Volume 29 Issue 6
May  2021
Turn off MathJax
Article Contents
REN Biwu, CHEN Hanyue, ZHANG Liming, NIE Xiangqin, XING Shihe, FAN Xieyu. Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1042-1050. DOI: 10.13930/j.cnki.cjea.200939
Citation: REN Biwu, CHEN Hanyue, ZHANG Liming, NIE Xiangqin, XING Shihe, FAN Xieyu. Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1042-1050. DOI: 10.13930/j.cnki.cjea.200939

Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region

Funds: 

the National Natural Science Foundation of China 41971050

the Science and Technology Planning Project of Fujian Province 2017N5006

the Agricultural Technology Extension Project of the Ministry of Agriculture and Rural Affairs of the People's Republic of China KLD19H01A

the Central Committee Guides Local Science and Technology Development Projects of China 2018L3013

the Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University KFA18106A

More Information
  • Corresponding author:

    CHEN Hanyue, E-mail: Chenhanyue.420@163.com

  • Received Date: 2020-11-21
  • Accepted Date: 2021-01-19
  • Available Online: 2021-06-21
  • Issue Publish Date: 2021-05-31
  • Soil organic carbon (SOC) is a key indicator of soil quality and ecosystem health. At present, machine learning (ML) models for predicting soil properties based on environmental variables are increasingly popular; however, the performance of different ML algorithms in predicting and mapping SOC, especially at high spatial resolutions, have not been compared. This study aimed to develop, evaluate, and compare the performance of Support Vector Machine (SVM), Random Forest (RF), and Ordinary Kriging (OK) models for predicting and mapping the SOC contents in the northeast of Fujian Province. Remote sensing vegetation indices were derived from Sentinel-2 image data with a spatial resolution of 10 m. These vegetation indices, along with selected terrain and climate factors, were adopted as environmental variables to map SOC using the SVM and RF models. The results showed that the performance of the RF model (RMSE[root-mean-square error]=2.004, r=0.897) was better than that of the OK model (RMSE=4.571, r=0.623) and explained most of the SOC spatial heterogeneity. The SVM model had the poorest prediction accuracy (RMSE=5.190, r=0.431). SOC mapped from the three models had similar spatial patterns, with an increasing SOC gradient from east to west and from south to north of the study area. SOC in the farmlands predicted with the RF model varied in the range of 15.33±4.07 g·kg-1. Elevation and rainfall were the most important variables for the RF and SVM models, respectively, whereas the remote sensing vegetation indices were less important than elevation.
  • loading
  • [1]
    李玲, 张少凯, 吴克宁, 等. 基于土壤系统分类的河南省土壤有机质时空变异[J]. 土壤学报, 2015, 52(5): 979-990 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201505003.htm

    LI L, ZHANG S K, WU K N, et al. Analysis on spatio-temporal variability of soil organic matter in Henan Province based on soil taxonomy[J]. Acta Pedologica Sinica, 2015, 52(5): 979-990 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201505003.htm
    [2]
    FROGBROOK Z L, OLIVER M A. Comparing the spatial predictions of soil organic matter determined by two laboratory methods[J]. Soil Use and Management, 2006, 17(4): 235-244 doi: 10.1111/j.1475-2743.2001.tb00033.x
    [3]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU R K. Analysis Methods of Soil and Agricultural Chemistry[M]. Chinese Agricultural Science and Technology Press, 2000
    [4]
    FORKUOR G, HOUNKPATIN O K L, WELP G, et al. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models[J]. PLoS One, 2017, 12(1): e0170478 doi: 10.1371/journal.pone.0170478
    [5]
    POKHREL R M, KUWANO J, TACHIBANA S. A kriging method of interpolation used to map liquefaction potential over alluvial ground[J]. Engineering Geology, 2013, 152(1): 26-37 doi: 10.1016/j.enggeo.2012.10.003
    [6]
    DAI F Q, ZHOU Q G, LV Z, et al. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau[J]. Ecological Indicators, 2014, 45: 184-194 doi: 10.1016/j.ecolind.2014.04.003
    [7]
    徐尚平, 陶澍, 曹军. 内蒙古土壤pH值、粘粒和有机质含量的空间结构特征[J]. 土壤通报, 2001, 32(4): 145-148 doi: 10.3321/j.issn:0564-3945.2001.04.001

