ZHANG Yu-Ming, HU Chun-Sheng, ZHANG Jia-Bao, DONG Wen-Xu, WANG Yu-Ying, SONG Li-Na. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. DOI: 10.3724/SP.J.1011.2011.00966
Citation: ZHANG Yu-Ming, HU Chun-Sheng, ZHANG Jia-Bao, DONG Wen-Xu, WANG Yu-Ying, SONG Li-Na. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. DOI: 10.3724/SP.J.1011.2011.00966

Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils

More Information
  • Received Date: 2011-04-14
  • Revised Date: 2011-05-19
  • Issue Publish Date: 2011-06-30
  • Climate change is an increasing global challenge. Greenhouse gas emission via anthropogenic processes is the main cause of global warming. CO2, CH4 and N2O are the main greenhouse gases, accounting for ≈80% of greenhouse effect. It is estimated that each year, 5%~20% of CO2, 15%~30% of CH4 and 80%~90% of N2O in air are emitted from soils. Agricultural soils are the main sources of greenhouse gas emission. This work expatiated the mechanisms and affecting factors of greenhouse gas formation, emission and absorption in agricultural soils. And the contribution of farmland ecosystem to greenhouse effects was discussed. It was indicated that anthropogenic factors such as land use and agricultural activity influenced greenhouse gas formation, emission and absorption in agricultural soils. Because anthropogenic processes affected agricultural ecosystems, greenhouse gas emission reductions for stabilized carbon and nitrogen were possible through improved agricultural cultivation and production systems. This study summarized the latest research advances in source/sink intensities of greenhouse gas emissions from farmlands and how that contributes to greenhouse effect. The study suggested that accurate estimation of source/sink intensities of greenhouse gases and appropriate assessments of greenhouse gas effects were the theoretical basis for reducing greenhouse gas emissions and uncertainties in predicting climate change.
  • [1]
    Kiehl J T, Trenberth K E. Earth’s annual global mean energy budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208
    [2]
    IPCC. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2000
    [3]
    Hansen J E, Lacis A A. Sun and dust versus greenhouse gases: An assessment of their relative roles in global climate change[J]. Nature, 1990, 346(6286): 713-719
    [4]
    IPCC. Climate Change 2007: The Physical Science Basis[R]. Cambridge: Cambridge University Press, 2007
    [5]
    Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601): 2173-2176
    [6]
    黄耀. 地气系统碳氮交换—— 从实验到模型[M]. 北京: 出版社, 2003: 5-48
    [7]
    IPCC. Climate Change 2001[EB/OL]. 2001. http://www.ipcc.ch/
    [8]
    Bouwman A F. The role of soil and land use in the greenhouse effect[M]//Bouwman A F. In soils and the greenhouse effect. Chichester: Wiley, 1990: 61
    [9]
    Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review, 1997, 43(4): 449-528
    [10]
    刘允芬. 农业生态系统碳循环研究[J]. 自然资源学报, 1995, 11(1): 1-8
    [11]
    Sharkey T D. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations[J]. Botanical Review, 1985, 51(1): 53-105
    [12]
