Citation: | REN Biwu, CHEN Hanyue, ZHANG Liming, NIE Xiangqin, XING Shihe, FAN Xieyu. Comparison of machine learning for predicting and mapping soil organic carbon in cultivated land in a subtropical complex geomorphic region[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1042-1050. DOI: 10.13930/j.cnki.cjea.200939 |
[1] |
李玲, 张少凯, 吴克宁, 等. 基于土壤系统分类的河南省土壤有机质时空变异[J]. 土壤学报, 2015, 52(5): 979-990 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201505003.htm
LI L, ZHANG S K, WU K N, et al. Analysis on spatio-temporal variability of soil organic matter in Henan Province based on soil taxonomy[J]. Acta Pedologica Sinica, 2015, 52(5): 979-990 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201505003.htm
|
[2] |
FROGBROOK Z L, OLIVER M A. Comparing the spatial predictions of soil organic matter determined by two laboratory methods[J]. Soil Use and Management, 2006, 17(4): 235-244 doi: 10.1111/j.1475-2743.2001.tb00033.x
|
[3] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000
LU R K. Analysis Methods of Soil and Agricultural Chemistry[M]. Chinese Agricultural Science and Technology Press, 2000
|
[4] |
FORKUOR G, HOUNKPATIN O K L, WELP G, et al. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models[J]. PLoS One, 2017, 12(1): e0170478 doi: 10.1371/journal.pone.0170478
|
[5] |
POKHREL R M, KUWANO J, TACHIBANA S. A kriging method of interpolation used to map liquefaction potential over alluvial ground[J]. Engineering Geology, 2013, 152(1): 26-37 doi: 10.1016/j.enggeo.2012.10.003
|
[6] |
DAI F Q, ZHOU Q G, LV Z, et al. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau[J]. Ecological Indicators, 2014, 45: 184-194 doi: 10.1016/j.ecolind.2014.04.003
|
[7] |
徐尚平, 陶澍, 曹军. 内蒙古土壤pH值、粘粒和有机质含量的空间结构特征[J]. 土壤通报, 2001, 32(4): 145-148 doi: 10.3321/j.issn:0564-3945.2001.04.001
XU S P, TAO S, CAO J. Spatial structure pattern of soil pH, clay and organic matter contents in the Inner Mongolia area[J]. Chinese Journal of Soil Science, 2001, 32(4): 145-148 doi: 10.3321/j.issn:0564-3945.2001.04.001
|
[8] |
LARK R M. Soil-landform relationships at within-field scales: an investigation using continuous classification[J]. Geoderma, 1999, 92(3/4): 141-165 http://www.sciencedirect.com/science/article/pii/S0016706199000282
|
[9] |
王茵茵, 齐雁冰, 陈洋, 等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报, 2016, 53(2): 342-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602007.htm
WANG Y Y, QI Y B, CHEN Y, et al. Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J]. Acta Pedologica Sinica, 2016, 53(2): 342-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602007.htm
|
[10] |
丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm
DING S F, QI B J, TAN H Y. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201101003.htm
|
[11] |
WIESMEIER M, BARTHOLD F, BLANK B, et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem[J]. Plant and Soil, 2011, 340(1/2): 7-24 doi: 10.1007/s11104-010-0425-z
|
[12] |
SREENIVAS K, DADHWAL V K, KUMAR S, et al. Digital mapping of soil organic and inorganic carbon status in India[J]. Geoderma, 2016, 269: 160-173 doi: 10.1016/j.geoderma.2016.02.002
|
[13] |
EMADI M, TAGHIZADEH-MEHRJARDI R, CHERATI A, et al. Predicting and mapping of soil organic carbon using machine learning algorithms in northern Iran[J]. Remote Sensing, 2020, 12(14): 2234 doi: 10.3390/rs12142234
|
[14] |
WERE K, BUI D T, DICK Ø B, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape[J]. Ecological Indicators, 2015, 52: 394-403 doi: 10.1016/j.ecolind.2014.12.028
|
[15] |
SIEWERT M B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment[J]. Biogeosciences, 2018 http://smartsearch.nstl.gov.cn/paper_detail.html?id=58087218617a7963360da722381f4fed
|
[16] |
杨煜岑, 杨联安, 任丽, 等. 基于随机森林的农耕区土壤有机质空间分布预测[J]. 浙江农业学报, 2018, 30(7): 1211-1217 doi: 10.3969/j.issn.1004-1524.2018.07.15
YANG Y C, YANG L A, REN L, et al. Prediction for spatial distribution of soil organic matter based on random forest model in cultivated area[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1211-1217 doi: 10.3969/j.issn.1004-1524.2018.07.15
|
[17] |
任丽, 杨联安, 王辉, 等. 基于随机森林的苹果区土壤有机质空间预测[J]. 干旱区资源与环境, 2018, 32(8): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201808021.htm
REN L, YANG L A, WANG H, et al. Spatial prediction of soil organic matter in apple region based on random forest[J]. Journal of Arid Land Resources and Environment, 2018, 32(8): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201808021.htm
|
[18] |
JOHNSON R W. An introduction to the bootstrap[J]. Teaching Statistics, 2001, 23(2): 49-54 doi: 10.1111/1467-9639.00050
|
[19] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
|
[20] |
Boser B E. A training algorithm for optimal margin classifiers[J]. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 2008, 5: 144-152 http://portal.acm.org/citation.cfm?id=130401
|
[21] |
李永娜. 基于支持向量机的回归预测综述[J]. 信息通信, 2014, 27(11): 32-33 doi: 10.3969/j.issn.1673-1131.2014.11.017
LI Y N. A review of regression prediction based on support vector machines[J]. Information & Communications, 2014, 27(11): 32-33 doi: 10.3969/j.issn.1673-1131.2014.11.017
|
[22] |
张偲敏, 汪艳, 郭天太, 等. 支持向量回归机的参数择优算法[J]. 中国科技信息, 2015, (Z3): 26-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK2015Z3013.htm