    XU S P, TAO S, CAO J. Spatial structure pattern of soil pH, clay and organic matter contents in the Inner Mongolia area[J]. Chinese Journal of Soil Science, 2001, 32(4): 145-148 doi: 10.3321/j.issn:0564-3945.2001.04.001
    [8]
    LARK R M. Soil-landform relationships at within-field scales: an investigation using continuous classification[J]. Geoderma, 1999, 92(3/4): 141-165 http://www.sciencedirect.com/science/article/pii/S0016706199000282
    [9]
    王茵茵, 齐雁冰, 陈洋, 等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报, 2016, 53(2): 342-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602007.htm

    WANG Y Y, QI Y B, CHEN Y, et al. Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J]. Acta Pedologica Sinica, 2016, 53(2): 342-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602007.htm
    [10]
    丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm

    DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm
    [11]
    WIESMEIER M, BARTHOLD F, BLANK B, et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem[J]. Plant and Soil, 2011, 340(1/2): 7-24 doi: 10.1007/s11104-010-0425-z
    [12]
    SREENIVAS K, DADHWAL V K, KUMAR S, et al. Digital mapping of soil organic and inorganic carbon status in India[J]. Geoderma, 2016, 269: 160-173 doi: 10.1016/j.geoderma.2016.02.002
    [13]
    EMADI M, TAGHIZADEH-MEHRJARDI R, CHERATI A, et al. Predicting and mapping of soil organic carbon using machine learning algorithms in northern Iran[J]. Remote Sensing, 2020, 12(14): 2234 doi: 10.3390/rs12142234
    [14]
    WERE K, BUI D T, DICK Ø B, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape[J]. Ecological Indicators, 2015, 52: 394-403 doi: 10.1016/j.ecolind.2014.12.028
    [15]
    SIEWERT M B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment[J]. Biogeosciences, 2018 http://smartsearch.nstl.gov.cn/paper_detail.html?id=58087218617a7963360da722381f4fed
    [16]
    杨煜岑, 杨联安, 任丽, 等. 基于随机森林的农耕区土壤有机质空间分布预测[J]. 浙江农业学报, 2018, 30(7): 1211-1217 doi: 10.3969/j.issn.1004-1524.2018.07.15

    YANG Y C, YANG L A, REN L, et al. Prediction for spatial distribution of soil organic matter based on random forest model in cultivated area[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1211-1217 doi: 10.3969/j.issn.1004-1524.2018.07.15
    [17]
    任丽, 杨联安, 王辉, 等. 基于随机森林的苹果区土壤有机质空间预测[J]. 干旱区资源与环境, 2018, 32(8): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201808021.htm

    REN L, YANG L A, WANG H, et al. Spatial prediction of soil organic matter in apple region based on random forest[J]. Journal of Arid Land Resources and Environment, 2018, 32(8): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201808021.htm
    [18]
    JOHNSON R W. An introduction to the bootstrap[J]. Teaching Statistics, 2001, 23(2): 49-54 doi: 10.1111/1467-9639.00050
    [19]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
    [20]
    Boser B E. A training algorithm for optimal margin classifiers[J]. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 2008, 5: 144-152 http://portal.acm.org/citation.cfm?id=130401
    [21]
    李永娜. 基于支持向量机的回归预测综述[J]. 信息通信, 2014, 27(11): 32-33 doi: 10.3969/j.issn.1673-1131.2014.11.017

    LI Y N. A review of regression prediction based on support vector machines[J]. Information & Communications, 2014, 27(11): 32-33 doi: 10.3969/j.issn.1673-1131.2014.11.017
    [22]
    张偲敏, 汪艳, 郭天太, 等. 支持向量回归机的参数择优算法[J]. 中国科技信息, 2015, (Z3): 26-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK2015Z3013.htm

    ZHANG S M, WANG Y, GUO T T, et al. Parameter selection algorithm of support vector regression machine[J]. China Science and Technology Information, 2015, (Z3): 26-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK2015Z3013.htm
    [23]
    马冉. 流域尺度土壤特性空间分布及影响因素研究——以三峡库区草堂河流域为例[D]. 重庆: 西南大学, 2019

    MA R. Spatial distribution and influential factors of soil properties at A watershed scale—A case study on Caotang River Basin in the Three Gorges Reservoir Area[D]. Chongqing: Southwest University, 2019
    [24]
    GARCIA-PAUSAS J, CASALS P, CAMARERO L, et al. Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography[J]. Biogeochemistry, 2007, 82(3): 279-289 doi: 10.1007/s10533-007-9071-9
    [25]
    MZA B, SA A, AJ C, et al. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran[J]. Geoderma, 2019, 338: 445-452 doi: 10.1016/j.geoderma.2018.09.006
    [26]
    张厚喜, 林丛, 程浩, 等. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J]. 土壤, 2019, 51(4): 821-828 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201904025.htm