    Gunderson C A, Wullschleger S D. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective[J]. Photosynthesis Research, 1994, 39(3): 369-388
    [13]
    Schimel D S. Climate change: The carbon equation[J]. Nature, 1998, 393(6682): 208-209
    [14]
    Bazzaz F A. The response of natural ecosystems to the rising global CO2 levels[J]. Annual Review of Ecology Systematics, 1990, 21(1): 167-196
    [15]
    Amthor J S. Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle[J]. Global Change Biology, 1995, 1(4): 243-274
    [16]
    Jones T H, Thompson L J, Lawton J H, et al. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems[J]. Science, 1998, 280(5362): 441-443
    [17]
    Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248(4960): 1217-1219
    [18]
    Steinkamp R, Butterbach-Bahl K, Papen H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany[J]. Soil Biol Biochem, 2001, 33(2): 145-153
    [19]
    王明星. 中国稻田甲烷排放[M]. 北京: 科学出版社, 2001
    [20]
    Sass R L, Mosier A, Zheng X H. Introduction and summary: international workshop on greenhouse gas emissions from rice fields in Asia[J]. Nutrient Cycling in Agroecosystems, 2002, 63: 9-15
    [21]
    Wang M X, Shangguan X J. CH4 emission from various rice fields in P. R. China[J]. Theoretical and Applied Climatology, 1996, 55(1/4): 129-138
    [22]
    International Rice Research Institute (IRRI). IRRI toward 2000 and beyond[M]. Manila: IRRI, 1989
    [23]
    Bouwman A F. Agronomic aspects of wetland rice cultivation and associated methane emissions[J]. Biogeochemistry, 1991, 15(2): 65-88
    [24]
    Duxbury J M. The significance of agricultural sources of greenhouse gases[J]. Fertil Res, 1994, 38(2): 151-163
    [25]
    Harriss R C, Sebacher D I, Day F P Jr. Methane flux in the Great Dismal Swamp[J]. Nature, 1982, 297(5868): 673-674
    [26]
    张雪松, 申双和, 李俊, 等. 华北平原冬麦田土壤CH4 的特征研究[J]. 南京气象学院学报, 2006, 29(2): 181-188
    [27]
    齐玉春, 董云社, 章申. 华北平原典型农业区土壤甲烷研究[J]. 农村生态环境, 2002, 18(3): 56-58, 60
    [28]
    万运帆, 李玉娥, 高清竹, 等. 田间管理对华北平原冬小量土壤碳及温室气体排放的影响[J]. 农业环境科学学报, 2009, 28(12): 2495-2500
    [29]
    董玉红, 欧阳竹. 有机肥对农田土壤二氧化碳和甲烷通影响[J]. 应用生态学报, 2005, 16(7): 1303-1307
    [30]
    孙善彬, 李俊, 陆佩玲, 等. 小麦植株在麦田CH4 交换中用及光照的影响[J]. 中国生态农业学报, 2009, 17(3): 495-499
    [31]
    Delwiche C C. Denitrification, nitrification and atmospheric N2O[M]. Chichester: John Wiley and Sons, 1981: 151-170
    [32]
    Zehnder A J B. Biology of anaerobic microorganisms[M]. New York: John Wiley and Sons, 1988: 245-303
    [33]
    封克, 殷士学. 影响氧化亚氮形成与排放的土壤因素[J]. 土壤学进展, 1995, 23(6): 35-42
    [34]
    曾江海, 王智平. 农田土壤N2O 生成与排放研究[J]. 土报, 1995, 26(3): 132-134
    [35]
    Xing G X. N2O emission from cropland in China[J]. Nutrient Cycling in Agroecosystems, 1998, 52(2/3): 249-254
    [36]
    梁东丽, 同延安, Emterdy O, 等. 黄土性土壤剖面中N2O 排放的研究初报[J]. 土壤学报, 2002, 39(6): 802-809
    [37]
    梁东丽, 同延安, Emteryd O, 等. 土土壤剖面中N2O 浓时间和空间变异[J]. 生态学报, 2003, 23(4): 731-737
    [38]
    Van Groenigen J W, Zwart K B, Harris D, et al. Vertical gradients of δ15N and δ18O in soil atmospheric N2O-temporal dynamics in a sandy soil[J]. Rapid Commun Mass Spectrom, 2005, 19(10): 1289-1295
    [39]
