, and Phenylobacterium were significantly negatively related to the relative abundance of pathogens (P < 0.05); the most significant correlation was for Bacillus (-0.87). These results indicate significant differences in the diversity, structure, and function of bacterial communities on the upper and lower surfaces of mulberry leaves in the canopy, which will assist further research on the biological control of mulberry ring rot disease.
  • loading
  • [1]
    LINDOW S E, BRANDL M T. Microbiology of the phyllosphere[J]. Applied and Environmental Microbiology, 2003, 69(4): 1875-1883 doi: 10.1128/AEM.69.4.1875-1883.2003
    [2]
    CORDIER T, ROBIN C, CAPDEVIELLE X, et al. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient[J]. New Phytologist, 2012, 196(2): 510-519 doi: 10.1111/j.1469-8137.2012.04284.x
    [3]
    UNTERSEHER M, SIDDIQUE A B, BRACHMANN A, et al. Diversity and composition of the leaf mycobiome of beech (Fagus sylvatica) are affected by local habitat conditions and leaf biochemistry[J]. PLoS One, 2016, 11(4): e0152878 doi: 10.1371/journal.pone.0152878
    [4]
    COPELAND J K, YUAN L J, LAYEGHIFARD M, et al. Seasonal community succession of the phyllosphere microbiome[J]. Molecular Plant-Microbe Interactions, 2015, 28(3): 274-285 doi: 10.1094/MPMI-10-14-0331-FI
    [5]
    REDFORD A J, FIERER N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics[J]. Microbial Ecology, 2009, 58(1): 189-198 doi: 10.1007/s00248-009-9495-y
    [6]
    HUNTER P J, HAND P, PINK D, et al. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere[J]. Applied and Environmental Microbiology, 2010, 76(24): 8117-8125 doi: 10.1128/AEM.01321-10
    [7]
    OSONO T, MORI A. Distribution of phyllosphere fungi within the canopy of giant dogwood[J]. Mycoscience, 2004, 45(3): 161-168 doi: 10.1007/S10267-003-0167-3
    [8]
    刘波, 郑雪芳, 孙大光, 等. 柑橘黄龙病株不同部位内生细菌群落结构的多样性[J]. 生态学报, 2011, 31(24): 7325-7342 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201124002.htm

    LIU B, ZHENG X F, SUN D G, et al. The community structure of endophytic bacteria in different parts of huanglongbing-affected citrus plants[J]. Acta Ecologica Sinica, 2011, 31(24): 7325-7342 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201124002.htm
    [9]
    KRIMM U, ABANDA-NKPWATT D, SCHWAB W, et al. Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): Identification of bacterial isolates and analysis of their interaction with leaf surfaces[J]. FEMS Microbiology Ecology, 2005, 53(3): 483-492 doi: 10.1016/j.femsec.2005.02.004
    [10]
    ZHOU Z X, JIANG H, YANG C, et al. Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China[J]. The Journal of Microbiology, 2010, 48(2): 139-145 doi: 10.1007/s12275-010-9185-y
    [11]
    张庆, 朱继熹, 冷怀琼. 苹果叶表附生微生物区系及其有益菌的研究Ⅱ、有益芽孢杆菌的筛选、初步鉴定和电镜观察[J]. 云南农业大学学报, 1997, 12(3): 147-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX703.000.htm

    ZHANG Q, ZHU J X, LENG H Q. A preliminary studies on the epiphytic microorganism of the apple phylloplane and the beneficial microorganism Ⅱ. The sift identification, and scanning elemicroscope observation on the beneficial microorganisms[J]. Journal of Yunnan Agricultural University, 1997, 12(3): 147-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX703.000.htm
    [12]
    罗路云, 张卓, 金德才, 等. 南瓜白粉病不同病情等级下叶际细菌群落结构和多样性[J]. 植物病理学报, 2017, 47(5): 688-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201705016.htm

    LUO L Y, ZHANG Z, JIN D C, et al. Phyllosphere bacterial diversities and community structures on pumkin with different severities of powdery mildew[J]. Acta Phytopathologica Sinica, 2017, 47(5): 688-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201705016.htm
    [13]
    周凌云, 向芬, 刘红艳, 等. 茶白星病不同病情等级下叶际细菌群落多样性与功能预测[J]. 茶叶通讯, 2019, 46(1): 24-31 https://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201901007.htm

    ZHOU L Y, XIANG F, LIU H Y, et al. Function prediction and phyllosphere bacterial diversities on leave with different severities of tea white scab disease[J]. Tea Communication, 2019, 46(1): 24-31 https://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201901007.htm
    [14]
    西山达郎, 秋山文司, 周垂桓. 甲基托布津对桑轮纹病的防治效果[J]. 国外农学蚕业, 1984, (3): 43-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA198403011.htm