    ZHANG H X, LIN C, CHENG H, et al. Variation of soil organic carbon content of moso bamboo forest along altitudinal gradient in Wuyi Mountain in China[J]. Soils, 2019, 51(4): 821-828 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201904025.htm
    [27]
    钟兆全. 闽北毛竹林土壤有机碳含量特征及其影响因素[J]. 福建林业科技, 2017, 44(2): 36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-FJLK201702008.htm

    ZHONG Z Q. Characteristics of soil organic carbon content and its influencing factors of Phyllostachys edulis forest in north of Fujian Province[J]. Journal of Fujian Forestry Science and Technology, 2017, 44(2): 36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-FJLK201702008.htm
    [28]
    GUO P T, LI M F, LUO W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach[J]. Geoderma, 2015, 237/238: 49-59 http://smartsearch.nstl.gov.cn/paper_detail.html?id=a2653895c12bd4ce93ed2a95a1b12815
    [29]
    齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报, 2017, 32(6): 1074-1086 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201706016.htm

    QI Y B, WANG Y Y, CHEN Y, et al. Soil organic matter prediction based on remote sensing data and random forest model in Shaanxi Province[J]. Journal of Natural Resources, 2017, 32(6): 1074-1086 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201706016.htm
    [30]
    卢宏亮, 赵明松, 刘斌寅, 等. 基于随机森林模型的安徽省土壤属性空间分布预测[J]. 土壤, 2019, 51(3): 602-608 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201903025.htm

    LU H L, ZHAO M S, LIU B Y, et al. Spatial prediction of soil properties based on random forest model in Anhui Province[J]. Soils, 2019, 51(3): 602-608 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201903025.htm
    [31]
    BARITZ R, SEUFERT G, MONTANARELLA L, et al. Carbon concentrations and stocks in forest soils of Europe[J]. Forest Ecology and Management, 2010, 260(3): 262-277 doi: 10.1016/j.foreco.2010.03.025
    [32]
    MEIER I C, LEUSCHNER C. Variation of soil and biomass carbon pools in beech forests across a precipitation gradient[J]. Global Change Biology, 2010, 16(3): 1035-1045 doi: 10.1111/j.1365-2486.2009.02074.x
    [33]
    WIESMEIER M, PRIETZEL J, BARTHOLD F, et al. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—Implications for carbon sequestration[J]. Forest Ecology and Management, 2013, 295: 162-172 doi: 10.1016/j.foreco.2013.01.025
    [34]
    SHI Y, BAUMANN F, MA Y, et al. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 2012, 9(6): 2287-2299 doi: 10.5194/bg-9-2287-2012
    [35]
    杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705001.htm

    YANG F, XU Y, CUI Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047-1056 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705001.htm
    [36]
    MCBRATNEY A B, ODEH I O A, BISHOP T F A, et al. An overview of pedometric techniques for use in soil survey[J]. Geoderma, 2000, 97(3/4): 293-327 http://www.sciencedirect.com/science/article/pii/S0016706100000434
    [37]
    尹萍. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 农业与技术, 2012, 32(9): 190 https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS201209152.htm

    YIN P. Effects of climate change and human activities on soil organic carbon reserves in China[J]. Agriculture and Technology, 2012, 32(9): 190 https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS201209152.htm
    [38]
    田慎重, 宁堂原, 王瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J]. 应用生态学报, 2010, 21(2): 373-378 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002019.htm

    TIAN S C, NING T Y, WANG Y, et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 373-378 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002019.htm
    [39]
    BOU KHEIR R, GREVE M H, BØCHER P K, et al. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark[J]. Journal of Environmental Management, 2010, 91(5): 1150-1160 http://www.cabdirect.org/abstracts/20103130760.html
    [40]
    WALIA N K, KALRA P, MEHROTRA D. Prediction of carbon stock available in forest using naive Bayes approach[C]//2016 Second International Conference on Computational Intelligence & Communication Technology (CICT). Ghaziabad, India. IEEE, 2016: 275-279
    [41]
    LI Q Q, YUE T X, WANG C Q, et al. Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach[J]. CATENA, 2013, 104: 210-218 http://www.sciencedirect.com/science/article/pii/s0341816212002494

Catalog

    Figures(5)  /  Tables(2)

    Article Metrics

    Article views (1067) PDF downloads (148) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return