    Deurer M, von der Heide C, B?ttcher J, et al. The dynamics of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: A case study from a sandy aquifer in Germany[J]. Catena, 2008, 72(3): 362-373
    [40]
    Neftel A, Blatter A, Schmid M, et al. An experimental determination of the scale length of N2O in the soil of a grassland[ J]. J Geophys Res Atmos, 2000, 105(D10): 12095-12103
    [41]
    Clough T J, Kelliher F M, Wang Y P, et al. Diffusion of 15N-labelled N2O into soil columns: A promising method to examine the fate of N2O in subsoils[J]. Soil Biology & Biochemistry, 2006, 38(6): 1462-1468
    [42]
    Granli T, B?ckman O C. Nitrous oxide from agriculture[J]. Norwegian Journal of Agricultural Sciences, 1994, 12(Suppl): 7-128
    [43]
    Verchot L V, Davidson E A, Cattanio H, et al. Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia[J]. Global Biogeochemical Cycles, 1999, 13(1): 31-46
    [44]
    Chapuis-Lydie L, Wrage N, Metay A, et al. Soils, a sink for N2O? A review[J]. Global Change Biology, 2007, 13(1): 1-17
    [45]
    Pérez T, Trumbore S E, Tyler S C, et al. Isotopic variability of N2O emissions from tropical forest soils[J]. Global Biogeochemical Cycles, 2000, 14(2): 525-535
    [46]
    胡立峰, 李洪文, 高焕文. 保护性耕作对温室效应的影响[J]. 农业工程学报, 2009, 25(5): 308-312
    [47]
    胡立峰. 不同耕法对麦玉两熟及双季稻农田温室气体排影响[D]. 北京: 中国农业大学, 2006
    [48]
    刘博, 黄高宝, 高亚琴, 等. 免耕对旱地春小麦成熟期CO2 和N2O 排放日变化的影响[J]. 甘肃农业大学学报, 2010, 45(1): 82-87
    [49]
    Reicosky D C, Reeves D W, Prior S A, et al. Effects of residue management and controlled traffic on carbon dioxide and water loss[J]. Soil & Tillage Research, 1999, 52(3/4): 153-165
    [50]
    金峰, 杨浩, 赵其国. 土壤有机碳储量及影响因素研究[J]. 土壤, 2000(1): 11-17
    [51]
    Willison T W, Webster C P, Goulding K W T, et al. Methane oxidation in temperate soils: Effective of land use and the chemical form of nitrogen fertilizer[J]. Chemosphere, 1995, 30(3): 539-546
    [52]
    万运帆, 林而达. 翻耕对冬闲农田CH4 和CO2 排放通量响初探[J]. 中国农业气象, 2004, 25(3): 8-10
    [53]
    Ball B C, Scott A, Parker J P. Fields N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland[J]. Soil & Tillage Research, 1999, 53(1): 29-39
    [54]
    Choudhary M A, Akramkhanov A, Saggar S. Nitrous oxide emissions from a New Zealand cropped soil: Tillage effects, spatial and seasonal variability[J]. Agriculture, Ecosystems and Environment, 2002, 93(1/3): 33-43
    [55]
    Jacinthe P A, Dick W A. Soil management and nitrous oxide emissions from cultivated fields in southern Ohio[J]. Soil & Tillage Research, 1997, 41(3/4): 221-235
    [56]
    Reddy K R, Rao P S C, Jessup R E. The effect of carbon mineralization on denitrification kintics in mineral and organic soils[J]. Soil Sci Soc Am J, 1982, 46: 62-68
    [57]
    Koskinen W C, Keeney D R. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil[J]. Soil Sci Soc Am J, 1982, 46: 1165-1167
    [58]
    Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere[M]//Bouman A F. Soil and the greenhouse effect. Chichester: John Wiley and Sons, 1990: 60-127
    [59]
    董玉红, 欧阳竹, 李鹏, 等. 长期定位施肥对农田土壤温体排放的影响[J]. 土壤通报, 2007, 38(1): 97-100
    [60]
    谢军飞, 李玉娥. 农田土壤温室气体排放机理与影响因究进展[J]. 中国农业气象, 2002, 23(4): 47-52
    [61]