    XISHAN D L, QIUSHAN W S, ZHOU C H. Preventive effect of thiophanate-methyl on mulberry ringworm[J]. China Sericulture, 1984, (3): 43-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA198403011.htm
    [15]
    章一鸣, 赵雁, 吴庭观, 等. 桑树轮纹病病原菌的分离鉴定及其生物学特性研究[J]. 西部林业科学, 2014, 43(3): 51-56 doi: 10.3969/j.issn.1672-8246.2014.03.011

    ZHANG Y M, ZHAO Y, WU T G, et al. Isolation and biological characteristics of pathogenic fungus causing ring rot on mulberry leaves[J]. Journal of West China Forestry Science, 2014, 43(3): 51-56 doi: 10.3969/j.issn.1672-8246.2014.03.011
    [16]
    匡英秋, 叶武光, 卢卫芳, 等. 桑轮纹病的化学防治试验初报[J]. 中国蚕业, 2011, 32(4): 17-19 doi: 10.3969/j.issn.1007-0982.2011.04.007

    KUANG Y Q, YE W G, LU W F, et al. Preliminary report on chemical control experiment of ring rot on mulberry leaves[J]. China Sericulture, 2011, 32(4): 17-19 doi: 10.3969/j.issn.1007-0982.2011.04.007
    [17]
    陈田飞, 肖建京, 丰卫忠, 等. 淳安县桑轮斑病发生与防控技术探讨[J]. 中国蚕业, 2015, 36(4): 83-86 doi: 10.3969/j.issn.1007-0982.2015.04.019

    CHEN T F, XIAO J J, FENG W Z, et al. Discussion on occurrence, prevention and control technology of ring rot on mulberry leaves in Chun'an County[J]. China Sericulture, 2015, 36(4): 83-86 doi: 10.3969/j.issn.1007-0982.2015.04.019
    [18]
    白景彰, 周顺心, 雷扶生, 等. 百色蚕区发生的桑轮纹病调查初报[J]. 广西蚕业, 1994, (2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-GXCY402.009.htm

    BAI J Z, ZHOU S X, LEI F S, et al. Preliminary report on investigation of mulberry ring rot in Baise silkworm area[J]. Guangxi Sericulture, 1994, (2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-GXCY402.009.htm
    [19]
    王谢, 唐甜, 张建华. 一种桑轮纹病病叶发病程度的评价指数[J]. 中国蚕业, 2018, 39(4): 19-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201804012.htm

    WANG X, TANG T, ZHANG J H. Evaluation index of disease degree of ring rot on mulberry leaves[J]. China Sericulture, 2018, 39(4): 19-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201804012.htm
    [20]
    王谢, 张建华. 用桑叶最大重叠度指数和桑树冠层内部透光性指数表征桑树冠层特征[J]. 中国蚕业, 2017, 38(4): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201704005.htm

    WANG X, ZHANG J H. Characterization of mulberry canopy with mulberry leaf maximum overlap index and mulberry canopy internal transmittance index[J]. China Sericulture, 2017, 38(4): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201704005.htm
    [21]
    杨广容, 马燕, 蒋宾, 等. 基于16S rDNA测序对茶园土壤细菌群落多样性的研究[J]. 生态学报, 2019, 39(22): 8452-8461 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201922023.htm

    YANG G R, MA Y, JIANG B, et al. Analysis of the bacterial community and diversity in tea plantation soil via 16S rDNA sequencing[J]. Acta Ecologica Sinica, 2019, 39(22): 8452-8461 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201922023.htm
    [22]
    BOKULICH N A, JOSEPH C M L, ALLEN G, et al. Next-generation sequencing reveals significant bacterial diversity of botrytized wine[J]. PLoS One, 2012, 7(5): e36357 doi: 10.1371/journal.pone.0036357
    [23]
    ZHANG J J, KOBERT K, FLOURI T, et al. PEAR: A fast and accurate Illumina Paired-End reAd merger[J]. Bioinformatics, 2014, 30(5): 614-620 doi: 10.1093/bioinformatics/btt593
    [24]
    SCHMIEDER R, EDWARDS R. Quality control and preprocessing of metagenomic datasets[J]. Bioinformatics, 2011, 27(6): 863-864 doi: 10.1093/bioinformatics/btr026
    [25]
    EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461 doi: 10.1093/bioinformatics/btq461
    [26]
    SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541 doi: 10.1128/AEM.01541-09
    [27]
    WANG Q, GARRITY G M, TIEDJE J M, et al. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267 doi: 10.1128/AEM.00062-07
    [28]
    PARKS D H, TYSON G W, HUGENHOLTZ P, et al. STAMP: Statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-3124 doi: 10.1093/bioinformatics/btu494
    [29]
    LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821 doi: 10.1038/nbt.2676
    [30]
    TILMAN D, DOWNING J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461): 363-365 doi: 10.1038/367363a0
    [31]
    BASKIN Y. Ecosystem function of biodiversity: Regarding ideal levels of species richness, the data are few and unclear[J]. BioScience, 1994, 44(10): 657-660 doi: 10.2307/1312507
    [32]
    JOUANNEAU Y, MICOUD J, MEYER C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1[J]. Applied and Environmental Microbiology, 2007, 73(23): 7515-7521 doi: 10.1128/AEM.01519-07
    [33]
    胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3): 431-437 doi: 10.3321/j.issn:1006-687X.2007.03.030

