JIANG P, XU F X, ZHANG L, ZHOU X B, ZHU Y C, GUO X Y, LIU M, CHEN L, ZHANG R, XIONG H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691. DOI: 10.13930/j.cnki.cjea.210288
Citation: JIANG P, XU F X, ZHANG L, ZHOU X B, ZHU Y C, GUO X Y, LIU M, CHEN L, ZHANG R, XIONG H. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691. DOI: 10.13930/j.cnki.cjea.210288

Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions

  • The effects of increased plant density with reduced nitrogen (N) application rate on yield formation and nitrogen use efficiency (NUE) of hybrid rice were studied to provide a theoretical basis for optimum nitrogen fertilizer management and plant density under high temperature with high humidity conditions. Field experiments were conducted in Luzhou City from 2018 to 2019. The high yield and high quality hybrid rice variety ‘Nei6you107’ was grown under six combinations of plant density and N application rate: 1) locally recommended combination with a plant density of 16.5×104 hills∙hm−2 and a N rate of 180 kg∙hm−2 (LDNck); 2) combination of a plant density of 16.5×104 hills∙hm−2 and a reduced N rate by 15% (153 kg∙hm−2, LDN−15%); 3) combination of a plant density of 16.5×104 hills∙hm−2 and a reduced N rate by 30% (126 kg∙hm−2, LDN−30%); 4) combination of a increased plant density by about 27% (21.0×104 hills hm−2) and a reduced N rate by 15% (153 kg∙hm−2, HDN−15%); 5) combination of a increased plant density by about 27% (21.0×104 hills∙hm−2) and a reduced N rate by 30% (126 kg∙hm−2 HDN−30%); and 6) combination of a plant density of 16.5×104 hills∙hm−2 and zero N rate (LDN0). The grain yield, yield components, dry matter, N uptake and NUE were measured. The results showed that the grain yield of hybrid rice was significantly affected by different combinations of plant density and N rate (P<0.01). HDN−15% and HDN−30% produced higher grain yields than LDNck by 4.3%−4.9% and 2.3%−3.6%, respectively. The higher grain yields under HDN−15% and HDN−30% were attributed to improvement in spikelets per panicle, grain filling rate, translocation of dry matter accumulated at heading stage (TDMHD), translocation percentage of dry matter accumulated at heading stage (TPDMHD), contribution percentage of pre-anthesis dry matter translocation to grain yield (CPDMTGHD) and harvest index. The LDN−15% and LDN−30% had 2.3%−2.5% and 4.8%−5.0% lower grain yield than LDNck, respectively. The yield gap between LDN−15%, LDN−30% and LDNck was attributed to the difference in effective panicles, total dry matter, dry matter accumulation from heading to maturity, and contribution percentage of dry matter accumulation from heading to maturity stage to grain yield (CPDMGHD-MA). The HDN−15% and HDN−30% had lower nitrogen accumulation from heading to maturity and total N uptake than LDNck, whereas the translocation of N accumulated at heading stage (NTGNHD), translocation percentage of N accumulated at heading stage (TPNHD), contribution percentage of pre-anthesis N accumulation translocation to grain N accumulation (CPNTGNHD), N use efficiency for biomass production (NUEBP), N use efficiency for grain production (NUEGP) and N harvest index under HDN−15% and HDN−30% were higher than those under LDNck. Consequently, HDN−15% and HDN−30% had lower N requirements to produce 100 kg of grain (NRPG) than LDNck by 6.8%−8.4% and 9.0%−9.9%, respectively. HDN−15% enhanced the agronomic efficiency of applied N (AEN) by 36.7%−37.4%, partial factor productivity of applied N (PFPN) by 22.8%−23.5% and recovery efficiency of applied N (REN) by 5.6%−12.0% over LDNck. The HDN−30% produced higher AEN, PFPN and REN than LDNck by 55.5%−60.4%, 46.3%−48.2% and 17.0%−20.0%, respectively. The rational combination of plant density and N rate can improve panicle number per unit area, grain filling, TDMHD, TPDMHD, NTGNHD, TPNHD and harvest index, which further increasing the grain yield and NUE. The optimum combination is plant density of 21.0×104 hills∙hm−2 plus N rate of 126−153 kg∙hm−2 in high temperature with high humidity condition.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return