ZHANG S M, WANG Y, GUO T T, et al. Parameter selection algorithm of support vector regression machine[J]. China Science and Technology Information, 2015, (Z3): 26-27 https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK2015Z3013.htm
|
[23] |
马冉. 流域尺度土壤特性空间分布及影响因素研究——以三峡库区草堂河流域为例[D]. 重庆: 西南大学, 2019
MA R. Spatial distribution and influential factors of soil properties at A watershed scale—A case study on Caotang River Basin in the Three Gorges Reservoir Area[D]. Chongqing: Southwest University, 2019
|
[24] |
GARCIA-PAUSAS J, CASALS P, CAMARERO L, et al. Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography[J]. Biogeochemistry, 2007, 82(3): 279-289 doi: 10.1007/s10533-007-9071-9
|
[25] |
MZA B, SA A, AJ C, et al. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran[J]. Geoderma, 2019, 338: 445-452 doi: 10.1016/j.geoderma.2018.09.006
|
[26] |
张厚喜, 林丛, 程浩, 等. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J]. 土壤, 2019, 51(4): 821-828 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201904025.htm
ZHANG H X, LIN C, CHENG H, et al. Variation of soil organic carbon content of moso bamboo forest along altitudinal gradient in Wuyi Mountain in China[J]. Soils, 2019, 51(4): 821-828 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201904025.htm
|
[27] |
钟兆全. 闽北毛竹林土壤有机碳含量特征及其影响因素[J]. 福建林业科技, 2017, 44(2): 36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-FJLK201702008.htm
ZHONG Z Q. Characteristics of soil organic carbon content and its influencing factors of Phyllostachys edulis forest in north of Fujian Province[J]. Journal of Fujian Forestry Science and Technology, 2017, 44(2): 36-42 https://www.cnki.com.cn/Article/CJFDTOTAL-FJLK201702008.htm
|
[28] |
GUO P T, LI M F, LUO W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach[J]. Geoderma, 2015, 237/238: 49-59 http://smartsearch.nstl.gov.cn/paper_detail.html?id=a2653895c12bd4ce93ed2a95a1b12815
|
[29] |
齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报, 2017, 32(6): 1074-1086 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201706016.htm
QI Y B, WANG Y Y, CHEN Y, et al. Soil organic matter prediction based on remote sensing data and random forest model in Shaanxi Province[J]. Journal of Natural Resources, 2017, 32(6): 1074-1086 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201706016.htm
|
[30] |
卢宏亮, 赵明松, 刘斌寅, 等. 基于随机森林模型的安徽省土壤属性空间分布预测[J]. 土壤, 2019, 51(3): 602-608 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201903025.htm
LU H L, ZHAO M S, LIU B Y, et al. Spatial prediction of soil properties based on random forest model in Anhui Province[J]. Soils, 2019, 51(3): 602-608 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201903025.htm
|
[31] |
BARITZ R, SEUFERT G, MONTANARELLA L, et al. Carbon concentrations and stocks in forest soils of Europe[J]. Forest Ecology and Management, 2010, 260(3): 262-277 doi: 10.1016/j.foreco.2010.03.025
|
[32] |
MEIER I C, LEUSCHNER C. Variation of soil and biomass carbon pools in beech forests across a precipitation gradient[J]. Global Change Biology, 2010, 16(3): 1035-1045 doi: 10.1111/j.1365-2486.2009.02074.x
|
[33] |
WIESMEIER M, PRIETZEL J, BARTHOLD F, et al. Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—Implications for carbon sequestration[J]. Forest Ecology and Management, 2013, 295: 162-172 doi: 10.1016/j.foreco.2013.01.025
|
[34] |
SHI Y, BAUMANN F, MA Y, et al. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications[J]. Biogeosciences, 2012, 9(6): 2287-2299 doi: 10.5194/bg-9-2287-2012
|
[35] |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5): 1047-1056 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705001.htm
YANG F, XU Y, CUI Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5): 1047-1056 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201705001.htm
|
[36] |
MCBRATNEY A B, ODEH I O A, BISHOP T F A, et al. An overview of pedometric techniques for use in soil survey[J]. Geoderma, 2000, 97(3/4): 293-327 http://www.sciencedirect.com/science/article/pii/S0016706100000434
|
[37] |
尹萍. 气候变化及人类活动对中国土壤有机碳储量的影响[J]. 农业与技术, 2012, 32(9): 190 https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS201209152.htm
YIN P. Effects of climate change and human activities on soil organic carbon reserves in China[J]. Agriculture and Technology, 2012, 32(9): 190 https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS201209152.htm
|
[38] |
田慎重, 宁堂原, 王瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J]. 应用生态学报, 2010, 21(2): 373-378 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002019.htm
TIAN S C, NING T Y, WANG Y, et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 373-378 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002019.htm
|
[39] |
BOU KHEIR R, GREVE M H, BØCHER P K, et al. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark[J]. Journal of Environmental Management, 2010, 91(5): 1150-1160 http://www.cabdirect.org/abstracts/20103130760.html
|
[40] |
WALIA N K, KALRA P, MEHROTRA D. Prediction of carbon stock available in forest using naive Bayes approach[C]//2016 Second International Conference on Computational Intelligence & Communication Technology (CICT). Ghaziabad, India. IEEE, 2016: 275-279
|
[41] |
LI Q Q, YUE T X, WANG C Q, et al. Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach[J]. CATENA, 2013, 104: 210-218 http://www.sciencedirect.com/science/article/pii/s0341816212002494
|