    HU J, HE X H, LI D P, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 431-437 doi: 10.3321/j.issn:1006-687X.2007.03.030
    [34]
    BERG G, BALLIN G. Bacterial antagonists to Verticillium dahliae Kleb[J]. Journal of Phytopathology, 1994, 141(1): 99-110 doi: 10.1111/j.1439-0434.1994.tb01449.x
    [35]
    ADHIKARI T B, JOSEPH C M, YANG G P, et al. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice[J]. Canadian Journal of Microbiology, 2001, 47(10): 916-924 doi: 10.1139/w01-097
    [36]
    CARTER M Q, XUE K, BRANDL M T, et al. Functional metagenomics of Escherichia coli O157: H7 interactions with spinach indigenous microorganisms during biofilm formation[J]. PLoS One, 2012, 7(9): e44186 doi: 10.1371/journal.pone.0044186
    [37]
    DE MAAYER P, CHAN W Y, RUBAGOTTI E, et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts[J]. BMC Genomics, 2014, 15(1): 404 doi: 10.1186/1471-2164-15-404
    [38]
    顾沁, 张昊, 黄海, 等. 一种玉米新型细菌性褐腐病的病原鉴定[J]. 植物保护, 2016, 42(3): 87-90 doi: 10.3969/j.issn.0529-1542.2016.03.014

    GU Q, ZHANG H, HUANG H, et al. Identification of the bacteria causing a new brown stalk rot on maize[J]. Plant Protection, 2016, 42(3): 87-90 doi: 10.3969/j.issn.0529-1542.2016.03.014
    [39]
    AZAD H R, HOLMES G J, COOKSEY D A. A new leaf blotch disease of sudangrass caused by Pantoea ananas and Pantoea stewarii[J]. Plant Disease, 2000, 84(9): 973-979 doi: 10.1094/PDIS.2000.84.9.973
    [40]
    MORALES-VALENZUELA G, SILVA-ROJAS H V, OCHOA-MARTINEZ D, et al. First report of Pantoea agglomerans causing leaf blight and vascular wilt in maize and sorghum in Mexico[J]. Plant Disease, 2007, 91(10): 1365 http://europepmc.org/abstract/AGR/IND44034840
    [41]
    曹慧英. 玉米新病害——细菌干茎腐病的研究[D]. 北京: 中国农业科学院, 2010

    CAO H Y. Bacterial dry stalk rot in maize, a new disease[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010
    [42]
    刘雅琴, 任毓忠, 李国英, 等. 新疆棉花细菌性烂铃病病原菌鉴定[J]. 植物病理学报, 2008, 38(3): 238-243 doi: 10.3321/j.issn:0412-0914.2008.03.003

    LIU Y Q, REN Y Z, LI G Y, et al. Identification of causal agent of bacterial boll rot in cotton from Xinjiang[J]. Acta Phytopathologica Sinica, 2008, 38(3): 238-243 doi: 10.3321/j.issn:0412-0914.2008.03.003
    [43]
    严玉宁, 何红, 叶艺俊, 等. 香蕉叶鞘腐败病病原鉴定[J]. 植物病理学报, 2011, 41(2): 124-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201102004.htm

    YAN Y N, HE H, YE Y J, et al. Identification of the pathogen causing banana sheath rot disease[J]. Acta Phytopathologica Sinica, 2011, 41(2): 124-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201102004.htm
    [44]
    陈杰, 白文文, 陈洁, 等. 桑叶穿孔病病叶表面的微生物分离鉴定和微型害虫调查[J]. 蚕业科学, 2016, 42(6): 979-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201606007.htm