    Sommer S G, Sherlock R R, Khan R Z. Nitrous oxide and methane emissions from pig slurry amended soils[J]. Soil Biol Biochem, 1996, 28(10/11): 1541-1544
    [62]
    Flessa H, Beese F. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry[J]. J Environ Qual, 2000, 29(1): 262-268
    [63]
    Hütsch B W, Webster C P, Powlson D S. Long-term effects of nitrogen fertilization on methane oxidation in soil of the broadbalk wheat experiment[J]. Soil Biol Biochem, 1993, 25(10): 1307-1315
    [64]
    Hütsch B W. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH[J]. Biol Fertil Soils, 1998, 28(1): 27-35
    [65]
    Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils[J]. Agric Ecosyt Environ, 1992, 41(1): 39-54
    [66]
    丁维新W, 蔡祖聪. 氮肥对土壤氧化甲烷的影响研究[J]. 中国生态农业学报, 2003, 11(2): 50-53
    [67]
    Mosier A R, Guenzi W D, Schweitzer E E. Field denitrification estimation by nitrogen-15 and acetylene inhibition technigues[J]. Soil Sci Soc Am J, 1986, 50(3): 831-833
    [68]
    Silvola J, Alm J, Ahlholm U, et al. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions[J]. Journal of Ecology, 1996, 84(2): 219-228
    [69]
    杨平, 杜玉华. 国外土壤二氧化碳释放问题的研究动态[J]. 中国农业气象, 1996, 17(1): 48-50
    [70]
    蒋静艳, 黄耀, 宗良纲. 环境因素和作物生长对稻田CH4 和 N2O 排放的影响[J]. 农业环境科学学报, 2003, 22(6): 711-714
    [71]
    李长生, 肖向明, Frolking S, 等. 中国农田的温室气体排放[J]. 第四纪研究, 2003, 23(5): 493-503
    [72]
    蔡祖聪, 徐华, 卢维盛, 等. 冬季水分管理方式对稻田CH4 排放通量的影响[J]. 应用生态学报, 1998, 9(2): 171-175
    [73]
    Tate R L. Soil organic matter: Biological and ecological effects[M]. New York: John Willey and Sons, 1987: 238-259
    [74]
    Paul E A, Clark F E. Soil microbiology and biochemistry[M]. New York: Academic Press Inc, 1989: 91-130
    [75]
    Ramaswamy V, Boucher O, Haigh J, et al. Radiative forcing of climate change[M]//IPCC. In Climate Change 2001: The Scientific Basis (IPCC Third Assessment Report). Cambridge, New York: Cambridge University Press, 2001: 212
    [76]
    Johnson J M F, Reicosky D C, Allmaras R R, et al. Greenhouse gas contributions and mitigation potential of agriculture in the central USA[J]. Soil & Tillage Research, 2005, 83(1): 73-94
    [77]
    Environment Canada. Canada’s Greenhouse Gas Inventory Fact sheet 1-overview: 1990?2000[EB/OL]. 2000. http://www.ec.gc.ca/pdb/ghy/1990_00_factsheet/fsl_e.cfm_agriculture
    [78]
    Gibbons J M, Ramsden S J, Blake A. Modelling uncertainty in greenhouse gas emissions from UK agriculture at the farm level[J]. Agriculture, Ecosystems and Environment, 2006, 112(4): 347-355
    [79]
    Isermann K, Isermann R. Food production and consumption in Germany: N flows and emissions[J]. Nutrient Cycling Agroecosystem, 1998, 52(2/3): 289-301
    [80]
    Federal Ministry for the Environment/Nature Conservation and Nuclear Safety. Climate Protection in Germany[R]. Second Report of the Government of the Federal Republic of Germany Pursuant to the United Nations Framework Convention on the Climate Change. Bonn: Federal Ministry for the Environment/Nature Conservation and Nuclear Safety, 1997: 68
    [81]
    王效科, 李长生, 欧阳志云. 温室气体排放与中国粮食[J]. 生态环境, 2003, 12(4): 379-383

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return