    CHEN J, BAI W W, CHEN J, et al. Isolation and identification of microorganisms on mulberry leaf surface with shot-hole disease and investigation of the tiny pests[J]. Acta Sericologica Sinica, 2016, 42(6): 979-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201606007.htm
    [45]
    戴凡炜, 罗国庆, 王振江, 等. 华南蚕区桑枯萎病病原菌的分离与分子鉴定[J]. 蚕业科学, 2012, 38(6): 981-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201206005.htm

    DAI F W, LUO G Q, WANG Z J, et al. Isolation and molecular identification of the pathogen causing mulberry wilt disease in southern sericultural areas of China[J]. Acta Sericologica Sinica, 2012, 38(6): 981-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201206005.htm
    [46]
    任慧爽, 徐伟芳, 王爱印, 等. 桑树内生细菌多样性及内生拮抗活性菌群的研究[J]. 西南大学学报(自然科学版), 2017, 39(1): 36-45 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201701007.htm

    REN H S, XU W F, WANG A Y, et al. Research on biodiversity of endophytic bacteria and the antagonistic endophytes in mulberry[J]. Journal of Southwest University (Natural Science Edition), 2017, 39(1): 36-45 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201701007.htm
    [47]
    PÉREZ-GARCÍA A, ROMERO D, DE VICENTE A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture[J]. Current opinion in biotechnology, 2011, 22(2): 187-193 doi: 10.1016/j.copbio.2010.12.003
    [48]
    GOND S K, BERGEN M S, TORRES M S, et al. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize[J]. Microbiological Research, 2015, 172: 79-87 doi: 10.1016/j.micres.2014.11.004
    [49]
    王坚, 刁治民, 徐广, 等. 植物内生菌的研究概况及其应用[J]. 青海草业, 2008, 17(1): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-QHCY200801005.htm

    WANG J, DIAO Z M, XU G, et al. Study and application on endophyt[J]. Qinghai Prataculture, 2008, 17(1): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-QHCY200801005.htm
    [50]
    STEIN T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4): 845-857 doi: 10.1111/j.1365-2958.2005.04587.x
    [51]
    王若琳, 徐伟芳, 王飞, 等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201911009.htm

    WANG R L, XU W F, WANG F, et al. Isolation and identification of an antagonistic endophytic bacterium from mulberry for biocontrol against Boeremia exigua[J]. Acta Microbiologica Sinica, 2019, 59(11): 2130-2143 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201911009.htm
    [52]
    王彪, 潘英豪, 侯佳蓝, 等. 一种桑树细菌性病原内生拮抗细菌的筛选、鉴定及其生防活性[J]. 微生物前沿, 2019, 8(3): 110-120 http://www.hanspub.org/journal/paperinformation.aspx?paperid=32077

    WANG B, PAN Y H, HOU J L, et al. Screening, identification of an antagonistic endophyte to pathogens of mulberry bacterial diseases from mulberry leaves and its biocontrol activity[J]. Advances in Microbiology, 2019, 8(3): 110-120 http://www.hanspub.org/journal/paperinformation.aspx?paperid=32077
    [53]
    谢洁, 任慧爽, 唐翠明, 等. 一株桑树内生细菌的鉴定和对桑椹核地杖菌的拮抗作用[J]. 蚕业科学, 2015, 41(5): 815-824 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201505007.htm

    XIE J, REN H S, TANG C M, et al. Identification of a mulberry endophytic bacterium and its antagonistic activity on Scleromitula shiraiana[J]. Acta Sericologica Sinica, 2015, 41(5): 815-824 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201505007.htm
    [54]
    方翔, 徐伟芳, 牛娜, 等. 一株桑树内生拮抗菌的分离、鉴定及发酵条件优化[J]. 微生物学报, 2018, 58(12): 2147-2160 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201812012.htm

    FANG X, XU W F, NIU N, et al. Screening, identification and optimization of fermentation conditions of an antagonistic endophytic bacterium from mulberry[J]. Acta Microbiologica Sinica, 2018, 58(12): 2147-2160 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201812012.htm
    [55]
    朱志贤, 于翠, 李勇, 等. 一株桑椹菌核病生防菌分离鉴定及其拮抗作用分析[J]. 中国森林病虫, 2019, 38(5): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-SLBC201905001.htm

    ZHU Z X, YU C, LI Y, et al. Isolation and identification of an antagonistic bacterium against mulberry fruit sclerotiniosis and analysis of its antagonistic effects[J]. Forest Pest and Disease, 2019, 38(5): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-SLBC201905001.htm
    [56]
    TAYLOR D L, WALTERS W A, LENNON N J, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing[J]. Applied and Environmental Microbiology, 2016, 82(24): 7217-7226 http://europepmc.org/articles/PMC5118932

Catalog

    Figures(1)  /  Tables(6)

    Article Metrics

    Article views (650) PDF downloads (393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return